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Universidad Complutense, Departamento de Análisis Económico

Campus de Somosaguas, E-28223 Madrid, Spain; ececo06@sis.ucm.es; ececo07@sis.ucm.es

Abstract. Self-similar measures can be obtained by regarding the self-similar set generated
by a system of similitudes Ψ = {ϕi}i∈M as the probability space associated with an infinite process
of Bernoulli trials with state space Ψ. These measures are concentrated in normal Besicovitch
sets, which are those sets composed of points with given asymptotic frequencies in their generating
similitudes. In this paper we obtain some geometric-size properties of self-similar measures. We
generalize the expression of the Hausdorff and packing dimensions of such measures to the case
when M is countable. We give a precise answer to the problem of determining what packing
measures are singular with respect to self-similar measures. Both problems are solved by means
of a technique which allows us to obtain efficient coverings of balls by cylinder sets. We also show
that normal Besicovitch sets have infinite packing measure in their dimension.

1. Introduction

The purpose of this paper is to investigate certain geometric properties of self-
similar measures. Self-similar measures were introduced by Hutchinson in 1981
[Hut] (see also [Ban]). They provide the basic theoretical example of multifractal
measures, a topic which generates active research amongst mathematicians and
applied scientists [BMP], [CM], [O].

In [MR] it was shown how to get round the problem posed by the overlapping
set when self-similar measures satisfy the open set condition (see below). The
singularity of self-similar measures with respect to the Hausdorff measure was
also analyzed there. In this paper we do an analogous analysis for the packing
geometry, and generalize the formula for the Hausdorff and packing dimensions of
self-similar measures to self-similar constructions with infinitely many similitudes.
This requires new ideas, in particular a technique for the efficient covering of balls
by cylinder sets. Here we develop this method, which we call the “travelling ball
technique”.

We now state the main results of the paper. We first introduce the self-similar
objects this paper deals with. Let M denote either the set {1, 2, . . . , m} or the set
N of the positive integers. A collection Ψ = {ϕi : i ∈ M} of similarity mappings
in RN is contractive if sup{ri : i ∈ M} < 1, where ri stands for the contraction
ratio of the mapping ϕi . We consider the space of similarities of RN endowed
with the topology of uniform convergence on bounded subsets of RN .
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Let Ψ be a contractive compact system of similarities, and let SΨ be the set
mapping defined by

(1) SΨ(X) =
⋃
i∈M

ϕi(X)

for X ⊂ RN . It is well known that there is a unique compact SΨ-invariant set E
(that is SΨ(E) = E ), which is usually called the self-similar set generated by Ψ
[Hut], [Wic]. The system Ψ satisfies the open set condition (denoted by OSC from
now onwards) if there exists a nonempty bounded open set V ⊂ RN such that
ϕi(V ) ⊆ V for all i ∈ M , and ϕi(V ) ∩ ϕj(V ) = ∅ for i, j ∈ M , i 6= j . An open
set satisfying the OSC for the system Ψ will be denoted by V and its closure clV
by F . We will further assume throughout this paper that V ∩ E 6= ∅ . The set
V is then said to satisfy the strong OSC for Ψ. When M is finite, Schief proved
[Sch] that such V does always exist provided that the OSC holds. Without loss
of generality we can assume that |V | = 1, where | · | stands for the diameter of a
subset of RN . We denote by S (N,M) the set of compact contractive systems of
similarities in RN , {ϕi : i ∈M} , satisfying the strong OSC.

There exists a natural coding map π ≡ πΨ , from the product (or code) space
M∞ := M ×M × · · · onto E , given by

(2) π(i) =
⋂
k∈N

(
ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik(E)

)
,

for i = (i1i2 . . .) ∈ M∞ . Let P+ = {(pi)i∈M : pi > 0 for all i ,
∑
i∈M pi =

1} . Given p = (pi)i∈M ∈ P+ , νp denotes the infinite-fold product probability
measure on M∞ , i.e.,

(3) νp := p × p × p × · · ·

and µp stands for the image measure of the measure νp under the mapping π , i.e.,
µp = νp◦π

−1 . The measure µp is a Borel measure, and it is called the self-similar

measure associated with the pair (Ψ,p) . Let M + ≡ M +(Ψ) = {µp : p ∈ P+}
be the set of self-similar measures associated with the system Ψ. It can be seen
that suppµ = E for all µ ∈ M + . Self-similar sets and measures, as considered
here, were first introduced by Hutchinson [Hut]. In Section 3 we prove

Theorem A. Let p = (pi)i∈M ∈ P+ , and let Ψ = {ϕi : i ∈ M} be a finite

or infinite countable compact contractive system of similarities of RN fulfilling

the strong open set condition. Then, the Hausdorff and packing dimensions of the

self-similar measure µp associated with the pair (Ψ,p) are given by the formula

(4) dimµp = Dimµp = s(p) :=

∑
i∈M pi log pi∑
i∈M pi log ri

,

provided that the series
∑

i∈M pi log ri converges.
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We denote the Hausdorff and packing dimensions by dim and Dim respectively
(see Section 2 for definitions). Formula (4) above generalizes the known formula
in the finite case [DGSH].

We then prove Theorem B below, which embodies a non-trivial symmetry
between the Hausdorff and packing measures in the context of deterministic self-
similarity. The notations Hψ and Pψ below stand respectively for the Hausdorff
and packing measures associated with an admissible dimension function ψ (see
Section 2).

Theorem B. Let Ψ = {ϕi : i ∈ M} be a finite contractive system of simi-

larities of RN satisfying the open set condition, and let p = (pi)i∈M ∈ P+ . Let

G = {ψα}α∈R be the family of real variable functions given by

ψα(ξ) = ξs(p) exp
(
α(2 log ξc(p) log log log ξc(p))1/2

)
,

where s(p) is defined in (4) , and c(p) =
(∑

i∈M pi log ri
)−1

. Let

d(p) =

( ∑

i∈M

(
log pi − s(p) log ri

)2
pi

)1/2

.

Then the self-similar measure µp associated with the pair (Ψ,p) satisfies

i) For α < −d(p) , µp is singular with respect to (w.r.t) Pψα (and thus it is

singular w.r.t. Hψα ).
ii) For |α| < d(p) , µp is absolutely continuous w.r.t. Pψα and it is singular

w.r.t. Hψα .

iii) For α > d(p) , µp is absolutely continuous w.r.t. Hψα (and thus it is

absolutely continuous w.r.t. Pψα ).
iv) µp is not representable as an integral in terms of either the Hausdorff

measure Ht or the packing measure P t for 0 < t < s = dimE .

v) Let µs be the self-similar measure associated with the system Ψ and the

probability vector ps := (rsi )i∈M . Then µs admits an integral representation

w.r.t. the measures Hs and P s . In fact, the measures µs , H
s , and P s coincide

up to a constant factor.

The value of dimE in parts iv) and v) is known to be the unique real number
s such that

∑
i∈M rsi = 1 [Hut].

The statements made in the above theorem concerning Hausdorff measure
properties were proven in [MR]. In Section 4 we prove their counterpart for the
packing geometry of self-similar measures (see Theorem 4.5). In Theorem B we
gather both results in order to illustrate the symmetric role of the Hausdorff and
packing geometries in self-similar constructions. Part v) is well known, and it is
included here for the sake of completeness.
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Notice that SΨ-invariant sets may be properly named ‘self-similar’ sets. From
the µp -measure-theoretic point of view, only those sets with positive µp -measure

are relevant. The normal Besicovitch sets Bp and B
(∞)
p introduced in [MR]

(see the definitions in (9) below) are thus (non-compact) ‘self-similar’ sets of full
µp -measure. They can be regarded as the set-theoretic dual counterpart of self-
similar measures and thus provide a natural alternative approach to self-similar
geometry. In [MR] several Hausdorff measure and dimension properties of the
normal Besicovitch sets were obtained. In particular, they were shown to have
Hausdorff dimension given by s(p) , and an s(p)-dimensional Hausdorff measure
that is either zero or infinity under the hypothesis that dim (Bp∩Θ) < s(p) , where
Θ is the overlapping set associated with the geometric construction (see (6) for
the definition). We prove in Section 5 that the Hausdorff and packing dimensions
of Besicovitch sets associated with (Ψ,p) are given by s(p) , and are thus ‘fractal
sets’ in the sense of Taylor [Tay]. Moreover, using the results obtained in Section 4,
we are able to prove that the normal Besicovitch sets have infinite packing measure.
Our results are collected in Theorem 5.1. Some results concerning measure and
dimension properties of other µp -full measure geometric point sets in self-similar
constructions, characterized by the frequencies of their generating similarities, can
be seen in [Rey].

The paper is organized in the following way. In Section 2 we introduce nota-
tion and prove some preliminary results. In Section 3 we prove Theorem A above.
The statements of Theorem B concerning packing geometry are proved in Sec-
tion 4. Finally, Section 5 gives an account of the packing geometric size of normal
Besicovitch sets.

2. Notation and preliminary results

We first give some basic definitions and notation from geometric measure
theory. Given A ⊂ RN and δ > 0, a collection of balls {Bi : i ∈ N} is a
δ -covering of the set A if

⋃
iBi ⊃ A with |Bi| ≤ δ for all i . A δ -packing

of A is a collection of closed balls {B(xi, ri) : xi ∈ A}i∈N satisfying 2ri < δ
for all i , and B(xi, ri) ∩ B(xj , rj) = ∅ for all i 6= j . Let F denote the set
of dimension functions, that is, the set of those increasing continuous functions
φ defined in some nonempty interval (0, ε) , satisfying limξ→0+ φ(ξ) = 0 and
lim supξ→0

(
φ(2ξ)/φ(ξ)

)
= φ∗ < +∞ . For φ ∈ F , the spherical φ-Hausdorff

measure of A ⊂ RN is given by

Hφ(A) = sup
δ>0

inf

{∑

i∈N

φ(|Bi|) : {Bi} is a δ -covering of A by balls

}
.

It is a standard fact that Hφ is comparable to the standard Hausdorff mea-
sure [Fal]. In particular, if Ht denotes the Hausdorff measure associated with
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the dimension function φ(ξ) = ξt , then the Hausdorff dimension of the set A is
given by the threshold value

dimA = sup{t : Ht(A) > 0} = inf{t : Ht(A) < +∞}.

The φ-packing measure is defined in two steps. First the φ-packing pre-
measure of A is defined as

Pφ0 (A) = inf
δ>0

sup

{∑

i∈N

φ(|Bi|) : {Bi}i is a δ -packing of A

}
.

Then the φ-packing measure of A is given by

Pφ(A) = inf

{∑

i∈N

Pφ0 (Ai) :
⋃
i

Ai ⊇ A

}
.

The packing dimension of A is the value given by

DimA = sup{t : P t(A) > 0} = inf{t : P t(A) < +∞},

P t denoting, for each t ≥ 0, the packing measure defined from the dimension
function ξt .

Finally, the Hausdorff dimension of a Borel measure µ is defined by

(5) dimµ = inf{dimA : µ(A) > 0},

where the infimum is taken over the class of Borel sets. The packing dimension of
µ is defined in the same way, and will be denoted by Dimµ .

We now introduce notation and previous results which will be used in the
remaining sections. These results guarantee in particular that the ‘travelling ball’
technique works for a set of full µ-measure on E .

The overlapping set Θ of the system Ψ is the set given by

(6) Θ =
{
x ∈ E : card {π−1(x)} > 1

}
,

i.e. the geometric set where π fails to be an injection. The notation M∗ stands
for the set

⋃
k∈NMk , which is the set of finite sequences with terms in M . For

j = (j1j2 · · · jk) ∈Mk , i ∈M∞ , and n ∈ N , n > k , let

(7) δj(i, n) =
1

n
card {q : iq = j1, iq+1 = j2, . . . , iq+k−1 = jk, 1 ≤ q ≤ n− k + 1},

and write δj(i) = limn→+∞ δj(i, n) , whenever such a limit exists.
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Given p ∈ P+ and k ∈ N , consider the sets of codes

(8) B
(k)
p =

⋂
j∈Mk

{i ∈M∞ : δj(i) = pj},

where pj = pj1pj2 · · · pjk for j = (j1j2 · · · jk) ; and the set

B
(∞)
p =

⋂
k∈N

B
(k)
p =

⋂
j∈M∗

{i ∈M∞ : δj(i) = pj}.

We define the geometric sets

(9) Bp := π(B(1)
p ) and B(∞)

p := π(B(∞)
p ),

which in [MR] were respectively called the normal Besicovitch set and the super-

normal Besicovitch set associated with the pair (Ψ,p) .
Given i ∈M∞ and k ∈ N , i(k) stands for the curtailed sequence (i1i2 · · · ik) .

For j ∈ Mk , [j] = {i ∈ M∞ : i(k) = j} is called a cylinder set (the one whose
heading sequence is j). We write ϕj for the composite similitude ϕj1 ◦ ϕj2 ◦ · · · ◦
ϕjk ; and Ej (respectively Fj , Vj ) for the image sets ϕj(E) (respectively ϕj(F ) ,
ϕj(V )), which we call geometric cylinder sets. Recall that we abbreviated the
product pj1pj2 · · · pjk by pj above. We also denote rj1rj2 · · · rjk by rj . We call
the projected sets π([i(k)]) = ϕi(k)(E) , geometric cylinders of the k -th generation.

We now state a result concerning the µp -sizes of the overlapping set Θ and
of the Besicovitch sets.

Theorem 2.1. Let Ψ ∈ S (N,M) , p ∈ P+ , and let µp be the self-similar

measure associated with (Ψ,p) . Then

i) B
(∞)
p ∩

(
Θ ∪ (E ∩ ∂V )

)
= ∅ ;

ii) (Θ-lemma) µp

(
Θ ∪ (E ∩ ∂V )

)
= 0 ;

iii) µp(Ej) = µp(Fj) = µp(Vj) = νp([j]) = pj for all j ∈M∗ .

The limits δj(i) can be thought as the average time spent on the cylinder j by
the forward shift orbit of i (see below for a definition of the shift mapping). From

Birkhoff’s ergodic theorem and the definition of B
(∞)
p it follows that µp(B

(∞)
p ) =

1. The Θ-lemma above then follows from part i). Part iii) follows from part ii).
A proof for part i) can be seen in [MR].

Remark 2.2. Let C denote the σ -algebra generated by the class of cylinder
sets and let Cπ denote the σ -algebra induced on E by π . Notice that the Θ-
lemma implies that (E,Cπ, µp) and (M∞,C , νp) are isomorphic measure spaces.
Remark 2.3 below strengthens the equivalence of those spaces from the dynamical
viewpoint.
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Let τ : M∞ 7→M∞ be the Bernoulli shift in the code space, i.e. τ(i1i2i3 · · ·) =
(i2i3 · · ·) . A Bernoulli shift, which will be denoted by T , is defined in the geometric
space E by means of

T |E\Θ = π ◦ τ ◦ π−1.

The geometric shift mapping T defined above will be fixed throughout the paper.

Remark 2.3. The Θ-lemma implies that T is µp -preserving for all p ∈
P+ , and furthermore that (T, µp) and (τ, νp) are isomorphic measure-preserving
mappings. Observe that T is also ergodic for any measure µp ∈ M + , since
ergodicity is preserved under isomorphisms. The definitions from ergodic theory
used above can be seen in [Wal].

We will need the following auxiliary result. Recall that the sets Ei = ϕi(E)
are geometric cylinders of the first generation for the system Ψ.

Lemma 2.4. Let Ψ ∈ S (N,M) . For k ∈ N , let Ak be the class of sets

{∅,Θ, SΨk−1(E1), SΨk−1(E2), . . .}

(SΨ0 is the identity map), and let σ(Ak) denote the σ -algebra generated by Ak .

Then, for each p ∈ N and µ ∈ M +

(10) µ(A1 ∩A2 ∩ · · · ∩Ap) =

p∏

j=1

µ(Aj),

whenever Aj ∈ σ(Aj) for each j = 1, 2, . . . , p .

Proof. For each k ∈ N , let Ãk denote the class of sets in Ak plus all sets
obtained as finite intersection of sets in Ak . Let p ∈ N . Observe that the Θ-
lemma implies that equality

µ
(
Ei1 ∩ SΨ(Ei2) ∩ · · · ∩ SΨp−1(Eip)

)
=

p∏

j=1

µ(Eij ),

holds for any i = (i1, i2, . . . , ip) ∈Mp . Thus (10) holds if Aj ∈ Aj for 1 ≤ j ≤ p .
Using the Θ-lemma again, it is easy to show that (10) actually holds when
Aj ∈ Ãj , j = 1, . . . , p . That is to say, the classes Ã1, Ã2, . . . , Ãp are inde-

pendent [Bil]. Since the class Ãj is a π -system for each j , a result by Billingsley

[Bil, Theorem 4.2] implies that the σ -algebras σ(Ã1), σ(Ã2), . . . , σ(Ãp) are also
independent, and the lemma follows.

For i ∈M , let χi: E 7→ N ∪ {0,+∞} be the random variable defined by

(11) χi(x) = sup
{
p : x ∈ (E \ Ei) ∩ T

−1(E \ Ei) ∩ · · · ∩ T−p+1(E \ Ei)
}

for x ∈ E \ Ei , and χi(x) = 0 for x ∈ Ei . The following typical limit property
for χi will be used in subsequent sections.
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Proposition 2.5. Let Ψ ∈ S (N,M) . For i ∈M and a > 0 , let

(12) G(i, a) =
{
x ∈ E : lim

k→+∞
k−aχi

(
T k(x)

)
= 0

}
.

Then, µ
(
G(i, a)

)
= 1 for any µ ∈ M + .

Proof. Let i ∈M , a > 0, and µ ∈ M + . We will write A for the set E \Ei .
For positive integers k , j consider the set

(13) Ak,j = T−k
(
A ∩ T−1(A) ∩ · · · ∩ T−j+1(A)

)
.

Notice that, using the notation of Lemma 2.4, T−q(A) = SΨq(A) ∈ σ(Aq+1) for
all q ∈ N . Thus, the T -invariance of µ (see Remark 2.3) together with Lemma 2.4
imply that

(14) µ(Ak,j) = µ
(
A ∩ T−1(A) ∩ · · · ∩ T−j+1(A)

)
= µ(A)j.

Let n ∈ N . For each k ∈ N , we define the set

G∗
n(i, a, k) =

{
x : χi

(
T k(x)

)
>
ka

n

}
.

For each k ∈ N , consider the integer p(k) = min{p ∈ N : pn > ka} . From (11)
and (13),

µ
(
G∗
n(i, a, k)

)
≤ µ(Ak,p(k))

because the sequence {Ak,j}j is non-increasing. The choice of p(k) and (14) then
give

(15) µ
(
G∗
n(i, a, k)

)
≤ µ(A)p(k) ≤

(
µ(A)1/n

)ka

.

Writing r = µ(A)1/n , the estimate (15) and a change of variable give

(16)

∞∑

k=1

µ
(
G∗
n(i, a, k)

)
≤

∞∑

k=1

e−k
a| log r| ≤ a−1| log r|−1/aΓ(a−1),

where Γ(·) denotes the eulerian integral. Therefore the series in (16) converges,
and the first Borel–Cantelli lemma implies that µ

(
lim supk→∞G∗

n(i, a, k)
)

= 0.
Since n ∈ N is arbitrary, E \G(i, a) is a µ-null set, which proves the result.
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3. Dimension of self-similar measures

In this section we assume that the set M is infinite and we find the Hausdorff
and packing dimensions of a self-similar measure. Let (Ψ,p) ∈ S (N,M) × P+ .
Assume that

(17)
∑

i∈M

pi log ri > −∞

and let s(p) be the real number defined in (4). The formula

(18) dimµp = Dimµp = s(p)

is known to hold when M is finite [DGSH]. The proof depends crucially on the
existence of a positive minimum contraction ratio u := min{ri : i ∈M} > 0, which
does no longer hold for the infinite case. We prove in this section that formula
(18) still holds for the infinite case. Using (18) for M finite it can be proved that
the convergence hypothesis (17) implies that the series in the numerator of s(p)
also converges, namely

Lemma 3.1. Let Ψ = {ϕi : i ∈M} ∈ S (N,M) , and p = (pi)i∈M ∈ P+ . If

the series
∑
i∈M pi log ri converges, then the series

∑
i∈M pi log pi also converges.

Proof. Suppose
∑
i∈M pi log pi = −∞ . Let l < 0 be the sum of the series∑

i∈M pi log ri , and let {cn}n∈N be the sequence defined by cn =
∑n
i=1 pi , n ∈ N .

Choose a positive integer k satisfying

(19)

k∑

i=1

pi log pi < Nl + ck log ck.

Now consider the finite probability distribution p̂ = (p̂i)i∈K on the set K =

{1, 2, . . . , k} defined by p̂i = c−1
k pi , i ∈ K . The system Ψ̂ = {ϕi : i ∈ K} is finite

and satisfies the OSC. Thus the dimension formula given in (18) implies that the

self-similar measure µ
p̂

associated with the pair (Ψ̂, p̂) has Hausdorff and packing

dimensions given by s(p̂) (see (4)). From (19) it then follows that

s(p̂) =

∑k
i=1 pi log pi − ck log ck∑k

i=1 pi log ri
> N,

which is a contradiction, since the measure µ
p̂

is defined in RN .

Remark 3.2. In terms of ergodic theory, Lemma 3.1 asserts that the dynami-
cal system (E, T, µp) has finite Kolmogorov–Sinai entropy provided the Liapunov
exponent of the system is bounded above. An interpretation of (18) from this
viewpoint can be seen in [MR].
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We will often use the following notation. Let p ∈ P+ and let (M∞, νp)
be the corresponding product probability space (see (3)). For a random variable
Z: M 7→ R , we call {Zj}j∈N the associated independent process in M∞ , i.e. for
each j ∈ N , Zj : M

∞ 7→ R is the r.v. defined by

Zj = Z ◦ pr1 ◦ τ
j−1,

where pr1: M
∞ 7→ M is the projection pr1(i1i2 · · ·) = i1 , and τ is the Bernoulli

shift in M∞ . For i ∈M∞ we write

(20) SZk (i) =
k∑

j=1

Zj(i).

The expression E [Z] means the expectation of Z with respect to the probability
p in M .

Let µ be a Borel measure in RN . The upper and lower spherical logarithmic
densities of µ at x ∈ RN are defined by

αµ(x) = lim sup
r→0

logµ
(
B(x, r)

)

log r
, αµ(x) = lim inf

r→0

logµ
(
B(x, r)

)

log r
.

We first prove that, for a given p ∈ P+ , the value s(p) in (4) is an upper
bound for the packing dimension of µp . This is a consequence of the following

Lemma 3.3. Let Ψ ∈ S (N,M) , p ∈ P+ , and let µ denote the self-similar

measure associated with (Ψ,p) . Assume that (17) holds. Then αµ(x) ≤ s(p)
µ-a.e.

Proof. Consider the random variables W1(i) = log pi , W2(i) = log ri , i ∈M ;
and let

(21) N =
{
i ∈M∞ : lim

k→∞
k−1S

Wj

k (i) = E [Wj ], j = 1, 2
}
.

Let ε > 0. For i ∈ N , take k0 such that

max
{
|k−1SW1

k (i) − E [W1]|, |(k − 1)−1SW2

k−1(i) − E [W2]|, (k − 1)−1
}
< ε

for all k > k0 . Let 0 < r < ri(k0) , and take k1 = min{k : ri(k) < r} . From the
choice of k1 and part iii) of Theorem 2.1, it follows that

logµ
(
B

(
π(i), r

))

log r
≤

logµ(Ei(k1))

log ri(k1−1)

=
(
1 +

1

k1 − 1

) k−1
1 SW1

k1
(i)

(k1 − 1)−1SW2

k1−1(i)
≤ (1 + ε)

E [W1] + ε

E [W2] − ε
.

Since s(p) = E [W1]/E [W2] , we get αµ
(
π(i)

)
≤ s(p) for all i ∈ N . Hypothesis

(17) and Lemma 3.1 together imply that the strong law of large numbers holds for
both W1 and W2 . Hence µp

(
π(N )

)
= 1 and the lemma follows.
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We introduce now the ‘travelling ball’ idea which allows us to obtain a ge-
ometric cylinder covering any small given ball, and then to show that s(p) is a
lower bound for the Hausdorff dimension of µp .

Lemma 3.4 (‘Travelling ball’ lemma, logarithmic version). Let Ψ ∈
S (N,M) , p ∈ P+ , and let µ be the self-similar measure associated with (Ψ,p) .
Assume hypothesis (17). Then s(p) ≤ αµ(x) µ-a.e., where s(p) is given in (4).

Proof. Recall that V denotes an open set satisfying the strong OSC for the
system Ψ. Thus there exist ε > 0 and y = π(i) ∈ E ∩ V such that B(y, ε) ⊂ V .
We choose a positive integer k0 large enough so that

(22) Ei(k0) ⊂ B(y, ε).

The set Ei(k0) is a cylinder set of the first generation for the system

Ψ0 := Ψ ◦ Ψ ◦
(k0)
· · · ◦Ψ = {ϕj : j ∈Mk0} ∈ S (N,Mk0),

which also has the set E as the unique compact SΨ0 -invariant set. Furthermore,

if the product probability p0 := pk0 = p ×
(k0)
· · · ×p is considered in Mk0 , ν0

denotes the infinite-fold product measure ×∞
1 p0 , and π0 is the natural coding

map associated with the system Ψ0 (see (2)), it can be seen that the induced
measure ν0 ◦ π

−1
0 coincides with the self-similar measure µp . This follows from a

uniqueness argument, since both measures can be shown to be fixed points of the
same contractive operator (see [Hut] for this theory).

Since there exists a ̺ > 0 such that d
(
B(y, ε), ∂V

)
> ̺ , we have from (22)

that

(23) d(B, ∂V ) > ̺,

where B := Ei(k0) is a cylinder of the first generation for the system Ψ0 . Notice
that the system Ψ0 satisfies the OSC with open set V . Therefore, given an
arbitrary system Ψ ∈ S (N,M) , it can be assumed that there exists l ∈ M and
a cylinder B := El of the first generation for the system Ψ satisfying (23). The
geometric cylinder B and the real number ̺ > 0 will be fixed throughout the
proof.

Recall the definitions of the sets B
(∞)
p , G(i, a) , and N given in (9), (12)

and (21) respectively. Let G = B
(∞)
p ∩ G(l, 1) ∩ π(N ) and take x ∈ G . Notice

that Theorem 2.1 i) implies that π−1(x) = i = (i1, i2, . . .) is a singleton. Let
q = min{n : in = l} , and let r > 0 be such that r < ̺ri(q) , where ̺ > 0 is the
constant in (23). Consider the integer

(24) kr = max{k : r < ̺ri(k)}.
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Hence the (‘travelling’) ball B
(
T kr(x), ̺

)
satisfies

(25) ϕi(kr)

(
B(T kr(x), ̺)

)
= B(x, ̺ri(kr)) ⊃ B(x, r).

Since d
(
T k(x), ∂V

)
could take arbitrarily small values for x ∈ B

(∞)
p , we do not

have that B
(
T kr (x), ̺

)
⊂ V in general. That is why we consider the integer pr

defined by

(26) pr := p(kr) = min{j : T kr−j(x) ∈ B}.

Notice that this choice guarantees that B
(
T kr−pr(x), ̺

)
⊂ V because of (23).

Thus, from (24), we get

B(x, r) ⊂ B(x, ̺ri(kr−pr)) = ϕi(kr−pr)

(
B

(
T kr−pr (x), ̺

))

⊂ ϕi(kr−pr)

(
cl (V )

)
= Fi(kr−pr),

so that µ
(
B(x, r)

)
≤ µ(Fi(kr−pr)) . Since ̺ri(kr+1) < r , we obtain

(27)
logµ

(
B(x, r)

)

log r
≥

log µ(Fi(kr−pr))

log(̺ri(kr+1))
.

Using the random variables Wi (i = 1, 2) and part iii) of Theorem 2.1, as we did
in the proof of Lemma 3.3, inequality (27) can be written as

(28)
logµ

(
B(x, r)

)

log r
≥

(
1 −

pr + 1

kr + 1

)
(kr − pr)

−1SW1

kr−pr
(i)

(kr + 1)−1
(
SW2

kr+1(i) + log ̺
) ,

where the notation is that in (20). From the choice of pr (see (26)), and the
definition (11) it follows that χl

(
T kr−pr+1(x)

)
≥ pr for all x ∈ E . Thus, if

pr ≥ 1, we have

(29)
χl

(
T kr−pr+1(x)

)

kr − pr + 1
≥
pr
kr
.

It can be seen that kr − pr → +∞ as r → 0 for x ∈ B
(∞)
p , because otherwise

we would obtain that lim infk→+∞ δl
(
π−1(x), k

)
= 0 which is a contradiction (see

the notation in (7)). Using (29), definition (12), and taking lim inf as r → 0, we
obtain from (28)

lim inf
r→0

log µ
(
B(x, r)

)

log r
≥

E [W1]

E [W2]
= s(p).

This proves the theorem, since the Θ-lemma, Proposition 2.5, Lemma 3.1, and
the strong law of large numbers imply that the set G has full µ-measure.

Proof of Theorem A. It follows as a consequence of standard results [Tri], [Y]
(see also [Cut1], [Cut2]) connecting the logarithmic densities αµ , αµ of a Borel
measure µ with the Hausdorff and packing dimensions of µ . More precisely, the
equality αµ(x) = α∗ µ-a.e. implies that dimµ = α∗ , whereas αµ(x) = α∗ µ-a.e.
implies that Dimµ = α∗ (see e.g. [Tri, Theorem 1]). Lemma 3.3 and Lemma 3.4
together imply that α∗ = α∗ = s(p) in our case.
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4. Absolute continuity of self-similar measures

with respect to the packing measure

We assume that M = {1, 2, . . . , m} throughout this section. Consider Ψ ∈
S (N,M) , and p ∈ P+ . We now address the problem of determining the be-
haviour of the self-similar measure µp with respect to the packing measure in its
dimension, i.e. deciding whether µp is either singular or absolutely continuous
w.r.t. P s(p) .

We approach the problem by means of local techniques. Given a Borel mea-
sure µ and ψ ∈ F , recall that the standard lower spherical ψ -density of µ at x
is defined by

θψµ (x) = lim inf
r→0

µ
(
B(x, r)

)

ψ(2r)
.

Let µ ∈ M + . We define the following lower cylindrical ψ -density of µ at x

dψµ(x) = sup

{
lim inf
k→+∞

µ(Ei(k))

ψ(ri(k))
: i ∈ π−1(x)

}
.

Notice that part iii) in Theorem 2.1 implies that

dψµ (x) = lim inf
k→+∞

νp
(
[i(k)]

)
/ψ(ri(k)) = lim inf

k→+∞
pi(k)/ψ(ri(k))

for all x = π(i) belonging to the set of µ-full measure E \ Θ, where p ∈ P+ is
the probability µ is associated with. We write θtµ(·) and dtµ(·) when ψ(ξ) = ξt .

To obtain the main result of this section, the information supplied by the
cylindrical densities, which are well-fitted to self-similar constructions, must be
translated into geometrical information about spherical densities. We recall that
u := min{ri : i ∈ M} . Let F+ = {ψ ∈ F : ψ(x)ψ(y) ≤ ψ(xy) for all x, y >
0 small enough} .

Lemma 4.1. Let Ψ ∈ S (N,M) , p ∈ P+ , and let µ be the self-similar

measure associated with (Ψ,p) . Let ψ ∈ F+ . Then the inequality

(30) ψ(u/2)dψµ(x) ≤ θψµ(x)

holds for all x ∈ E .

Proof. The idea of the proof is similar to the one used in the proof of
Lemma 3.3. For x ∈ E and r > 0, we take i ∈ π−1(x) and k0 = min{j : ri(j) < r} .
Since |V | = 1, we get that B(x, r) ⊃ Ei(k0) , so that

µ
(
B(x, r)

)

ψ(2r)
≥ ψ(u/2)

µ(Ei(k0))

ψ(ri(k0))
,
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because ri(k0) ≥ ur and ψ ∈ F+ . Letting r → 0 and taking the infimum over the
codes i ∈ π−1(x) we obtain (30).

Let G ≡ G (Ψ,p) = {ψα : α ∈ R} be the one-parameter family of real
functions defined by

(31) ψα(ξ) = ξs(p) exp
{
α(2 log ξc(p) log log log ξc(p))1/2

}
,

where s(p) is given in (4), and c(p) is the negative real number

(32) c(p) =

( ∑

i∈M

pi log ri

)−1

.

It can be seen that ψα ∈ F+ for all α ≤ 0 (see Appendix). We recall that the
definition of the normal Besicovitch set Bp was given in (9). We will need the
following lemma, which was proven in [MR].

Lemma 4.2. For a < 0 , let fa be the real variable function

(33) fa(ξ) = (2 log ξa log log log ξa)1/2.

Then, for every x ∈ Bp there is an i ∈ π−1(x) such that

(34) lim
k→+∞

fc(p)(ri(k))

(2k log log k)1/2
= 1,

where c(p) is the constant defined in (32).

Lemma 4.3 (‘Travelling ball’ lemma, non-logarithmic version). Let Ψ ∈
S (N,M) , p ∈ P+ \ {ps} , and let µ denote the self-similar measure associated

with (Ψ,p) . Let G be the family defined in (31). Let

(35) d(p) =

( ∑

i∈M

(
log pi − s(p) log ri

)2
pi

)1/2

.

For ψα ∈ G , it holds

For α < −d(p), θψα

µ (x) = dψα

µ (x) = +∞, µ-a.e.(36)

For α > −d(p), θψα

µ (x) = dψα

µ (x) = 0, µ-a.e.(37)

Proof. Let X : M 7→ R be the random variable defined by

(38) X(i) = log pi − s(p) log ri,
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and define the set of codes

L =

{
i ∈M∞ : lim inf

k→+∞

SXk (i)

(2k log log k)1/2
= −d(p)

}
,

where the notation is that of (20). Since E [X ] = 0 and d(p) is the standard
deviation of X , it follows from the law of the iterated logarithm that

(39) µ
(
π(L )

)
= 1.

Observe that ψα can be written as ψα(ξ) = ξs(p) exp
(
αfc(p)(ξ)

)
, where fc(p) is the

function defined in (33), and c(p) is given in (32). In view of Theorem 2.1 part iii),
the lower cylindrical ψα -density of µ at x ∈ E satisfies, for any i ∈ π−1(x) ,

(40) dψα

µ (x) ≥ exp

(
lim inf
k→+∞

{
fc(p)(ri(k))

(
SXk (i)

fc(p)(ri(k))
− α

)})
.

Let α < −d(p) . It follows from (40), and the asymptotic identity (34) of Lemma
4.2 that dψα

µ (x) = +∞ for x ∈ π(L ) . The identity in (36) is thus a consequence
of Lemma 4.1 and (39).

The proof of (37) follows lines similar to those used in the proof of Theo-
rem 3.4, even though the ‘travelling ball’ technique must be used here in a slightly
different way.

Let E = B∪(E \B) be the decomposition of the self-similar set E considered
in the proof of Theorem 3.4, i.e. B = El for some l ∈ M with d(B, ∂V ) > ̺ ,
where V is the open set satisfying the strong OSC for the system Ψ. The set B
will be fixed throughout this proof.

Let G = B
(∞)
p ∩G

(
l, 1

2

)
∩ π(L ) , where B

(∞)
p is the supernormal Besicovitch

set defined in (9), and G
(
l, 1

2

)
is defined in (12). Take any x = π(i) ∈ G . Let

q = min{j : ij = l} , k > q , and choose some εk > 0 such that εk < ̺ri(k) but
εk ≥ ̺ri(k+1) . Consider now, as in the proof of Theorem 3.4, the ‘travelling ball’

B
(
T k(x), ̺

)
so that

B(x, εk) ⊂ ϕi(k)

(
B(T k(x), ̺)

)
.

The travelling ball will not in general be contained in the open set V . We thus
define

p = p(k) = min{j : T k−j(x) ∈ B}.

Since d(B, ∂V ) > ̺ , we have

Fi(k−p) ⊃ ϕi(k−p)

(
B(T k−p(x), ̺)

)
= B(x, ̺ri(k−p)) ⊃ B(x, εk),

and thus part iii) in Theorem 2.1 gives

(41) C(k)µ(Ei(k)) = µ(Ei(k−p)) ≥ µ
(
B(x, εk)

)
,
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where C(k) = (pik−p+1
pik−p+2

· · · pik)−1 . Let α < 0. Since ̺uri(k) ≤ εk , and
ψα ∈ F+ , we obtain from (41) that

(42) ψα(2̺u)
µ
(
B(x, εk)

)

ψα(2εk)
≤ C(k)

µ(Ei(k))

ψα(ri(k))
.

For ψ ∈ F , let

(43) γψ
µ
(x) := lim inf

k→∞
C(k)

µ(Ei(k))

ψ(ri(k))
.

We will prove now that

(44) γψα

µ
(x) = dψα

µ (x) = 0 for − d(p) < α < 0.

Notice that this also gives that γψα

µ
(x) = 0 for α ≥ 0, since ψα is an increasing

function of α .
Notice that γψα

µ
(x) can be written in this case as

(45) γψα

µ
(x) = exp

{
lim inf
k→+∞

(
fc(p)(ri(k))

(
SXk (i)

fc(p)(ri(k))
−α−

∑k
j=k−p+1 log pij

fc(p)(ri(k))

))}
,

where the notation in (20) has been used. Since x ∈ π(L ) , it follows from
Lemma 4.2 that showing

(46) lim
k→+∞

∑k
j=k−p+1 log pij

(2k log log k)1/2
= 0

proves (44). It can be assumed that p ≥ 1. The reasoning used in Theorem 3.4
to obtain (29) also applies here, so that (46) follows from inequality

χl
(
T k−p+1(x)

)

(k − p+ 1)1/2
≥

p

k1/2
,

taking into account the estimate
∑k

j=k−p+1 log pij ≥ p(mini∈M log pi) and defi-
nition (12). Therefore the identity in (37) holds for all x ∈ G . The Θ-lemma,
Proposition 2.5, and (39) together complete the proof.

To prove the main result in this section we need Theorem 4.4 below, which
provides a local characterization of both the singularity and the absolute continuity
of a Borel measure w.r.t. ψ -packing measures. The theorem below stems from the
work of C.A. Rogers and S.J. Taylor [RT] along with the density theorem for
ψ -packing measures of S.J. Taylor and C. Tricot [TT, Theorem 5.4].
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Theorem 4.4 (Rogers–Taylor theorem). Let µ be a finite Borel measure in

RN , and ψ ∈ F . Then

(a) µ is singular w.r.t. Pψ if and only if θψµ(x) = +∞ µ-a.e.

(b) µ is absolutely continuous w.r.t. Pψ if and only if θψµ(x) < +∞ µ-a.e.

(c) µ has an integral representation w.r.t. Pψ if and only if 0 < θψµ(x) < +∞
µ-a.e.

Now we are ready to give a proof of

Theorem 4.5. Let Ψ ∈ S (N,M) , p = (pi)i∈M ∈ P+ , and let G =
{ψα}α∈R be the family defined in (31). Let d(p) > 0 be the real number defined

in (35). Then, the self-similar measure µp induced by the pair (Ψ,p) satisfies

i) µp is singular w.r.t. Pψα if α < −d(p) .
ii) µp is absolutely continuous w.r.t. Pψα if α > −d(p) .
iii) µp has an integral representation w.r.t. P t for some t > 0 if and only if

p = ps , i.e. pi = rsi for i ∈M (and thus s = t).

Proof. Part i) (respectively part ii)) above follows from combining part (a)
(respectively part (b)) of Theorem 4.4 and identity in (36) (respectively identity
in (37)) of Lemma 4.3.

We drop the subindex p from µp . The ‘if’ implication in part iii) is a conse-
quence of Theorem 3 part ii) in [MR] together with the fact that the measures Hs

and P s coincide up to a constant factor [Haa], [Spe] (see also [MU]). To prove the
‘only if’ implication, we first prove that the statement of part iii) about integral
representability of µ holds only if

(47) 0 < dtµ(x) < +∞ µ-a.e.

The necessity of the second inequality above immediately follows from Theorem 4.4
part (c) and Lemma 4.1 considering ψ(x) = xt as dimension functions. The
necessity of first inequality in (47) essentially follows from the work already done
to prove Lemma 4.3. To see this, let t > 0 and notice that inequality (42) is also
valid for ψ(x) = xt . Let γt

µ
(x) denote the point function defined in (43) when

ψ(x) = xt . Using the notation of (20), γt
µ
(x) can be written in this case as

γt
µ
(x) = exp

(
lim inf
k→+∞

k

{
1

k
SX

(t)

k (i) −
1

k

k∑

j=k+p−1

log pij

})
,

where X(t) is the random variable X(t) = log pi − t log ri . From the Θ-lemma
and Lemma 2.5 it can be shown, following the lines of the proof of (44), that
γt
µ
(x) > 0 implies that dtµ(x) > 0 for x in a set of full µ-measure (e.g. taking

x ∈ B
(∞)
p ∩G(l, 1) works). Since θtµ(x) ≤ γt

µ
(x) µ-a.e. (see (42)), part (c) in the
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Rogers–Taylor theorem completes the reasoning. Using the strong law of large
numbers and the law of the iterated logarithm, as in the proof of Theorem 2
part iii) in [MR], the boundedness condition (47) it is shown to be equivalent to
the choice p = ps . This proves the theorem.

As a corollary of Theorem 4.5 notice that the choice α = 0 gives ψ0(ξ) =
ξs(p) , and thus ii) implies that the self-similar measure µp is absolutely continuous
w.r.t. the packing measure P s(p) .

5. Packing geometry of Besicovitch sets

In this section we use results from Sections 3 and 4 to study the packing
geometry of normal and supernormal Besicovitch sets. Let Ψ ∈ S (N,M) , and
p ∈ P+ . We assume in this section that M = {1, 2, . . . , m} , except when other-
wise stated. Recall that ps denotes the probability vector (rsi )i∈M ∈ P+ .

Theorem 5.1. Let Ψ ∈ S (N,M) and p ∈ P+ . Let Bp and B
(∞)
p be the

normal and supernormal Besicovitch sets defined in (9). Then

i) DimB
(∞)
p = DimBp = s(p) .

ii) 0 < P s(B
(∞)
ps ) = P s(Bps

) = P s(E) < +∞ .

iii) If p 6= ps , every set with positive µp -measure has infinite (non-σ -finite)
s(p) -packing measure. In particular

P s(p)(B(∞)
p ) = P s(p)(Bp) = +∞ (non-σ -finite).

Proof. The inequality DimB
(∞)
p ≥ s(p) follows from (5), (18) and the fact

that µp(B
(∞)
p ) = 1. Let x ∈ Bp . From the definition of Bp there exists an

ix ∈ π−1(x) such that δj(ix) = pj for all j ∈M . Taking kr := min{j : rix(j) < r}
and proceeding as in the proof of Lemma 3.3, we get that

αµp
(x) ≤ lim

r→0

kr
kr − 1

k−1
r SW1

kr
(ix)

(kr − 1)−1SW2

kr−1(ix)
= s(p),

since limk→+∞ k−1S
Wj

k (ix) = E [Wj ] for j = 1, 2. The inequality DimBp ≤ s(p)
then follows from the work of C. Tricot [Tri, Theorem 1]. This proves i).

Part ii) is a consequence of the uniqueness of the invariant measure associated
with the pair (Ψ,p) [Hut]. Since the measures Hs and P s coincide up to a
constant factor in the finite case [Haa], [Spe], [MU], ii) follows from Theorem 3
part ii) in [MR].

We omit p from µp . Let A be a borelian set of positive µ-measure. From

Theorem 4.3 and the fact that ds(p)
µ = 0 µ-a.e. (see (37)), it follows that there is

a set A∗ ⊂ A such that µ(A) = µ(A∗) and θs(p)
µ (x) = 0 for all x ∈ A∗ . Since

µ(A∗) > 0, the Taylor–Tricot density theorem [TT, Theorem 5.4] implies that
P s(p)(A∗) = +∞ . This proves part iii) because the Besicovitch sets are Borel sets
of full µ-measure.
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The finiteness of M is essential to obtain the result in part iii) of Theorem 5.1.
We are able, however, to obtain the same result for infinite M in some cases. This
follows from the following proposition, which is a packing version of Proposition 3.7
in [MR].

Proposition 5.2. Let Ψ ∈ S (N,M) , with M infinite countable. Assume

that
∑
i∈M rsi = 1 . Let 0 < t < s , and ψ(ξ) = ξtg(ξ) ∈ F with g non-

increasing in some nonempty interval (0, ε) . Alternatively, let ψ ∈ F+ be such

that lim supξ→0 logψ(ξ)/ log ξ < s . Then the ψ -packing measure of every SΨ-

invariant set with DimB > Dim (B ∩ Θ) is either zero or infinity.

The proof of Proposition 5.2 is similar to that of Proposition 3.7 in [MR].
From the result above it follows that the normal Besicovitch sets Bp associated
with systems in S (N,N) which intersect the overlapping set Θ in a set of packing
dimension strictly less than s(p) , have either zero or infinite packing measure in
their dimension. In particular, from part i) of Theorem 2.1 it follows that the
s(p)-packing measure of supernormal Besicovitch sets is either null or infinite.

Remark 5.3. Notice that Theorem 5.1 applies to the classical case of the
Besicovitch–Eggleston sets [Bes], [Egg]. These are subsets of the unit interval com-
posed of points with given asymptotic frequencies in the figures of their m-base ex-
pansion. In particular, these sets (as well as the supernormal Besicovitch–Eggleston

sets) have infinite packing measure in their dimension. A classical problem remains
open, that is to decide whether the Hausdorff measure of the Besicovitch sets in
their dimension is either zero or infinity, see [MR].

Appendix

Lemma A1. Let t > 0 , and c < 0 . Consider the family of real variable

functions

(48) ψα(x) = xt exp
(
αfc(x)

)
, α ∈ R,

where fc(x) = (2 log xc log log log xc)1/2 . Then ψα ∈ F− for α ≥ 0 , and ψα ∈ F+

for α ≤ 0 . (ψα ∈ F− if ψα(x)ψα(y) ≥ ψα(xy) for all x, y > 0 small).

Proof. The trivial case α = 0 can be omitted. Let t , and c be fixed, and
the subindex c be dropped from fc . We write for convenience f(x) = h(log xc) ,
where

(49) h(ξ) = (2ξ log log ξ)1/2.

Notice that limξ→+∞ h(ξ) = +∞ , h′(ξ) > 0 for ξ > e , and

(50) lim
ξ→+∞

h′(ξ) = 0+



384 Manuel Morán and José-Manuel Rey

(this notation means that the limit is attained from positive values).
It is easy to show that ψα is positive and continuous in some interval (0, ε) .

Since t > 0, and limx→0 f(x)/ log x = 0, writing

(51) ψα(x) = exp

(
log x

(
t+

αf(x)

log x

))
,

we obtain limx→0+ ψα(x) = 0. Taking derivatives in (48)

(52) ψ′
α(x) = xt−1eαf(x)

(
t+ αxf ′(x)

)
.

Since f ′(x) = cx−1h′(log xc) it follows from (50) and (52) that ψ′
α(x) > 0 for

small x. This proves that ψα is increasing in a neighbourhood (0, ε) for α ∈ R ,
and thus ψα ∈ F for α ∈ R .

Notice that showing ψα ∈ F+ for α < 0 concludes the proof. In order to
check that for α < 0 and x, y small enough, inequality ψα(xy) ≤ ψα(x)ψα(y)
holds, it is sufficient to prove that

(53) f(xy) ≤ f(x)f(y)

for x, y in a neighbourhood (0, ε) . It follows from (49) that proving inequality
(53) holds is equivalent to showing that

(54) h(ξ + η) ≤ h(ξ) + h(η)

holds for all ξ, η sufficiently large. To prove (54) we first notice that

ξh′(ξ) =
ξ

h(ξ)

(
(log ξ)−1 + log log ξ

)
,

so that the inequality

(55) ξh′(ξ) < h(ξ)

holds for ξ large enough (ξ > e2 suffices). On the other hand, after taking
derivatives twice in (49) and some algebra, we obtain

h′′(ξ) = −
(
h(ξ)3 log2(ξ)

)−1(
1 + 2 log log ξ + (log log ξ log ξ)2

)
,

and thus h′′(ξ) < 0 if ξ > e . We now prove (54). Assume that ξ < η . From the
intermediate value theorem it follows that

(56) h(ξ + η) − h(η) = h′(z)ξ

for some z ∈ [η, η+ ξ] . Since h′(z) < h′(ξ) , using inequality (55) we get from (56)
that

h(η + ξ) − h(η) ≤ h′(ξ)ξ ≤ h(ξ)

for ξ, η large enough (ξ, η > e2 will suffice). This proves (54), and therefore we
are done.
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