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Abstract. Results are proved on the existence of a not identically vanishing entire function
f , of order ≤ 1 , and satisfying log |f(x)| ≤ k(x) , log |f(ix)| ≤ a|x| , x ∈ R , where k is a given
odd function and a a positive constant. Existence is proved if k ∈ C2(R) with |xk′′(x)| ≤ 2aπ−1 ,
x ∈ R , or, for every a , if k is convex on R+ , with k′ bounded. The second result is used to
produce non-trivial translation invariant subspaces of the corresponding weighted lp(Z) .

0. Introduction

Throughout this paper a denotes a positive number and k a continuous real-
valued function on R .

Question. Is there a not identically vanishing entire function f , of order
≤ 1, such that

log |f(x)| ≤ k(x), x ∈ R,(0.1)

log |f(iy)| ≤ a|y|, y ∈ R.(0.2)

A famous result of A. Beurling and P. Malliavin [1, Theorem I] gives the
following:

Theorem (Beurling–Malliavin). The answer is yes for every a if k , outside

some compact interval, is absolutely continuous with bounded derivative, and
∫ ∞

−∞

min
(

0, k(x)
)

1 + x2
dx > −∞.

This paper contains some simple complementary results in the case when k
is an odd function. We will prove the following theorems.

Theorem 1. Let k be odd on R , differentiable outside some compact interval

I , with absolutely continuous derivative. Then the answer is yes if

(0.3) |xk′′(x)| ≤
2a

π
, x /∈ I.

Theorem 2. Let k be odd on R , and convex (concave) with bounded

derivative for sufficiently large positive values of the variable. Then the answer is

yes, for every a .
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These three theorems can be combined to more general results, since positive
answers for the pairs (a1, k1) and (a2, k2) give positive answers for the pairs
(a1 + a2, k1 + k2) and (a1 + a2, k1 − k2) .

We will give some comments to Theorem 1. Take a = 1

2
π and

k(x) = x log |x|, x 6= 0, k(0) = 0.

Then

(0.4) xk′′(x) = 1, x 6= 0.

By Theorem 1 the answer in this case is yes. This can also be seen directly by
choosing

f(z)−1 = z exp(z)Γ(z).

But if b > 1 and

k(x) ≥ bx log |x|, x > 0,

then the answer is no, for a = 1

2
π. For if f satisfies the conditions in the question,

then

g(z) = f(z) exp
(

−bz log(−z)
)

,

with the principal branch of log , is analytic and of order at most 1 in the left half-
plane. It is bounded on the negative real axis and vanishes of exponential order at
∞ and −∞ on the imaginary axis. A standard Pragmén–Lindelöf argument shows
that g is bounded in the left half-plane. Hence a classical corollary of Jensen’s
formula gives

(0.5)

∫

R

log |g(iy)|(1 + y2)−1 dy > −∞,

a contradiction.

Theorems 1 and 2 are proved in Sections 1 and 2, respectively. Section 3
contains essentially a discussion on the sharpness of Theorem 2 and of Theorem
2 ′ , a slightly more general variant of it. In Section 4, Theorem 2 is applied
to produce non-trivial invariant subspaces with respect to translation in certain
weighted lp(Z) .
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1. Proof of Theorem 1

Let u be a convex function on [0,∞) with u(0) = 0 and

∫ ∞

1

u(x)x−3 dx < ∞.

Observe that the integrand has a summable negative part. The Poisson formula for
quadrants can be applied to extend u continuously to a function U in the closed
right half-plane with boundary value 0 on the imaginary axis and harmonic inside
the first and fourth quadrants.

Lemma. U is subharmonic in the open right half-plane.

Proof of the lemma. It suffices to show that U satisfies the mean value
inequality locally at each point in the open half-plane. Hence it is enough to
find, for every xo > 0, a harmonic function Uo , such that Uo ≤ U in the open
half-plane, and Uo(xo) = U(xo) .

By the convexity of u there is a function l of the form

l(x) = cx + d, x ∈ R,

such that
l(xo) = u(xo), l(x) ≤ u(x), x ≥ 0.

Take
Uo(x + iy) = l(x), x ≥ 0.

In each of the two quadrants, the harmonic function Uo is given by the corre-
sponding Poisson integral, and since Uo ≤ U on the boundaries, Uo ≤ U in the
half-plane. Since Uo(xo) = U(xo) , the lemma is proved.

To prove the theorem, let us first compare two functions k1 and k2 , each
satisfying the conditions of the theorem, and such that k′′

1
= k′′

2
outside some

compact interval. Then

k1(x) − k2(x) − bx, x ∈ R,

is bounded, for some real constant b . It follows from this that if f is an entire
function, giving a positive answer of the question for (a, k1) , then, for some con-
stant C , Cf(z) exp(bz) , z ∈ C , gives a positive answer for (a, k2) . Hence we
can without loss of generality assume that (0.3) holds if x 6= 0. We can obviously
choose a = 1, hence

(1.1) |xk′′(x)| ≤
2

π
, x 6= 0.
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As a consequence of the growth restriction on k , we can use Poisson’s formula
in each quadrant to produce a continuous function U in C , harmonic in each
quadrant, 0 on the imaginary axis and with values k(x) , x ∈ R . By the symmetry,
U is harmonic in the upper and the lower half-plane. Let V be the function
obtained, if we perform the corresponding extension of 2π−1x log |x| , x ∈ R . It
is easy to see that for z = x + iy ∈ C

V (z) = Re
( 2

π
z log z

)

+ |y|.

(0.4) and (1.1) show that

2

π
x log |x| − k(x) and k(x) +

2

π
x log |x|

are convex, for x > 0. By the lemma, both V − U and U + V are subharmonic
in the open right half-plane. This means that in distribution sense

(1.2) −∆V ≤ ∆U ≤ ∆V.

in the open right half-plane. Let m denote Lebesgue measure on R , considered
as a Borel measure in the plane. Since ∆|y| = 2m , the fact that V is odd shows
that

∆V = 2(sign)m + v,

where the right hand member stands for the measure m , multiplied with the
function with values 2 signx , x ∈ R , plus a distribution v with support in 0. If
v 6= 0, we can find a sequence {φn} of test functions, such that 〈∆V, φn〉 → 1,
while 〈V, ∆φn〉 → 0, as n → ∞ , a contradiction. Hence v = 0, and we obtain

∆V = 2(sign)m.

Since ∆U is odd, (1.2) shows that

∆U = gm + w,

where g is an odd Lebesgue measurable function, satisfying

−2 ≤ g(x) ≤ 2, x ∈ R,

and w is a distribution with support in 0. Exactly as above we see that w = 0,
hence

∆U = gm.

Let us now form the function W , defined by

W (x + iy) = U(x + iy) + |y|, x + iy ∈ C.

This is a subharmonic function in C , since, with h = g + 2,

∆W = ∆U + 2m = hm ≥ 0.

As a subharmonic function, W is of order ≤ 1, and it satisfies the conditions

W (x) = k(x), x ∈ R, W (iy) = |y|, y ∈ R.

Our theorem is proved if we can modify W to a function Wo = log |f | , where
f is entire of order ≤ 1, and satisfies (0.1) and (0.2).
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To construct Wo we use a procedure of atomizing the measure ∆W . The
method was introduced by B. Kjellberg [5, pp. 39–41]. A generalization of it, the
KKK method, is described in W. Hayman [3, Ch. 10.5].

Let us first observe that

(1.3) 0 ≤ h ≤ 4.

Let H be the absolutely continuous function on R with H ′ = h , and H(0) = 0.
Let

A(x) = 2π
[

(2π)−1H(x)
]

− H(x), x ∈ R,

where [ ] denotes the integral part. The distributional derivative A′ of A is then
a Borel measure on R . We think of it as a measure on C , supported by the real
axis. Since ∆ log equals 2π times the Dirac distribution at 0, we know that if T
is upper semicontinuous on C , and ∆T = A′ , then W + T is a function of the
form log |fo| , where fo is entire.

It suffices to choose T so that it can be estimated from above by an expression
of the type C log(|z| + 2), z ∈ C . For since H is unbounded, fo has infinitely
many zeros, and hence we can divide away finitely many of them in order to obtain
an entire function of order ≤ 1 and satisfying (0.1) and (0.2).

A convenient choice is

(1.4) T (z) = (2π)−1

∫

|t|<1

log |z − t| dA(t) + (2π)−1

∫

|t|≥1

log
∣

∣

∣
1 −

z

t

∣

∣

∣
dA(t).

It follows from (1.3) that there is a constant C1 , such that the contribution
from the set [−1, 1]∪ [x−1, x+1] to (1.4) is bounded above by C1 log(|z|+2). In
the remaining intervals, the integrand has, for fixed z , just one interior extremal
point, and its value varies in some interval

[

−C2 log(|z| + 2), C2 log(|z| + 2)
]

.

A partial integration shows that the integral over these intervals converges and
is bounded by an expression of the form C3 log(|z| + 2) since A is a bounded
function. It is easy to see that T is upper semicontinous and that ∆T = A′ .
Hence the theorem is proved.

2. Proof of Theorem 2

We can restrict ourselves to the case when k is convex on [0,∞) . We represent
k as a difference k = k1 − k2 , where

(2.1) k1(x) =

∫

3/2

1/2

k(xy) dy, x ∈ R.
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Then k1 and k2 are odd, and k2 ≥ 0 on R+ , by the convexity. k1 fulfils the
differentiability assumption of Theorem 1, and k2 the differentiability assumption
of the Beurling–Malliavin theorem. Furthermore k′

2
is bounded. We will prove

(2.2) lim
x→∞

x k′′
1
(x) = 0

and

(2.3)

∫ ∞

2

k2(x)x−2 dx < ∞.

Then Theorem 1, applied to ( 1

2
a, k1) , and the Beurling–Malliavin theorem, applied

to ( 1

2
a, k2) , prove our theorem.

For x ≥ 0, we obtain from (2.1)

k′′
1
(x) = x−3

∫

3x/2

x/2

t2 dk′(t),

and since k′ increases on R+ ,

0 ≤ k′′
1
(x) ≤ 3x−1

(

k′(∞) − k′( 1

2
x)

)

, x ∈ R+.

Since k′(∞) is finite, (2.2) is proved.

Partial integrations give, for x > 0,

8xk2(x) =

∫ x

x/2

(x − 2t)2 dk′(t) +

∫

3x/2

x

(3x − 2t)2 dk′(t) ≤ x2

∫

3x/2

x/2

dk′(t).

Hence

∫ ∞

2

x−2k2(x) dx ≤

∫ ∞

1

∫

2t

2t/3

(8x)−1 dx dk′(t) ≤

∫ ∞

1

dk′(t) = k′(∞) − k′(1) < ∞,

and (2.3) is proved.
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3. Comments on Theorem 2

Theorem 2 can obviously be stated in the following slightly more general form.

Theorem 2 ′ . Let k be odd on R , absolutely continuous in some interval

[b,∞) , and with its derivative equivalent to a function of bounded variation. Then

the answer is yes, for every a .

Take any a and any positive function ̺ on R+ , such that ̺(x) → ∞ , as
x → ∞ . We will prove that Theorem 2′ is no longer true if the condition of
bounded variation is changed to the condition that k′ is equivalent to a bounded
function, satisfying

(3.1)

∫ x

b

|dk′(t)| = O
(

̺(x)
)

, x → ∞,

and

(3.2)

∫ x

−x

max
(

0, k(t)
)

1 + t2
dt = O

(

̺(x)
)

, x → ∞.

A consequence of this is that, in Theorem 2, the condition of boundedness of k′

can not be weakened to the condition

k′(x) = O
(

̺(x)
)

, x → ∞.

Let us first form the harmonic function

u(z) = Re
(

−iz log(−iz)
)

= −y log
1

|z|
− ix Arg(−iz).

in the closed upper half-plane. As always we choose the principal branch of log .
Let l be the odd continuous function on R , vanishing on (0, 1

2
) and ( 3

2
,∞) , and

such that l(1) = 1, and l is linear in the complementary intervals. Put

ko(x) =
∞
∑

n=−∞

3nl(3−nx), x ∈ R.

Extend ko by Poisson’s formula for the first quadrant to a function Uo , harmonic
inside, and with Uo(iy) = ay , y ∈ R+ . A standard comparison between the
Poisson integrals Uo(z) and u(z − 1) in the first quadrant shows that

Uo(z) = 1 + Au(z − 1) + O(|z − 1|) = 1 − By log
1

|z − 1|
+ O(|z − 1|), z → 1,

where A and B are certain positive constants. Extend Uo to a function in C , even
in y , odd in x . Then there is a r , 0 < r < 1

2
, such that, for every x ∈ [1−r, 1+r] ,

the mean value of Uo , taken over a circular disc with center x and radius r , is
< Uo(x) − r . Since

Uo(3z) = 3Uo(z), z ∈ C,

we have, for every integer n and every x ∈ [3n(1−r), 3n(1+r)] , that the mean value
of Uo , taken over a circular disc with center x and radius 3nr , is < Uo(x)− 3nr .
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Now we are ready for the final construction, which does not depend on a . It
is possible to choose a strictly increasing infinite sequence {nν} , of non-negative
integers such that k , defined by

k(x) =
∑

ν

3nν l(3−nν x), x ∈ R,

satisfies (3.1) and (3.2). Obviously k is absolutely continuous and k′ is bounded.
Extend k by Poisson’s formula to a continuous function U , harmonic in each
quadrant, and satisfying U(iy) = a|y| , y ∈ R . Since U ≤ Uo in the right half-
plane we we can conclude, for every ν and every x ∈ [3nν (1− r), 3nν (1+ r)] , that
the mean value of U taken over a circular disc with center x and radius 3nν r , is

< Uo(x) − 3nν r = k(x) − 3nν r.

If f is an entire function, giving a positive answer for (a, k) , then log |f | ≤ U
in C , and hence, by the mean value inequality for log |f | , we have for every ν
that

log |f(x)| ≤ k(x) − 3nν r, x ∈ [3nν (1 − r), 3nν (1 + r)].

Define g by

g(z) = f(z)f(−z), z ∈ C.

g is an entire function of exponential type, and log |g| ≤ 0 on R . On every
interval of the form [3nν (1 − r), 3nν(1 + r)] we have

log |g| ≤ −3nν r,

and hence
∫ ∞

1

x−2 log |g(x)| dx = −∞.

As in the introduction this gives a contradiction.

Observe that the results here and in the introduction on non-existence of
functions log |f | , satisfying (0.1) and (0.2), where f is entire of order ≤ 1, are
valid as well with log |f | exchanged to an arbitrary subharmonic function of order
≤ 1, not ≡ −∞ .
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4. Translation-invariant subspaces of lp(w,Z)

Let {k(n)} , n ∈ Z , be a real odd sequence, such that {k(n + 1) − k(n)} ,
z ∈ Z , is bounded and

∞
∑

−∞

|k(n + 1) − 2k(n) + k(n − 1)| < ∞.

Put expk(n) = wn , w = {wn} , n ∈ Z . For a given p , 1 ≤ p < ∞ , lp(w,Z)
denotes the Banach space of complex sequences c = {cn} , n ∈ Z , with

‖c‖p =
∞
∑

−∞

|cn|
pwn

p < ∞.

In lp(w,Z) translation, defined by {cn} 7→ {cn−1} , is an bounded operator with
a bounded inverse. We will use Theorem 2 to construct a non-trivial subspace of
lp(w,Z) , invariant under translation.

Extend k to an odd continuous function on R , linear in each interval in
R \Z . Since k can be written k1 − k2 , where k1 and k2 satisfy the conditions of
Theorem 2, there is for every given a an entire function f giving a positive answer
to the question for the pair (a, k) . Take any a in the interval (0, 1

2
π) . It follows

from the proofs of Theorems 1 and 2, that we can assume that f has infinitely
many zeros. After dividing away two of these zeros, if necessary, we can assume
that

|f(x)| ≤ (1 + x2)−1 exp
(

k(x)
)

, x ∈ R.

Let us, for any given integer m , form the entire function gm , defined by

gm(z) = f(z)f(m − z), z ∈ C.

A comparison between log |f | and convenient linear functions in each quadrant
shows that log |gm(iy)|−2a|y| , y ∈ R , is bounded above. Since gm is bounded on
the real axis and of order ≤ 1, it is thus of exponential typ ≤ 2a . gm is summable
on the real axis, and a theorem of Paley and Wiener [6, Theorem V] shows that
the Fourier transform of the restriction of gm to R vanishes outside [−2a, 2a] .
Since gm(x)(1 + x2) , x ∈ R is summable and gm is continuous, we can apply the
Poisson summation formula (see for instance Y. Katznelson [4]) to the function

x 7→ gm(x) exp(πix),

and since the Fourier transform of this function vanishes at all integer multiples
of 2πi we obtain

∑

n∈Z

f(n)(−1)nf(m − n) = 0.

For every p , {f(m − n)} , n ∈ Z , belongs to lp(w,Z) , and {f(n)(−1)n} , n ∈ Z ,
belongs to the dual Banach space. Obviously we can choose f such that it does
not vanish identically at the integer points. Then the closed linear span of the
translates of {f(−n)} is a non-trivial closed translation-invariant subspace.
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Theorems 1 and 2′ can be used in a similar way. For a particular case, see
Example 2 in §2 of [2].
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