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Abstract. We consider non-isotropic Sobolev spaces Hρ,r,p = Hρ,r,p(R
m ×Rn) of functions

f on Rd = Rm × Rn of the form f = Gm
ρ ⊗ Gn

r ⋆ g . Here Gm
ρ and Gn

r are Bessel kernels or

order ρ and r in Rm and Rn respectively and g belongs to Lp(Rd) . We develop at least part of
a potential theory for Hρ,r,p that is analogous to the well-known non-linear Lp -potential theory
for the Sobolev spaces Hρ,p(R

m) . We define thinness in Hρ,r,p , prove the Choquet and Kellog
properties and give a partial characterization of properties of certain non-linear potentials in terms
of thinness.

0. Introduction

Let ρ ≥ 0, r ≥ 0, 1 < p < ∞ and let d = m+n , where m and n are positive
integers. We define the non-isotropic Sobolev space Hρ,r,p = Hρ,r,p(R

m × Rn) as
the linear space of functions f in Rd = Rm × Rn of the form

(0.1) f = Gm
ρ ⊗ Gn

r ⋆ g.

Here Gm
ρ and Gn

r are Bessel kernels or order ρ and r in Rm and Rn respectively

and g belongs to Lp(Rd) (see Section 1 for the exact definitions). Such spaces
were recently used by P. Sjögren and P. Sjölin [SS] for p = 2 and n = 1 to study
boundary values of time-dependent solutions of the Schrödinger equation.

It is our purpose to develop at least part of a potential theory for Hρ,r,p . We
try to do this in a way that is analogous to the well-known non-linear Lp -potential
theory for the Sobolev spaces Hρ,p(R

d) as presented for example by D.R. Adams
[A], L.-I. Hedberg, Th. Wolff [HW], V.G. Maz’ya [Ma] and V.G. Maz’ya and
T.O. Shaposhnikova [MS]. The current state of the non-linear potential theory is
found in the new book by D.R. Adams and L.-I. Hedberg [AH].

Our starting point will be non-linear Lp -potential theory developed by N.G.
Meyers [Me]. The first results in Section 2 are very general, but later on, in
Sections 3, 4 and 6, we study more special situations.

We will consider kernels of the form

(0.2) k(ξ, η) = k1(x, y) · k2(s, t),
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where ξ = (x, s) and η = (y, t) are points in Rd = Rm × Rn and k1 and k2 are
kernels in Rm and Rn respectively. Taking as k the kernel Gm

ρ ⊗Gn
r in (0.1) we

get a non-linear potential theory for Hρ,r,p that seems to be new.

We continue our study of the potential theory for Hρ,r,p by introducing po-
tentials Wµ,δ

ρ,r,p and W µ
ρ,r,p , in analogy with the case of Hρ,p(R

m) in [HW]. We
define the corresponding capacities Cρ,r,p and Cρ,r,p and study their capacitary
potentials and capacitary measures.

A set E ⊂ Rd is called Cρ,r,p -thin at a point ξ0 ∈ E if

∫ δ

0

da

a

∫ δ

0

db

b

(
Cρ,r,p

(
E ∩ B(ξ0; a, b)

)

am−ρp · bn−rp

)p′−1

< ∞,

for some δ > 0. We can then prove that the Choquet and Kellog properties
hold (Theorem 6.3), which generalizes the case of Hρ,p(R

m) in [HW, Theorems 2
and 3].

The thinness of a set E at a point ξ0 ∈ E is closely related to properties of
suitable non-linear potentials. To study this problem we define another type of
product capacity C⋆

ρ,r,p (see Section 6 for the exact definition) and prove that if
there exists a non-negative measure µ with compact support in B(ξ0; δ, δ) such
that

(0.3) Wµ,δ
ρ,r,p(ξ0) < lim inf

ξ→ξ0, ξ∈E
Wµ,δ

ρ,r,p(ξ),

for some δ > 0 and E and µ satisfy a cone condition at ξ0 , then E is thin at ξ0

relative to C⋆
ρ,r,p , for 2 ≤ p < ∞ (Theorem 6.13).

The situation is a bit different when E is contained in one of the hyperplanes
Rm × {s0} or {x0} × Rn . If for example E ⊂ Rm × {s0} and 2 ≤ p < ∞ then
(0.3) holds if and only if E is Cρ,p -thin at x0 as a set in Rm (Theorem 6.4). Thus
we here recover the case of Hρ,p(R

m) in [HW]. For 1 < p < 2 we can only prove
the if part.

The plan of this paper is as follows. Section 1 contains our definitions and
notations. We begin Section 2 with reviewing the basic facts from non-linear Lp -
potential theory and we study product kernels of the type (0.2). In Section 3 we
apply these results to the non-isotropic Sobolev spaces Hρ,r,p .

In Section 4 we look at the potential theory for Hρ,r,p in another way. We
define non-linear potentials Wµ

ρ,r,p and W µ
ρ,r,p and show that they have equivalent

energy integrals (Theorem 4.2). The rest of this section is devoted to a study of
the potential theory for W µ

ρ,r,p . Section 6 gives our treatment of thinness in Hρ,r,p .
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1. Notation and definitions

We are going to use the notation and definitions from [Me] and [Sj]. Consider
the d -dimensional Euclidean space Rd = Rm × Rn and denote points in Rd by
ξ = (x, s) , η = (y, t) and ζ = (z, u) , where x, y, z ∈ Rm and s, t, u ∈ Rn . The
Euclidean norm is written | · | and we let G and K denote open and compact sets
respectively. A closed k -dimensional Euclidean ball is written Bk(w, r) and the
k -dimensional Lebesgue measure of a set E is written |E|k .

In Rd we define B(ξ; a, b) = Bm(x, a) × Bn(s, b) and we denote a rectangle
by R = I × J , where I and J are cubes in Rm and Rn with their sides parallel
to the coordinate axes. The side length of I is written l(I) .

Measurability of sets and functions always refers to Lebesgue measure and we
use standard notation for Lebesgue integrals. A function is called extended real
valued if its values are real numbers or ±∞ .

For 1 < p < ∞ we let Lp(Rd) be the linear space of extended real valued
functions in Rd such that

‖f‖p =

(∫
|f(x, s)|p dx ds

)1/p

is finite. The non-negative elements in Lp(Rd) are denoted by Lp
+(Rd) .

A capacity in Rd is a non-negative set function C defined for all subsets of
Rd such that: (i) C(φ) = 0, φ the empty set, and (ii) A1 ⊂ A2 implies that
C(A1) ≤ C(A2) .

Our terminology for measures and integrals is that in [Me]. A measure µ is
the completion of an extended real valued and σ -additive set function defined on
the Borel field, which is finite on compact sets. We say that µ is concentrated on
the µ-measurable set A if µ(B) = 0 for all µ-measurable sets B in Rd \ A .

Let M be the space of Radon measures and let L1 be the Banach space
of measures µ with finite total variation ‖µ‖1 . The non-negative elements are
denoted by M+ and L+

1 respectively and we take the usual weak topologies in M
and L1 [Me, p. 258].

A kernel k = k(ξ, η) in Rd is a non-negative and lower semi-continuous
function on Rd × Rd . When µ, ν belong to M we write

k(ν, µ) =

∫
k(ξ, η) dσ(ξ, η),

where σ is the tensor product σ = νξ ⊗ µη . When ν = δξ is Dirac measure at
ξ we write k(ν, µ) = k(ξ, µ) . Various constants are denoted by c or c(α, β, . . .)
and a ∼ b means that a/b is bounded from above and below by positive finite
constants.
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2. Non-linear capacities and potentials

In this section we define the two set functions Ck,p and ck,p and study their
properties. Let 1 < p < ∞ , k a kernel in Rd and let S denote the σ -algebra of
sets which are measurable for all Borel measures in Rd . For any set A ⊂ Rd we
define

Ck,p(A) = inf ‖f‖p
p,

where infimum is over all f ∈ Lp
+(Rd) such that k(ξ, f) ≥ 1, all ξ ∈ A . For any

set A ∈ S we define
ck,p(A) = sup ‖µ‖1,

where supremum is over all µ ∈ M+ which are concentrated on A and satisfies
the inequality ‖k(µ, · )‖p′ ≤ 1.

We will also use these capacities in other spaces than Rd , but that will be
clear from the context. These capacities are studied in detail in [Me]. Among
other things it is shown that all analytic sets are Ck,p -capacitable, i.e.

sup
K⊂A

Ck,p(K) = Ck,p(A) = inf
A⊂G

Ck,p(G),

and that Ck,p(A)1/p = ck,p(A) , for all analytic sets A .
Now let K be a compact set with Ck,p(K) < ∞ , then the following statements

(i)–(vii) hold:

(i) There exists a unique fK ∈ Lp
+(Rd) such that ‖fK‖p

p = Ck,p(K) ,

(ii) There exists µK ∈ M+(K) which satisfies ‖k(µK , · )‖p′ ≤ 1 , and

‖µK‖p
1 = Ck,p(K),

(iii) fK and µK are related by

fK(η) = ‖µK‖1 · k(µ, η)p′−1,

(iv) µK is supported on the set {ξ ; V µK

k,p (ξ) = 1} , where V µK

k,p (ξ) = k(ξ, fK) ,

(v) V µK

k,p (ξ) ≤ 1 , all ξ in the support of µK ,

(vi) V µK

k,p (ξ) ≤ 1 , Ck,p -q.e. ξ ∈ K ,

(vii) Ck,p(K) = sup µ(K) , where supremum is over all µ ∈ M+ , supported
by K and satisfying V µ

k,p(ξ) ≤ 1 , in the support of µ .

The properties (i)–(vi) are proved in [Me], while (vii) can be proved as in
[HW, Theorem 1]. Any measure µK in (ii) and the function V µK

k,p in (iv) is called
the Ck,p -capacitary measure and the Ck,p -capacitary potential for K respectively.
For the rest of this paper we will consider a special type of kernels, called product
kernels, and defined as follows.
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Definition 2.1. Let k1 and k2 be kernels in Rm and Rn respectively. Then
k(ξ, η) = k1(x, y)·k2(s, t) is called a product kernel in Rd , where as usual ξ = (x, s)
and η = (y, t) .

It is obvious that product kernels are kernels in our sense so that the general
theory above applies. These kernels are in a natural way adopted to measure
product sets.

Theorem 2.2. Let 1 < p < ∞ and let k = k1 · k2 be a product kernel
in Rd . Let A1 and A2 be analytic sets in Rm and Rn respectively such that
Ck1,p(A1) < ∞ and Ck2,p(A2) < ∞ . Then

Ck,p(A1 × A2) = Ck1,p(A1) · Ck2,p(A2).

The theorem follows in a straight manner from the definitions of the capacities
and the relation between Ck,p and ck,p . We omit the proof.

The Ck,p -capacitary potential has a particularily simple form for product sets.

Theorem 2.3. Let 1 < p < ∞ and let k = k1 · k2 be a product kernel
in Rd . Let K1 ⊂ Rm and K2 ⊂ Rn be compact sets with Ck1,p(K1) < ∞ and
Ck2,p(K2) < ∞ . Further let µ1 be a ck1,p -capacitary measure for K1 and let µ2

be a ck2,p -capacitary measure for K2 . Then µ = µ1 ⊗ µ2 is a ck,p -capacitary
measure for K1 × K2 and

V µ
k,p(ξ) = V µ1

k1,p(x) · V µ2

k2,p(s)

is a Ck,p -capacitary potential for K1 × K2 .

The first part of the proof follows from Theorem 2.2 and properties of the
capacities. A simple calculation gives the formula for V µ

k,p(ξ) .

Remark. Replacing Lp(Rd) by the mixed norm Lebesgue space Lp,q(Rd) ,
where 1 < p, q < ∞ , defined by the norm

‖f‖p,q =

(∫

Rn

( ∫

Rm

|f(x, s)|p dx

)q/p

ds

)1/q

,

gives the analogous capacities Ck,p,q and ck,p,q , see [Sj]. When p = q we recover
the present case. The statements (i)–(viii) above, as well as Theorems 2.2 and 2.3,
have natural counterparts in this more general situation, but will not be treated
in this paper.
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3. Sobolev spaces of mixed norm

In this section we define the Sobolev spaces of mixed norm and apply the
results from Section 2. Recall that for any positive integer k and any real number
α the Bessel kernel Gk

α in Rk can be defined by its Fourier transform

Ĝk
α(ζ) = (1 + |ζ|2)−α/2

cf. [St, p. 130]. The usual Sobolev spaces (Bessel potential spaces) Hα,p(R
k) ,

α > 0 and 1 ≤ p < ∞ , are defined as the linear space of functions f = Gk
α ⋆ g ,

where g ∈ Lp(Rk) , with norm ‖f‖α,p = ‖g‖p .

Definition 3.1. Let ρ ≥ 0, r ≥ 0 and 1 ≤ p ≤ ∞ . Then Hρ,r,p(R
d) is

the linear space of all functions f = Gm
ρ ⊗ Gn

r ⋆ g , where g ∈ Lp(Rd) , with norm
‖f‖ρ,r,p = ‖g‖p .

If ρ > 0 and r > 0 every function f in Hρ,r,p has a representation

f(ξ) =

∫
Gm

ρ (x − y) · Gn
r (s − t) · g(y, t) dy dt,

for an essentially unique g ∈ Lp(Rd) . The function k(ξ, η) = Gm
ρ (x−y) ·Gn

r (s− t)

is a product kernel in Rd and we denote the corresponding capacities Ck,p and
ck,p by Cρ,r,p and cρ,r,p respectively. For the Sobolev spaces Hl,p(R

k) we denote
their capacities by Bk

l,p and bk
l,p , see [Me, p. 280].

We can now apply Theorem 2.2 to the present situation. In particular we
have the following result when restricted to products of balls.

Theorem 3.2. Let ρ > 0 , r > 0 and 1 < p < ∞ . Then for any a > 0 and
b > 0 we have

Cρ,r,p

(
Bd(ξ; a, b)

)
= Bm

ρ,p

(
Bm(x, a)

)
· Bn

r,p

(
Bn(s, b)

)
.

If we insert the values of Bm
ρ,p and Bn

r,p on balls into the formula in Theo-
rem 3.2 we get

(3.1) Cρ,r,p

(
Bd(ξ; a, b)

)
∼ am−ρp · bn−rp, 0 < a, b ≤ 1,

when 0 < ρ < m/p and 0 < r < n/p . If ρ = m/p or r = n/p we replace am−ρp

and bn−rp by
(
log(2/a)

)1−p
and

(
log(2/b)

)1−p
respectively.

Remark. If Cρ,r,p,q denotes the capacity in Lp,q(Rd) relative to the kernel
Gm

ρ ⊗ Gn
r formula (3.1) takes the form

Cρ,r,p,q

(
Bd(ξ; a, b)

)1/p ∼ am/ρ−p · bn/r−q , 0 < a, b ≤ 1,
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and if Bd
α,p,q is the capacity in Lp,q(Rd) for the ordinary Bessel kernel Gd

α we get

Bd
α,p,q

(
Bd(ξ, a)

)
∼





ap(m/p+n/q−α), if 0 < α < m/p + n/q,
(log 2/a)−p/q′

, if α = m/p + n/q,
1, if α > m/p + n/q,

for 0 < a ≤ 1.

It is well known that when k is a non-negative integer and 1 < p < ∞ ,
Hk,p(R

m) can be identified with the space of distributions f ∈ Lp(Rm) with norm
|f |k,p =

∑
|α|≤k ‖Dαf‖p , see [St, Ch. 5, Theorem 3]. We prove the analogous result

for Hρ,r,p(R
d) .

Let k and l be non-negative integers and 1 < p < ∞ . Define the mixed
norm Sobolev space W p

k,l(R
d) as the linear space of functions f ∈ Lp(Rd) such

that Dα
x Dβ

s f(x, s) ∈ Lp(Rd) , for all |α| ≤ k and |β| ≤ l , with norm

|f |k,l,p =
∑

|α|≤k, |β|≤l

‖Dα
x Dβ

s f‖p.

We then have the following relation between Hρ,r,p(R
d) and W p

k,l(R
d) .

Theorem 3.3. Let k and l be non-negative integers and 1 < p < ∞ . Then
Hk,l,p(R

d) = W p
k,l(R

d) , with equivalence of norms.

Proof. It is easily seen that the Schwartz class S (Rd) is dense in both spaces.
Let g ∈ S (Rd) and define f = Gm

k ⊗ Gn
l ⋆ g . Then also f ∈ S (Rd) and

Dα
x Dβ

s f(x, s) = Dα
x

(∫
Gm

k (x − y)Dβ
s

(∫
Gn

l (s − t)g(y, t) dt

)
dy

)
.

First assume that k > 0 and l > 0. For any fixed s ∈ Rn and |β| ≤ l

∑

|α|≤k

∫
|Dα

x Dβ
s f(x, s)|p dx ∼

∫ ∣∣∣∣D
α
x

(∫
Gn

l (s − t)g(y, t) dt

)∣∣∣∣
p

dy,

with constants independent of s ∈ Rn . Summing over all |β| ≤ l , integrating
w.r.t. s over Rn and changing the order of integration and summation gives

∑

|α|≤k, |β|≤l

∫
|Dα

x Dβ
s f(x, s)|p dx ds ∼

∫
dy

∑

|β|≤l

∫ ∣∣∣∣D
β
s

(∫
Gn

l (s − t)g(y, t) dt

)∣∣∣∣
p

ds

∼
∫

dy

∫
|g(y, t)|p dt = ‖g‖p

p,

with constants independent of f and g . The cases when k = 0 or l = 0 are
treated similarly. Theorem 3.3 is proved.
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4. A non-linear potential theory for Hρ,r,p(R
m × Rn)

In this section we continue our study of a non-linear potential theory for
Hρ,r,p(R

m × Rn) in a different way. Hedberg and Wolff [HW] discovered in 1983
that the Lp -potential theory for the Sobolev space Hρ,p(R

m) has an alternative
formulation that parallels the classical potential theory and avoids some of the
difficulties in earlier theories. It is our purpose here to carry out such a program
also for the potential theory in Hρ,r,p(R

m × Rn) .
We are going to define these new non-linear potentials and capacities and

establish their basic properties. Let us start with the following lower bound for
the potential V µ

ρ,r,p , cf. [HW, p. 164].

Lemma 4.1. Let ρ > 0 , r > 0 and µ ∈ M+ . Then

V µ
ρ,r,p(ξ) ≥ c(d, ρ, r, p)·

∫ ∞

0

∫ ∞

0

µB(ξ; a, b)p′−1 ·
(
Gm

ρ (4a)·Gn
r (4b)

)p′

·am−1bn−1da db.

For 0 < ρ < m , 0 < r < n , δ > 0 and µ ∈ M+ we define

Wµ,δ
ρ,r,p(ξ) =

∫ δ

0

da

a

∫ δ

0

db

b

(
µB(ξ; a, b)

am−ρp · bn−rp

)p′−1

and put Wµ,δ
ρ,r,p = Wµ

ρ,r,p , when δ = 1. It follows easily from Lemma 4.4 and

properties of the Bessel kernel that V µ
ρ,r,p(ξ) ≥ c(d, ρ, r, p)·Wµ

ρ,r,p(ξ) , for all ξ ∈ Rd .
The following partial converse turns out to be the key step in what follows.

Theorem 4.2. Let 0 < ρ ≤ m/p , 0 < r ≤ n/p , 1 < p < ∞ and µ ∈ M+ .
Then

(4.1)

∫
V µ

ρ,r,p(ξ) dµ(ξ) = ‖Gm
ρ ⊗ Gn

r ⋆ µ‖p′

p′ ≤ c(d, ρ, r, p) ·
∫

Wµ
ρ,r,p(ξ) dµ(ξ).

This was proved in [HW, Theorem 1] for the case of Hρ,p(R
m) . We postpone

the proof of Theorem 4.2 to the next section in order to make our presentation
easier to follow. We are now going to modify the potential Wµ

ρ,r,p in two more
steps before we arrive at the potential W µ

ρ,r,p that will be our main interest for the
rest of this paper.

For each integer k we divide Rm into a net of non-intersecting congruent
cubes with side length 2−k by dividing every cube of side length 2−k into 2m

cubes of side length 2−k−1 . Such cubes are called dyadic cubes in Rm . We divide
Rn analogously and we call I × J a dyadic rectangle in Rd , where I and J are
dyadic cubes in Rm and Rn respectively. For 0 < ρ ≤ m/p , 0 < r ≤ n/p ,
1 < p < ∞ and µ ∈ M+ we define

W̃
µ

ρ,r,p(ξ) =
∑

l(I)≤1, l(J)≤1

(
µ(I × J)

l(I)m−ρ · l(J)n−r

)p′−1

· χI×J (ξ).
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For a dyadic rectangle I ×J we let φI×J be a C∞ -function supported in 3I ×3J
such that 0 ≤ φI×J (ξ) ≤ 1, for all ξ ∈ Rd and φI×J (ξ) = 1 in I × J . We finally
define

W µ
ρ,r,p(ξ) =

∑

l(I)≤1, l(J)≤1

(
µ(φI×J )

l(I)m−ρ · l(J)n−r

)p′−1

· φI×J (ξ),

where µ(φI×J ) =
∫

φI×J (ξ) dµ(ξ) . We also put

J (µ) = Jρ,r,p(µ) =

∫
W µ

ρ,r,p(ξ) dµ(ξ)

and call J (µ) the energy integral associated with µ . As in [HW, p. 175] it follows
from Theorem 4.2 and geometrical arguments that the four integrals

(4.2)

∫
V µ

ρ,r,p(ξ) dµ(ξ),

∫
Wµ

ρ,r,p(ξ) dµ(ξ),

∫
W̃

µ

ρ,r,p(ξ) dµ(ξ),

∫
W µ

ρ,r,p(ξ) dµ(ξ)

are all equivalent with constants only depending on d , ρ , r and p .
The rest of this section is devoted to a formulation of a non-linear potential

theory for W µ
ρ,r,p . We let 0 < ρ < m , 0 < r < n and 1 < p < ∞ . For any

compact set K in Rd we define

Cρ,r,p(K)1/p = sup{µ(K) ; µ ∈ M+(K) and J (µ) ≤ 1},

and we extend the definition of Cρ,r,p in the usual way to an outer capacity on all
sets. It follows from (4.2) that the capacities Cρ,r,p and Cρ,r,p are equivalent. Any
measure µ ∈ M+(K) such that J (µ) ≤ 1 and µ(K) = Cρ,r,p(K)1/p is called a
Cρ,r,p -capacitary measure for K and W µ

ρ,r,p is called a Cρ,r,p -capacitary potential
for K .

In the following we collect the properties of the Cρ,r,p -capacity in a series of
lemmas analogous to [HW, Propositions 1–9]. We first prove that Cρ,r,p -capacitary
measures and potentials exist for compact sets and have their usual equilibrium
properties.

Lemma 4.3. Let K be a compact set. Then there exists γ ∈ M+(K) ,
γ(K) = 1 such that

(i) J (γ) = Cρ,r,p(K)1−p′

,
(ii) W γ

ρ,r,p(ξ) ≥ J (γ) , (ρ, r, p) -q.e. on K ,
(iii) W γ

ρ,r,p(ξ) ≤ J (γ) , everywhere on the support of γ .

The existence of such a γ satisfying (i) follows from the observation that

Cρ,r,p(K)−1 = inf{J (µ) ; µ ∈ M+(K) and µ(K) = 1}
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and a standard weak compactness argument. The properties (ii) and (iii) are
proved as in [HW, Propositions 1 and 2].

We will also consider signed measures µ = µ+−µ− , where µ+ and µ
−

belong
to M+ and J (µ+ + µ

−
) < ∞ . We define

W µ
ρ,r,p(ξ) =

∑

l(I)≤1, l(J)≤1

(
l(I)m−ρ · l(J)n−r

)1−p′

· |µ(φI×J )|p′−2 · µ(φI×J ) · φI×J (ξ),

and then J (µ) =
∑

l(I)≤1, l(J)≤1

(
l(I)m−ρ · l(J)n−r

)1−p′

· |µ(φI×J )|p′

. For λ > 0

we put Eλ = {ξ ; W µ
ρ,r,p(ξ) > λ or W

µ++µ−

ρ,r,p (ξ) = ∞} then it follows that

Cρ,r,p(Eλ) ≤ 1

λp
· J (µ),

cf. [HW, Proposition 3]. It is now a consequence of Lemma 4.3 that, at least for
compact sets, the Cρ,r,p -capacity can be defined in terms of the potential W µ

ρ,r,p .
For a proof see [HW, Propositions 4 and 5].

Lemma 4.4. Let K be a compact set then

(i) Cρ,r,p(K) = inf{J (µ) ; µ ∈ M+ and W µ
ρ,r,p(ξ) ≥ 1 , (ρ, r, p) -q.e., ξ ∈ K} ,

(ii) Cρ,r,p(K) = sup{µ(K) ; µ ∈ M+(K) and W µ
ρ,r,p(ξ) ≤ 1 , ξ ∈ supp µ} .

The non-linear potentials W µ
ρ,r,p , where µ ∈ M+ and J (µ) < ∞ , are Cρ,r,p -

quasi continuous in the following sense: For every ε > 0 there is an open set G
such that Cρ,r,p(G) < ε and the restriction of W µ

ρ,r,p(ξ) to the closed set Rd \ G

is continuous on Rd \ G . Cf. [HW, Proposition 6].

We conclude this section with an equilibrium theorem for sets of finite Cρ,r,p -
capacity.

Theorem 4.5. Let E be any set with 0 < Cρ,r,p(E) < ∞ . Then there is
γ ∈ M+(E) such that γ(E) = 1 ,

W γ
ρ,r,p(ξ) ≥ J (γ) = Cρ,r,p(E)1−p′

, (ρ, r, p)-q.e. on E

and

W γ
ρ,r,p(ξ) ≤ J (γ), ξ ∈ supp γ.

The proof of Theorem 4.5 follows that of [HW, Propostions 7 and 8] almost
word by word and is omitted.
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5. Proof of Theorem 4.2

This section is devoted to a proof of Theorem 4.2. Since the proof follows
[HW, Theorem 1] we will omit some of the details. However, for the readers’
convenience, we will carry out the crucial parts of the proof in a rather detailed
manner.

Proof of Theorem 4.2. We begin by reducing the proof to the case when
the kernel is supported in a neighbourhood of the origin and the measure µ is
supported in a unit cube. Define

R̃
m

ρ (x) =

{
|x|ρ−m, |x| < 1,
0, |x| ≥ 1,

and analogously for R̃
n

r (s) . We claim that it suffices to prove (4.1) with Gm
ρ ⊗Gn

r

replaced by R̃
m

ρ ⊗R̃
n

r . By properties of the Bessel kernel we have that

Gm
ρ ⊗ Gn

r ⋆ µ(ξ) ≤ c ·
(
R̃

m

ρ ⊗R̃
n

r ⋆ µ(ξ)

+

∫

|t−s|>1, |y−x|≤1

|x − y|ρ−me−c|s−t| dµ(y, t)

+

∫

|y−x|>1, |t−s|≤1

|s − t|r−ne−c|x−y| dµ(y, t)

+

∫

|y−x|>1, |t−s|>1

e−c|x−y|e−c|s−t| dµ(y, t)

)

= c ·
(
R̃

m

ρ ⊗R̃
n

r ⋆ µ(ξ) + A(ξ) + B(ξ) + C(ξ)
)
.

The second term is majorized by

A(ξ) ≤ c ·
∑

l(J)=2−l

e−c·dist(s,J) ·
∫

|x − y|ρ−m dµJ(y)

≤ c ·
( ∑

l(J)=2−l

(∫
|x − y|ρ−m dµJ (y)

)p′

· e−c·dist(s,J)

)1/p′

,

and integration with respect to s over Rn gives

∫
A(ξ)p′

ds ≤ c ·
∑

l(J)=2−l

(∫
|x − y|ρ−m dµJ (y)

)p′

,
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where µJ is defined by µJ (E) = µ(E × J) , for all Borel sets E ⊂ Rm . Now by
the Rm -case in [HW]

∫
A(ξ)p′

dx ds ≤ c ·
∑

l(J)=2−l

∫
dµJ (y)

∫ 1

0

(
µJBm(y, a)

am−ρp

)p′−1
da

a

≤ c ·
∑

l(J)=2−l

∫

Rm×J

dµ(y, t)

∫ 1

0

(
µB(η; a, 1

2 )

am−ρp

)p′−1
da

a

≤ c ·
∫

W µ
ρ,r,p(η) dµ(η),

provided l is chosen so large that t ∈ J implies that J ⊂ Bn(t; 1
2 ) . The terms

B(ξ) and C(ξ) are handled analogously, proving our claim. It is also easy to see
that we can assume µ is supported in a unit cube in Rd . We omit the details.

From now on we assume that µ has support in a unit cube Q0 = I0 × J0

in Rd . We first notice the pointwise estimate

Wµ
ρ,r,p(ξ) ≥ c ·

∑

l(I)≤2−γ , l(J)≤2−γ

(
µ(I × J) · l(I)ρp−m · l(J)rp−n

)p′−1 · χI(x) · χJ (s),

for some integer γ , only depending on m and n . Integrating w.r.t. µ and using
the geometry of dyadic cubes gives

(5.1)

∫
Wµ

ρ,r,p(ξ) dµ(ξ) ≥ c ·
∑

l(I)≤1, l(J)≤1

(
µ(I × J) · l(I)ρ−m · l(J)r−n

)p′

· |I| · |J |,

which will be our lower estimate for the right hand side of (4.1). Similarly we get

(5.2) R̃
m

ρ ⊗R̃
n

r ⋆ µ(ξ) ≤ c ·
∑

l(I)≤1, l(J)≤1

µ(Ĩ × J̃) · l(I)ρ−m · l(J)r−n · χI(x) · χJ (s).

The proof will now be completed by repeated application of the estimates in [HW,
Theorem 1]. We first have
∫ (

R̃
m

ρ ⊗R̃
n

r ⋆ µ(ξ)
)p′

dµ(ξ) ≤ c ·
∫

Q0

(
R̃

m

ρ ⊗R̃
n

r ⋆ µ(ξ)
)p′

dµ(ξ)

≤ c ·
∫

I0

dx

∫

J0

ds

( ∑

l(J)≤1

χJ (s) · l(J)r−n ×
( ∑

l(I)≤1

l(I)ρ−m · µ(Ĩ × J̃) · χI(x)

))p′

by (5.2). For any fixed x ∈ I0 we define a Borel measure νx on Rn by

νx(E) =
∑

l(I)≤1

l(I)ρ−m · µ(Ĩ × E) · χI(x).
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Then νx is supported in I0 and has finite mass by (5.1). Two applications of the
relation (⋆) in [HW, p. 170] together with (5.1) gives

∫ (
R̃

m

ρ ⊗R̃
n

r ⋆ µ(ξ)
)p′

dµ(ξ) ≤ c ·
∫

I0

dx

∫

J0

ds

( ∑

l(J)≤1

l(J)r−n · νx(J̃) · χJ (s)

)p′

≤ c ·
∫

I0

dx
∑

l(J)≤1

(
l(J)r−n · νx(J)

)p′

· |J |

= c ·
∑

l(J)≤1

l(J)(r−n)p′ · |J | ·
∫

I0

dx

( ∑

l(I)≤1

l(I)ρ−m · µ(Ĩ × J) · χI(x)

)p′

≤ c ·
∑

l(J)≤1

l(J)(r−n)p′ · |J | ·
∑

l(I)≤1

(
l(I)ρ−m · µ(I × J)

)p′

· |I|

≤ c ·
∫

Wµ
ρ,r,p(ξ) dµ(ξ),

which finally proves (4.1). Theorem 4.2 is thereby proved.

6. Thin sets in Hρ,r,p(R
m × Rn)

In this section we continue our study of a non-linear potential theory for
W µ

ρ,r,p . We are going to define the concept of a thin set in Hρ,r,p(R
m × Rn) and

study its basic properties. In particular we show that the Kellog and Choquet
properties hold (Theorem 6.3). We also give a partial description of thinness in
terms of potentials Wµ,δ

ρ,r,p (Theorems 6.4 and 6.13).

Definition 6.1. Let 1 < p < ∞ , 0 < ρ ≤ m/p and 0 < r ≤ n/p . A set
E ⊂ Rd is called Cρ,r,p -thin at ξ0 ∈ Rd , if either ξ0 /∈ E or ξ0 ∈ E and

(6.1)

∫ δ

0

da

a

∫ δ

0

db

b

(
Cρ,r,p

(
E ∩ B(ξ0; a, b)

)

am−ρp · bn−rp

)p′−1

< ∞,

for some δ > 0. We put eρ,r,p(E) = {ξ ∈ Rd ; E is Cρ,r,p -thin at ξ} .

This concept of thinness has the following properties.

Lemma 6.2. (i) A set E is Cρ,r,p -thin at ξ0 if and only if E ∩B(ξ0, λ, λ) is
Cρ,r,p -thin at ξ0 for some/all λ > 0 .

(ii) If E =
⋃N

1 Ei are sets in Rd and ξ0 ∈ Rd then E is Cρ,r,p -thin at ξ0 if
and only if each set Ei , 1 ≤ i ≤ N , is Cρ,r,p -thin at ξ0 .

The easy proof is left to the reader.

The first result in this section is a proof of the Choquet property for the
potential theory in Hρ,r,p(R

m × Rn) .
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Theorem 6.3. Let 1 < p < ∞ , 0 < ρ ≤ m/p and 0 < r ≤ n/p . Then for
any set E in Rd and any ε > 0 there is an open set G such that

eρ,r,p(E) ⊂ G and Cρ,r,p(E ∩ G) < ε.

It is an easy consequence of Theorem 6.3 that also the so called Kellog property
holds: For every set E ∈ Rd we have

Cρ,r,p

(
eρ,r,p(E) ∩ E

)
= 0.

Proof of Theorem 6.3. We follow the method of Choquet [C, Theorem 1] as
it is used in [HW, Theorem 3]. Let {Oj}∞1 be an enumeration of the rational
balls in Rd that intersect E and let Wj be the capacitary potential for E ∩ Oj

whenever Cρ,r,p(E ∩ Oj) > 0. Define Aj = {ξ ∈ E ∩ Oj ; Wj(ξ) < 1} in this case
and Aj = E ∩ Oj , if Cρ,r,p(E ∩ Oj) = 0. Then eρ,r,p(E) ⊂ (E)c ∪

(⋃∞
j=1 Aj

)
by

the analogue of [HW, Proposition 10] in the present case.
Let ε > 0 be arbitrary and choose open sets Gj such that Cρ,r,p(Gj) < ε·2−j ,

the restriction of Wj to Gc
j is continuous on Gc

j and Wj(ξ) ≥ 1 on E ∩ Oj ∩ Gc
j .

Let Gj = Oj , if Cρ,r,p(E ∩ Oj) = 0.
Now define F = E ∩

(⋂∞
j=1 Gc

j

)
and G = (F )c . Then by our construction

eρ,r,p(E) ⊂ G and

Cρ,r,p(E ∩ G) ≤
∞∑

1

Cρ,r,p(Gj) < ε.

This proves the theorem.

In classical potential theory, as well as in Lp -potential theory, thinness can be
characterized by properties of potentials of measures, cf. [HW] and the references
found there. In the present setting it turns out that the situation is a bit more
complicated, mainly because the kernel Gm

ρ ⊗Gn
r is singular not only at the origin

but on the two hyperplanes Rm × {0} and {0} × Rn .

Let E ⊂ Rd , ξ0 = (x0, s0) ∈ E and consider the following property of the set
E at the point ξ0 .

Property Pρ,r,p : There exists a measure µ ∈ M+(Rd) such that, for some

δ > 0 , µ has its compact support in the open ball B(ξ0; δ, δ) and

(6.2) Wµ,δ
ρ,r,p(ξ0) < lim inf

ξ→ξ0, ξ∈E
Wµ,δ

ρ,r,p(ξ).

The existence of µ ∈ M+(Rd) such that (6.2) holds is closely related to the
thinness of E at ξ0 in a sense to be made precise below. We have to consider two
separate cases, whether E is a subset of one of the hyperplanes Rm × {s0} and
{x0} × Rn or if E is away from these hyperplanes. We start with the first case.
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Theorem 6.4. Let 1 < p < ∞ , 0 < ρ ≤ m/p and 0 < r ≤ n/p . Let
ξ0 = (x0, s0) ∈ E , where E ⊂ Rm × {s0} .

(i) If E is Cρ,p -thin at x0 as a subset of Rm , then E has property Pρ,r,p at
ξ0 in Rd .

(ii) Assume that 2 ≤ p < ∞ . If E has property Pρ,r,p at ξ0 in Rd , then E
is Cρ,p -thin at x0 as a subset of Rm .

Theorem 6.4 has an obvious analogue for subsets of {x0} × Rn , which we
leave to the reader. We extract the technical part of the proof in the following
lemma, where we use an idea from the proof of [HW, Proposition 11]. The lemma
will be used once more in the proof of Theorem 6.13 below.

Lemma 6.5. Let 2 ≤ p < ∞ , 0 < ρ ≤ m/p , 0 < r ≤ n/p , δ > 0 and
µ ∈ M+(Rd) . Then if

Eλ =

{
x;

∫ k

0

da

a

∫ δ

0

db

b

(
µB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

> λ

}

it holds that for 0 < k < δ

(6.3) Cρ,p

(
Eλ ∩ Bm(0, k)

)
≤ c · λ1−p ·

(∫ δ

0

db

b

(
µB(0, 0; 2k, b)

bn−rp

)p′−1)p−1

,

where c = c(m, p, ρ, δ) .

Proof. Throughout this proof c denotes constants depending on m , p , ρ and
δ . Let K ⊂ Eλ ∩ Bm(0, k) be a compact set with Cρ,p -capacitary measure τ ,
τ(K) = Cρ,p(K) . Define

g(x, a) =

(∫ δ

0

db

b

(
µB(x, 0; a, b)

bn−rp

)p′−1)p−1

and

Mτg(x) = sup
0<a≤5k

g(x, a/5)

τBm(x, a)
.

Then for any x in the support of τ

λ <

∫ k

0

da

a

(
g(x, a)

am−ρp

)p′−1

= c ·
∫ 5k

0

da

a

(
τBm(x, a)

am−ρp

)p′−1

·
(

g(x, a/5)

τBm(x, a)

)p′−1

≤ c · V τ
ρ,p(x) · Mτg(x)p′−1· ≤ c · Mτg(x)p′−1,

and hence Mτg(x) > c · λp−1 . For every such x we choose 0 < rx ≤ 5k such that

g(x, rx/5)

τBm(x, rx)
> c · λp−1.
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By a well-known covering lemma we can cover the support of τ by a union of balls
{Bi} = {B(xi, ri)}∞1 such that {B(xi, ri/5)}∞1 are disjoint and

g(xi, ri/5)

τBm(xi, ri)
> c · λp−1.

It then follows that

Cρ,p(K) = τ(K) ≤
∞∑

1

τB(xi, ri) ≤ c · λ1−p ·
∞∑

1

g(xi, ri/5)

≤ c · λ1−p ·
(∫ δ

0

db

b

( ∞∑

1

µB(xi, ri/5) × B(0, b)

bn−rp

)p′−1)p−1

≤ c · λ1−p ·
(∫ δ

0

db

b

(
µB(0, 0; 2k, b)

bn−rp

)p′−1)p−1

,

by the reversed Hölder inequality. Taking the supremum over all such K gives
(6.3) by the inner regularity of the capacity.

Proof of Theorem 6.4. The proof of (i) is straightforward. By [HW, Theo-
rem 4] there exists ν ∈ M+(Rm) such that

W ν
ρ,p(x0) < lim inf

x→x0, x∈E
W ν

ρ,p(x).

Let τ be any smooth measure in M+(Rn) with compact support and W τ
r,p(s0) = 1.

Then µ = ν ⊗ τ is easily seen to satisfy (6.2).
Conversely, assume that µ satisfies (6.2) with ξ0 = (0, 0). Let 0 < h < δ

and let µh denote the restriction of µ to the set {(y, t) ; |y| < h or |t| < h} . If
then v denotes the difference between the right and left hand sides of (6.2) we put
γ = v1−p′ · µh . Then, given any ε > 0, it holds

W γ,δ
ρ,r,p(0, 0) < ε and lim inf

x→0, x∈E
W γ,δ

ρ,r,p(x, 0) ≥ 1,

provided l is small enough. Then, if ε is sufficiently small, we can find k0 ,
depending on ε , such that if 0 < k < k0 then

∫ k

0

da

a

∫ δ

0

db

b

(
γB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

≥ 1
2
,

for all x ∈ E ∩ Bm(0, k) . Lemma 6.5 now gives

∫ k0

0

dk

k

(
Cρ,p(E ∩ Bm(0, k)

km−ρp

)p′−1

≤ c(m, p, ρ, δ) · W γ,δ
ρ,r,p(0, 0) < ∞,

and so by definition [HW, p. 165] E is Cρ,p -thin at the origin in Rm .
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Remark. If Lemma 6.5 holds for 1 < p < 2 then the same is true for the
statement (ii) in Theorem 6.4.

The property Pρ,r,p of a set E at ξ0 ∈ E behaves in many aspects like Cρ,r,p -
thinness. For example the two properties in Lemma 6.2 carry over almost word
by word. We restrict ourselves to the case (ii) in Lemma 6.2.

Lemma 6.6. Let E =
⋃N

1 Ei be sets in Rd and assume ξ0 ∈ Ei , 1 ≤ i ≤ N .
Then E has property Pρ,r,p at ξ0 if and only if each of the sets Ei , 1 ≤ i ≤ N ,
have property Pρ,r,p at ξ0 .

Proof. We only need to prove necessity. Let µi ∈ M+(Rd) and δi > 0 be
such that (6.2) holds for Ei , 1 ≤ i ≤ N . By the first part of the proof of (ii) in
Theorem 6.4 there are γi ∈ M+(Rd) , 1 ≤ i ≤ N , such that

W γi,δi
ρ,r,p (ξ0) < ε and lim inf

ξ→ξ0, ξ∈Ei

W γi,δi
ρ,r,p (ξ) ≥ 1,

Then µ =
∑N

1 γi satisfies (6.2) with δ = max δi , if ε > 0 is small enough.

For any set E in Rd and ξ0 ∈ E we express E as a (except for ξ0 ) disjoint
union E = E0∪E1∪E2 , where E1 = E∩(Rm×{s0}) and E2 = E∩({x0}×Rn) .
Then by Lemma 6.6 the set E has property Pρ,r,p at ξ0 if and only if each set
E0 , E1 and E2 has property Pρ,r,p at ξ0 .

In classical and Lp -potential theory for any set E that is thin at a point ξ0 we
can find an open set containing E\{ξ0} that is also thin at ξ0 [HW, p. 184]. In the
following theorem we give a characterization of this property for Cρ,r,p -thinness.

Theorem 6.7. Assume that E ⊂ Rd and ξ0 = (x0, s0) ∈ E . Then there is
an open set G containing E \ {ξ0} that is Cρ,r,p -thin at ξ0 if and only if E is
Cρ,r,p -thin at ξ0 and ξ0 is not a limit point of E∩(Rm×{s0}) or E∩({x0}×Rn) .

Proof. To prove the sufficiency we may assume that E does not intersect
Rm × {s0} or {x0} × Rn , by Lemma 6.2(i). Let ξ0 = 0 and define G as follows.
For any integers k ≥ 0, l ≥ 0 there are open sets Uk,l such that

E ∩ B(0; 2−k, 2−l) ⊂ Uk,l ⊂ B(0; 2−k, 2−l),(a)

Uk1,l1 ⊂ Uk,l, if k1 ≥ k and l1 ≥ l,(b)

Cρ,r,p(Uk,l) ≤ Cρ,r,p

(
E ∩ B(0; 2−k, 2−l)

)
+ ε · 2−Θk · 2−Θl,(c)

where ε > 0 is arbitrary and Θ > 0 will be defined below. Now define

G =
⋃
k,l

(Uk,l \ (B(0; 2−k−2, 1) ∪ B
(
0; 1, 2−l−2)

)
∪ B(0; 1/2, 1/2)

c
.

It is easy to see that E ⊂ G and

G ∩ B(0; 2−k, 2−l) ⊂ Uk−1,l−1,

from which it follows that G is Cρ,r,p -thin at the origin, if Θ is large enough.
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Conversely, assume that such an open set G exists. Then E is clearly Cρ,r,p -
thin at the origin. Assume for a moment that ξ0 = 0 is a limit point of E∩ (Rm×
{0}) . Let δ > 0 be arbitrary and take ξ1 = (x1, 0) ∈ E such that 0 < |x1| < δ .
There is v > 0 such that B(ξ1; v, v) ⊂ G and |x1| + v < δ . If a ≥ |x1| + v and
0 < b < v then B(ξ1; v, b) ⊂ G ∩ B(0; a, b) and hence

Cρ,r,p

(
G ∩ B(0; a, b)

)
≥ c · vm−ρp · bn−rp,

with appropriate changes when ρp = m or rp = n . It now follows easily that the
integral (6.1), with E = G , diverges for all δ > 0. This contradiction completes
the proof.

Before we proceed along our main line we define two other types of product
capacities as follows. Let 1 < p < ∞ , ρ > 0, r > 0 and E ⊂ Rd and define

Cr,p ⊗ Cρ,p(E) =

∫ ∞

0

Cr,p{s ; Cρ,p(Es) > u} du,

Cρ,p ⊗ Cr,p(E) =

∫ ∞

0

Cρ,p{x ; Cr,p(Ex) > u} du,

where Es = {x ; (x, s) ∈ E} and Ex = {s ; (x, s) ∈ E} for fixed s ∈ Rn and
x ∈ Rm respectively. Both these set functions are capacities in our sense, with
additional regularity, see [Ce, Theorems 3.5 and 4.7]. We also define

Cr,p ⊙ Cρ,p(E) = sup
u>0

u · Cr,p{s ; Cρ,p(Es) > u},

Cρ,p ⊙ Cr,p(E) = sup
u>0

u · Cρ,p{x ; Cr,p(Ex) > u}.

It is easy to see that Cr,p ⊙ Cρ,p(E) = Cr,p ⊗ Cρ,p(E) = Cρ,p(E1) · Cr,p(E2) =
Cρ,r,p(E) , for products E = E1×E2 of Borel sets. We get Cr,p⊙Cρ,p(E) ≤ Cr,p⊗
Cρ,p(E) , for arbitrary sets, by the definitions. Here we can of course interchange
the orders of Cρ,p and Cr,p .

Lemma 6.9. Let 1 < p < ∞ , ρ > 0 , r > 0 and E ⊂ Rd , then

max
(
Cr,p ⊗ Cρ,p(E), Cρ,p ⊗ Cr,p(E)

)
≤ c · Cρ,r,p(E).

Proof. Let f ≥ 0 be as in the definition of Cρ,r,p(E) . Then for fixed s ∈ Rn

and all x ∈ Es

1 ≤
∫

Gρ(x − y)

(∫
Gr(s − t) · f(y, t) dt

)
dy =

∫
Gρ(x − y) · fs(y) dy.

Hence Cρ,p(Es)
1/p ≤ ‖fs‖p ≤ Gr ⋆ g(s) , where g(t) =

(∫
f(y, t)p dy

)1/p
, and so

by the capacitary strong type inequality [AH, Theorem 7.1.1]

Cr,p ⊗ Cρ,p(E) ≤
∫ ∞

0

Cr,p{s ; Gr ⋆ g(s) > u} d(up) ≤ c · ‖g‖p
p = c · ‖f‖p

p.

Taking infimum over all such f proves that Cr,p ⊗ Cρ,p(E) ≤ c · Cρ,r,p(E) . The
other inequality is proved in the same way.
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Before we state and prove our general results about potentials and thinness
we prove an analogue of [HW, Proposition 11]. We use the notation C⋆

ρ,r,p(E) =

max
(
Cr,p ⊙ Cρ,p(E), Cρ,p ⊙ Cr,p(E)

)
.

Theorem 6.10. Let 2 ≤ p < ∞ , 0 < ρ ≤ m/p , 0 < r ≤ n/p and µ ∈ M+ .
Then for all λ > 0

(6.4) C⋆
ρ,r,p{ξ ; Wµ,δ

ρ,r,p(ξ) > λ} ≤ c

λp−1
· ‖µ‖1,

where c = c(d, ρ, r, p, δ) .

Proof. In this proof c denotes constants depending on d , ρ , r , p and δ .
We may and will assume that the support of µ is contained in B(0; 1/80, 1/80),

λ > A · ‖µ‖p′−1
1 and 0 < δ < 1/80, where A depends on d , ρ , r , p and δ . Define

G = {(x, s) ; Wµ,δ
ρ,r,p(x, s) > λ} then G is an open set and for fixed s ∈ Rn we put

Gs = {x ; (x, s) ∈ G} . If Gs is non-empty we choose a finite union Ks of closed
cubes in Gs and a closed cube Is ⊂ Rn , with side length ls , containing s such
that Ks × Is ⊂ G . The proof is now in two steps. In the first step we estimate
Cρ,p(Ks) (and thereby Cρ,p(Gs)) and in the second step we put the pieces together
to get an estimate of Cr,p ⊙ Cρ,p(G) . We start from the estimate

Wµ,δ
ρ,r,p(ξ) ≤ c ·

∫ 1/2

0

da

a

∫ 1/2

0

db

b

(
µB(x, s; a/5, b)

am−ρp · bn−rp

)p′−1

= c ·
∫ 1/2

0

da

a

(
gs(x, a/5; µ)

am−ρp

)p′−1

,

where

gs(x, a; µ) =

(∫ 1/2

0

db

b

(
µB(x, s; a, b)

bn−rp

)p′−1)p−1

,

by a change of variables. Let γ be the Cρ,r,p -capacitary measure for Ks × Is .
Then for all (x, s) in the support of γ we have

λ < Wµ,δ
ρ,r,p(x, s) ≤ c ·

∫ 1/2

0

da

a

(
gs(x, a; γ)

am−ρp

)p′−1

·
(

gs(x, a/5; µ)

gs(x, a; γ)

)p′−1

≤ c · W γ
ρ,r,p(x, s) · Mγµ(x, s)p′−1 ≤ c · Mγµ(x, s)p′−1,

where

Mγµ(x, s) = sup
0<a≤1/2

gs(x, a/5; µ)

gs(x, a; γ)
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is the appropriate maximal function in Rm . For any such (x, s) there is 0 < ax ≤
1/2 with gs(x, ax/5; µ) > c ·λp−1 · gs(x, ax; γ) . A standard covering theorem gives
a disjoint class of balls {Bm(xj , aj/5)} such that {Bm(xj, aj)} covers Ks . Then

(6.5)

∑

j

gs(xj, aj; γ) ≤ c

λp−1
·
∑

j

gs(xj, aj/5; µ)

≤ c

λp−1
·
(∫ 1/2

0

db

b

(∑
j µB(xj, s; aj/5, b)

bn−rp

)p′−1)p−1

≤ c

λp−1
·
(∫ 1/2

0

db

b

(
µB(0, s; 1, b)

bn−rp

)p′−1)p−1

= Wµ,1/2
r,p (s),

by the reverse triangle inequality. Here µ is the measure in Rn defined by µ(E) =
µ
(
Bm(0, 1) × E

)
. For the left hand side of (6.5) we get

∑

j

gs(xj , aj; γ) ≥ c ·
∑

j

γB(xj, s; aj, ls
√

n )

ln−rp
s

≥ c · γ(Ks × Is)

ln−rp
s

= c · Cρ,r,p(Ks × Is)

ln−rp
s

≥ c · Cρ,r,p(Ks × Is)

ln−rp
s

≥ c · Cρ,p(Ks)

by equivalence of the capacities and Theorem 2.2, for r · p < n . When r · p = n

we replace ln−rp
s by

(
log(1/ls)

)1−p
and the same estimate holds. Combining the

last estimate with (6.5) and taking the supremum over all such sets Ks gives

(6.6) Cρ,p(Gs) ≤
c

λp−1
· Wµ,1/2

r,p (s)p−1,

which completes the first step of the proof.

In the second step we simply get

Cr,p ⊙ Cρ,p(G) = sup
u>0

u · Cr,p{s ; Cρ,p(Gs) > u}

≤ sup
u>0

u · Cr,p{s ; Wµ,1/2
r,p (s) > c · up′−1 · λ}

≤ c · ‖µ‖1

λp−1
= c · ‖µ‖1

λp−1
,

by (6.6) and [HW, Proposition 11]. The corresponding inequality for Cρ,p⊙Cr,p(G)
is proved in the same way interchanging the roles of Rm and Rn .
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Remark. The conclusion in Theorem 6.10 is false if C⋆
ρ,r,p is replaced by

Cr,p ⊗ Cρ,p or Cρ,p ⊗ Cr,p and hence by Lemma 6.9 also when C⋆
ρ,r,p is replaced

by Cρ,r,p . The simplest example is µ = δ0 , the Dirac measure at the origin. If
0 < ρ < m/p and 0 < r < n/p then

W (x, s) = Wµ,δ
ρ,r,p(x, s) ≥ (c1 · |x|ρp−m · |s|rp−n)p′−1 = W (x, s),

for |x| < δ/2 and |s| < δ/2. Define W (x, s) = 0, elsewhere. It is clearly sufficient
to consider W instead of W . Let λp−1 > c1 · δρp−m+rp−n · 2n−rp , put G =
{(x, s) ; W(x, s) > λ} and for fixed |s| < δ/2 define Gs = {x ; (x, s) ∈ G} . Then
Gs = Bm(0, δ/2), for |s|n−rp ≤ c1 · (δ/2)ρp−m · λ1−p = An−rp and

Gs = {x ; |x|m−ρp < c1 · |s|rp−n · λ1−p},

for A < |s| < δ/2. Note that A < δ/4 by our choice of λ . From this we get

Cr,p ⊗ Cρ,p(G) ≥
∫ b

a

Cr,p{s ; Cρ,p(Gs) > u} du

≥
∫ b

a

Cr,p{s ; |s|n−rp < c · λ1−p · 1/u} du ≥ c · λ1−p · log(b/a)

≥ c · λ1−p · log(c · λp−1),

where a = Cρ,p{x ; |x|m−ρp < c1 · (δ/2)rp−n · λ1−p} and b = Cρ,p{x ; |x| < δ/2} ,
which proves that µ has the desired property. We can get similar examples when
µ is Lebesgue measure restricted to |x| < h and |s| < k , for suitable small h , k
and λ .

The method of proof in Theorem 6.10 also gives another result of the same
kind for the other type of product capacity, when p > 2. We have no such result
for p = 2.

Theorem 6.11. Let p , ρ , r , δ , E , µ be as in Theorem 6.10 and put
G = {ξ ; Wµ,δ

ρ,r,p(ξ) > λ} . Then

max
(
Cr,p−1 ⊗ Cρ,p(G), Cρ,p−1 ⊗ Cr,p(G)

)
≤ c

λp−1
· ‖µ‖1,

for p > 2 .

Proof. From the definitions, (6.6) and [HW, p. 164] we get

Cr,p−1 ⊗ Cρ,p(G) ≤ c

λp−1
·
∫ ∞

0

Cr,p−1{s ; Gn
r ⋆ (Gn

r ⋆ µ)p′−1(s) > v} · vp−2 dv,
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by a change of variables. The capacitary strong type inequality [AH, Theo-
rem 7.1.1] with exponent p − 1 then gives

Cr,p−1 ⊗ Cρ,p(G) ≤ c

λp−1
·
∫

Gn
r ⋆ µ(s) ds =

c

λp−1
· ‖µ‖1 =

c

λp−1
· ‖µ‖1.

Remark. When p = 2 we here get C2r ⊙ Cρ,2(G) ≤ (c/λ) · ‖µ‖1 , where we
have defined

C2r(E) = inf{ν(E) ; supp ν ⊂ E and Gn
2r ⋆ ν(s) ≥ 1, for all s ∈ E },

for Borel sets E ⊂ Rn . It is however easy to see from [HW, p. 163] that C2r is
equivalent to Cr,2 and hence we only recover Theorem 6.10.

Definition 6.12. A set E ⊂ Rd satisfies a cone condition at ξ0 = (x0, s0)
(relative to the hyperplanes Rm × {s0} and {x0} × Rn ) if there are constants
R > 0, M > 0 such that
(6.7)
E ∩ B(ξ0; R, R) ⊂ {ξ = (x, s) ; |s− s0| ≤ M · |x− x0| and |x − x0| ≤ M · |s− s0|}.

Analogously, a measure µ ∈ M+ satisfies a cone condition at ξ0 if (6.7) holds
with E equal to the support of µ .

Theorem 6.4 gives a partial characterization (exact if 2 ≤ p < ∞) of property
Pρ,r,p in terms of thinness for sets contained in one of the hyperplanes Rm ×{s0}
or {x0} × Rn . Our next theorem gives a partial answer to the same question for
sets E and measures µ satisfying a cone condition. We say that a set E ⊂ Rd is
C⋆

ρ,r,p -thin at ξ ∈ E if (6.1) holds with Cρ,r,p replaced by C⋆
ρ,r,p .

Theorem 6.13. Let 2 ≤ p < ∞ , 0 < ρ ≤ m/p and 0 < r ≤ n/p . Assume
that E ⊂ Rd and µ ∈ M+ both satisfy a cone condition (6.7) at ξ0 and

Wµ,δ
ρ,r,p(ξ0) < lim inf

ξ→ξ0, ξ∈E
Wµ,δ

ρ,r,p(ξ).

Then E is C⋆
ρ,r,p - thin at ξ0 .

Proof. Throughout this proof c denotes various constants that may depend
on d , ρ , r , p , δ and M . Let ξ0 = 0, 0 < ε < 1 and assume that µ ∈ M+ satisfies

v = lim inf
ξ→ξ0, ξ∈E

(
Wµ,δ

ρ,r,p(ξ) − Wµ,δ
ρ,r,p(ξ0)

)
> 0.

Define γ = v1−p′ · µh , where µh is the restriction of µ to the set {(y, t) ; |y| <
h or |t| < h} . Then as in [HW, Theorem 4] we get

W γ
ρ,r,p(0) < ε and lim inf

ξ→0, ξ∈E
W γ

ρ,r,p(ξ) ≥ 1,

if h , depending on ε , is small enough. From now on such a measure γ is fixed, for
some arbitrarily small h , 0 < h < δ . Choose 0 < δ0 < h such that W γ,δ

ρ,r,p(ξ) ≥ 1
2

on E ∩ B(0; δ0, δ0) and let 0 < k, l < δ0/2. If h is small enough the support of
γ is contained in B(0; δ/2, δ/2) by the cone condition (6.6). It is clearly sufficient
to consider the following two cases.
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Case I: 0 < l < k/2M . This is the principal case that motivates the cone
condition (6.7). Here E ∩ B(0; k, l) = E ∩ B(0; Ml, l) and analogously for the
support of µ . We define four sets

A = {(y, t) ; |y| < 2Ml and |t| < 2l}, B = {(y, t) ; |y| < 2Ml and |t| ≥ 2l},
C = {(y, t) ; |y| ≥ 2Ml and |t| < 2l}, D = {(y, t) ; |y| ≥ 2Ml and |t| ≥ 2l},

and note that E∩C is empty. Let γA , γB and γD be the restriction of γ to each
of these sets. By the definition of W γ,δ

ρ,r,p we have

(6.8) W γ,δ
ρ,r,p(ξ) ≤ c ·

(
W γA,δ

ρ,r,p (ξ) + W γB ,δ
ρ,r,p (ξ) + W γD,δ

ρ,r,p (ξ)
)
.

We let ξ = (x, s) , where |x| ≤ Ml , |s| ≤ l , and estimate each of the terms in the
right hand side of (6.8). It is easy to see that

W γD,δ
ρ,r,p (ξ) ≤

∫ δ

Ml

da

a

∫ δ

l

db

b

(
γB(0; 2a, 2b)

am−ρp · bn−rp

)p′−1

≤ c ·
∫ 2δ

2Ml

da

a

∫ 2δ

2l

db

b

(
γB(0; a, b)

am−ρp · bn−rp

)p′−1

≤ c · W γ,δ
ρ,r,p(0) ≤ c · ε,

since γ has support in B(0; δ/2, δ/2). Then by (6.8) the set E ∩ B(0; Ml, l) is
contained in the union of the sets where each of the potentials W γA,δ

ρ,r,p and W γB ,δ
ρ,r,p

exceeds some positive constant λ = c(d, ρ, r, p) , provided ε is small enough. First
we have

(6.9) C⋆
ρ,r,p

(
{ξ ∈ E ; W γA,δ

ρ,r,p (ξ) > λ} ∩ B(0; Ml, l)
)
≤ c · γB(0; k, 2l),

by Theorem 6.10. This is our estimate for W γA,δ
ρ,r,p .

We are thus left with the term W γB,δ
ρ,r,p , which has no counterpart in the Rn -

case. By the definition of γB we have

W γB ,δ
ρ,r,p (ξ) ≤

∫ δ

0

da

a

∫ δ

l

db

b

(
γBB(x, 0; a, 2b)

am−ρp · bn−rp

)p′−1

≤ c ·
∫ δ

0

da

a

∫ δ

2l

db

b

(
γBB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

,

since again γ is supported in B(0; δ/2, δ/2). Next

W γB ,δ
ρ,r,p (ξ) ≤ c ·

(∫ Ml

0

da

a

∫ δ

2l

db

b
+

∫ δ

Ml

da

a

∫ δ

2l

db

b

)(
γBB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

,
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and the second iterated integral is at most

∫ δ

Ml

da

a

∫ δ

2l

db

b

(
γBB(0; 2a, b)

am−ρp · bn−rp

)p′−1

≤ c·
∫ δ

2Ml

da

a

∫ δ

2l

db

b

(
γBB(0; a, b)

am−ρp · bn−rp

)p′−1

≤ c·ε.

The key estimate is now

C⋆
ρ,r,p

(
{(x, s) ; W γB,δ

ρ,r,p (ξ) > λ} ∩ B(0; Ml, l)
)

≤ C⋆
ρ,r,p

({
(x, s) ;

∫ Ml

0

da

a

∫ δ

2l

db

b

(
γBB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

>
λ

c

}
∩B(0; Ml, l)

)

≤ c · ln−rp ·
(∫ δ

2l

db

b

(
γBB(0; 2Ml, b)

bn−rp

)p′−1)p−1

,

if ε is small and rp < n , by Lemma 6.5. If rp = n we get an extra factor(
log(1/l)

)1−p
. Observing that γBB(0; 2Ml, b) ≤ γBB(0; 2Ml, 2M2l) by (6.7)

gives the estimate

(6.10)

∫ δ0

0

dk

k

∫ k/2M

0

dl

l

(
C⋆

ρ,r,p

(
{ξ ∈ E ; W γB,δ

ρ,r,p (ξ) > λ} ∩ B(0; 2Ml, l)
)

km−ρp · ln−rp

)p′−1

≤ c ·
∫ δ0

0

dk

k

∫ k/2M

0

dl

l
·
∫ δ

2l

db

b

(
γBB(0; k, 2M2l)

km−ρp · bn−rp

)p′−1

≤ c ·
∫ δ0

0

dk

k

∫ k/2M

0

dl

l

(
γBB(0; k, 2M2l)

km−ρp · ln−rp

)p′−1

= c ·
∫ δ0

0

dk

k

∫ k/2M

0

dl

l

(
γBB(0; k, l)

km−ρp · ln−rp

)p′−1

≤ c · W γ,δ
ρ,r,p(0) ≤ c · ε,

for rp < n and some δ0 > 0, by a change of variables. If rp = n we get an extra

factor
(
log(1/l)

)
that cancels against the factor

(
log(1/l)

)1−p
above, raised to

power p′ − 1.

Case II: k/2M ≤ l ≤ 2Mk . We define

A = {(y, t) ; |y| < 2k and |t| < 2l}, B = {(y, t) ; |y| < 2k and |t| ≥ 2l},
C = {(y, t) ; |y| ≥ 2k and |t| < 2l}, D = {(y, t) ; |y| ≥ 2k and |t| ≥ 2l},

and let γA , γB , γC and γD be the restriction of γ to each of these sets. Since
we will follow the first case very closely, we do not repeat all arguments in detail.
We handle W γD,δ

ρ,r,p as above and for W γA,δ
ρ,r,p we get

C⋆
ρ,r,p

(
{ξ ∈ E ; W γA,δ

ρ,r,p (ξ) > λ} ∩ B(0; , k, l)
)
≤ c · γB(0; 2k, 2l),
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by Theorem 6.10. It therefore only remains to estimate W γB ,δ
ρ,r,p and W γC ,δ

ρ,r,p in
E ∩ B(0; k, l) . We start from

W γB ,δ
ρ,r,p (ξ) ≤

∫ δ

0

da

a

∫ δ

l

db

b

(
γBB(x, 0; a, 2b)

am−ρp · bn−rp

)p′−1

≤ c ·
∫ δ

0

da

a

∫ δ

2l

db

b

(
γBB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

≤ c ·
∫ k

0

da

a

∫ δ

2l

db

b

(
γBB(x, 0; a, b)

am−ρp · bn−rp

)p′−1

and hence

C⋆
ρ,r,p

(
{ξ ∈ E ; W γB,δ

ρ,r,p (ξ) > λ} ∩ B(0; , k, l)
)

≤ c · ln−rp ·
(∫ δ

2l

db

b

(
γBB(0; 2k, b)

bn−rp

)p′−1)p−1

by Lemma 6.5, for rp < n . If rp = n we get an extra factor
(
log(1/l)

)1−p
that is

to our advantage. It follows at once that

(6.11)

∫ δ0

0

dk

k

∫ 2Mk

k/2M

dl

l

(
C⋆

ρ,r,p

(
{ξ ∈ E ; W γB,δ

ρ,r,p (ξ) > λ} ∩ B(0; k, l)
)

km−ρp · ln−rp

)p′−1

≤ c ·
∫ δ0

0

dk

k

∫ 2Mk

k/2M

dl

l

∫ δ

2l

db

b

(
γBB(0; 2k, b)

km−ρp · bn−rp

)p′−1

≤ c · W γ,δ
ρ,r,p(0),

for some δ0 > 0. Estimating W γC ,δ
ρ,r,p in the same way, combining (6.9) with (6.10)

and (6.11) and interchanging the roles of k and l finally proves the theorem.

Remark. Theorem 6.13 is not true for sets that are close to the hyperplanes
Rm × {s0} or {x0} ×Rn . To see this take E ⊂ Rm × {s0} such that E is (ρ, p)-
thin at ξ0 in Rm and ξ0 is a limit point of E . By Theorem 6.4(i) there exists
µ ∈ M+ such that

Wµ,δ
ρ,r,p(ξ0) < v < lim inf

ξ→ξ0, ξ∈E
Wµ,δ

ρ,r,p(ξ).

The open set G = {ξ ; Wµ,δ
ρ,r,p(ξ) > v} is not C⋆

ρ,r,p -thin at ξ0 by the last part of
the proof of Theorem 6.7, since it contains E \ {ξ0} near ξ0 , but clearly

Wµ,δ
ρ,r,p(ξ0) < v ≤ lim inf

ξ→ξ0, ξ∈G
Wµ,δ

ρ,r,p(ξ).
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