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Abstract. D. Sullivan [4] showed that a discrete Möbius group G of Sn acts conservatively
on the horospheric limit set H (G) of G , that is if A ⊂ H (G) has positive measure, then so
has A ∩ gA for infinitely many g in G . On the other hand, G has a measurable fundamental set
outside H (G) . We show that if the definition of the horospheric limit set slightly changed, these
results are also valid for any conformal measure µ of G .

Let X be a topological space with a finite Borel measure µ and let G be a
countable group of measurable, absolutely continuous bijections of X . If A ⊂ X
is setwise G-invariant, then the action of G is conservative on A (sometimes the
word “recurrent” is also used) if, whenever U ⊂ A is measurable and µ(U) > 0,
then µ(U∩gU) > 0 for infinitely many g ∈ G . In contrast, the action is dissipative

on A if there is a measurable fundamental set for the action of G in A , that is
there is a measurable set F ⊂ A such that F contains exactly one point from each
orbit Gz , z ∈ A . Conservative and dissipative action are not very compatible: if
G acts conservatively and no point of A is fixed by some g 6= id in G , then there
cannot be a measurable fundamental set for the action on A if µ(A) > 0. Under
fairly general conditions, it is possible to divide X into measurable disjoint pieces
A and B , X = A ∪ B , such that the action is conservative on A and dissipative
on B . This result seems to be generally known but the only reference I know is [1]
whose proof works if the set of points x ∈ X fixed by some g 6= id in G is a
nullset.

Let G be a discrete group of Möbius transformations of the n -sphere Sn and
let m be the n -dimensional Hausdorff measure on Sn . In this case Sullivan [4]
identified the conservative part as the horospheric limit set H (G) . Recall that
a Möbius group of Sn also acts on the open unit (n + 1)-ball Bn+1 and that a
horoball at x ∈ Sn is an open (n + 1)-ball B properly contained in Bn+1 such
that ∂B is tangent to Sn at x . Now we can define that a point x ∈ Sn is in the
horospheric limit set H (G) if any horoball at x contains an infinite number of
points from any orbit Gz , z ∈ Bn+1 .
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We will use the following variation of the horospheric limit set: We define
the big horospheric limit set Hb(G) as the set of points x ∈ Sn such that, given
z ∈ Bn+1 , then there is some horoball B at x such that B ∩ Gz is infinite.

We will extend Sullivan’s result for general conformal measures. A confor-
mal (G-)measure of dimension δ on Sn is a finite Borel measure satisfying the
transformation rule

µ(gX) =

∫

X

|g′|δ dµ

for g ∈ G and Borel subsets X of Sn ; here δ is the dimension of µ . Confor-
mal measures are sometimes called Patterson–Sullivan measures and their general
theory was developed in [5] (cf. also Nicholls [3]). Typically, they are supported
by the limit set L(G) of G but of course we can extend by zero to all of Sn .
For instance, the Hausdorff n -measure of Sn is a conformal measure and, more
generally, if A ⊂ Sn is G-invariant and the δ -dimensional Hausdorff-measure mδ

of A is finite, then mδ is a conformal measure.
Sullivan extended a method of Patterson in [5] and showed that there is a

non-trivial conformal measure supported by L(G) for any infinite discrete Möbius
group; the dimension of this measure is the exponent of convergence δG of G . The
measure is unique in many cases, and for the so-called convex cocompact groups
the δG -dimensional Hausdorff measure of L(G) is a conformal measure. Using
conformal measures, it is possible to extend the measure theoretical aspects of the
theory of Möbius groups of first kind (i.e. L(G) = Sn) to the groups of the second
kind (i.e. L(G) 6= Sn) .

We claim that the conservative part is the big horospheric limit set Hb(G) .
The ideas of the proof are much the same as in [4] but there are some complications,
for instance we had to move to the big horospheric limit set.

The set G = Hb(G) \ H (G) is very similar to the “Garnett points” of [4]
since, if x ∈ G and z ∈ Bn+1 , there is a unique horoball Bx at x such that
Gz ∩ B is finite if B is any smaller horoball at x and infinite if B is any larger
horoball at x ; in contrast, we recall that x is a Garnett point if x ∈ G and any
smaller horoball B ⊂ Bx does not contain any points of Gz . We denote the set
of Garnett points by G0 ; unlike H (G) and Hb(G) it might depend on the orbit
Gz but we assume a fixed reference point z and define G0 using it.

Part of Sullivan’s proof (due to John Garnett) of [4] was to show that the n -
dimensional Hausdorff measure m of G0 vanishes; the same proof would also show
that m(G ) = 0. So Sullivan’s original theorem could have been formulated as well
using the big horospheric limit set. Unfortunately, the proof of the null-measure
of Garnett points does not seem to generalize for general conformal measures
(although it is possible to prove that µ(G \ G0) = 0, see the Appendix).

We recall that a Möbius transformation g of Sn can be classified as elliptic
(including the identity map), loxodromic or parabolic: g is elliptic if g can be
conjugated by a Möbius transformation of Sn onto R̄n to an orthogonal linear
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map of Rn , g is loxodromic if g can be conjugated to a map of the form x 7→ λβ
where λ > 1 and β is an orthogonal linear map, and g is parabolic if g can
be conjugated to a map of the form x 7→ β(x) + a where a ∈ Rn and β is an
orthogonal linear map such that β(a) = a . We consider here only non-elementary
Möbius groups defined as discrete Möbius groups such that the limit set contains
more than two points.

Our aim is to prove

Theorem 1. Let G be a non-elementary Möbius group on Sn and let µ
be a conformal G-measure on Sn . Then the action of G is conservative on the

big horospheric limit set Hb(G) and dissipative on Sn \ Hb(G) . If C and D

are G-invariant subsets of Sn and G acts conservatively on C and dissipatively

on D , then D ⊂ Sn \ Hb(G) and C ⊂ Hb(G) up to µ-nullsets and atoms at

parabolic fixed points.

Remark. So we have found the dissipative and conservative parts and they
are unique up to nullsets and atoms at parabolic fixed points.

Note that a loxodromic fixed point cannot be an atom of µ since the dimension
δ of µ is positive for non-elementary G ([5]) and since |g′(v)| 6= 1 at a fixed point
v of a loxodromic g . Thus the stabilizer Gv = {g ∈ G : g(v) = v} of an atom of µ
can contain only parabolic and elliptic elements and if Gv is purely elliptic, it is
finite by [6, Corollary C] and in this case v must be put into the dissipative part.
Consequently, if Gv is infinite and v is an atom, then Gv must contain parabolic
elements and obviously the orbit Gv can be put at will either to the conservative
or the dissipative part.

We start the proof of Theorem 1 with the following characterization Hb(G) .
Here |g′(z)| is the operator norm of the derivative. The same proof shows that
z ∈ H (G) if and only if there are gi ∈ G such that |g′

i(z)| → ∞ , cf. (3).

Lemma 2. A point z ∈ Sn is in the big horospheric limit set Hb(G) if and

only if there are m > 0 and a sequence of distinct gi ∈ G such that |g′

i(z)| ≥ m .

Proof. We will prove that if gi ∈ G are distinct, then g−1

i (0) are in some
horoball at z if and only if there is m > 0 such that |g′

i(z)| ≥ m .
Suppose that hi ∈ G are distinct. Then |hi(0)| → 1 by discreteness and a

simple calculation shows that setting di = 1 − |hi(0)| , then hi(0) are in some
horoball at z if and only if

(1) |z − hi(0)| ≤ a
√

di

for some suitable positive constant a .
Let gi = h−1

i . We claim that (1) is true for some a > 0 if and only if

(2) |g′

i(z)| ≥ m
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for some m > 0.
The plan of the proof is simple. We first show that |g′

i| = |σ′

i| when σi is the
reflection on the isometric sphere Si of gi . Let τi be the center and ri the radius
of the isometric sphere Si . We show that ri is approximately

√
2di . Remembering

that |σ′

i(w)| = r2
i |w − τi|−2 , to conclude that (1) and (2) are equivalent we will

show that |z − hi(0)| is approximately |z − τi| .
Let Li be the hyperbolic line segment joining 0 and hi(0). The isometric

sphere of gi is the n -sphere Si orthogonal to Sn such that Si intersects Li

orthogonally at the hyperbolic midpoint ci of Li . We can see this as follows. Let
σi be the reflection on Si . Then σihi(0) = 0 and both σi and hi preserve Sn .
However, the only Möbius transformations preserving 0 and Sn are orthogonal
linear maps of Rn . Thus |(σihi)

′| = 1. Since also |(gihi)
′| = 1, it follows that

|g′

i| = |σ′

i| , and so we can use σi in (2) instead of gi . In particular, Si is the
isometric sphere of gi , i.e. the n -sphere S such that |g′

i| = 1 on S .
Let the hyperbolic metric of Bn+1 be given by the element of length 2|dx|/(1−

|x|2) . Then the hyperbolic distance is d(0, x) = log
(

1 + |x|)/(1 − |x|)
)

. Thus

log
1 + |ci|
1 − |ci|

=
1

2
log

1 + |hi(0)|
1 − |hi(0)|

implying

1 − |ci| = ai

√

1 − |hi(0)| = ai

√

di

where ai →
√

2 as i → ∞ . We also obtain

|ci − hi(0)| = |hi(0)| − |ci| = (1 − |ci|) − (1 − |hi(0)| = a′

i

√

di

where a′

i →
√

2 as i → ∞ .
The center τi of the isometric circle is mapped by σi onto ∞ and so |σ′

i(τi)| =
|g′

i(τi)| = ∞ and so also gi(τi) = ∞ . Let ̺ be the reflection on Sn . Then ̺
interchanges 0 and ∞ and commutes with Möbius transformations preserving Sn .
Thus 0 = ̺gi(τi) = gi̺(τi) and so ̺(τi) = hi(0). Since |hi(0)| → 1,

|hi(0) − τi| = bi

(

1 − |hi(0)|
)

= bidi

where bi → 2 as i → ∞ . It follows that the radius of the isometric circle

ri = |ci − τi| = |ci − hi(0) + hi(0) − τi| = a′′

i

√

di

where a′′

i →
√

2 as i → ∞ . Similarly,

|z − τi| = |z − hi(0) + hi(0) − τi| = |z − hi(0)| + δi

where |δi| ≤ bidi .
We can now estimate the derivative

(3) |g′

i(z)| = |σ′

i(z)| =
r2
i

|z − τi|2
=

(a′′

i )2di
(

|z − hi(0)| + δi

)2
.

The conclusion is now immediate. If (1) is true, then (2) is true for big i with
m = a−2 . If (2) is true, then (1) is true for big i with a = 2/

√
m .
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We return to the proof of the theorem. If x is an atom of µ , then by the
above Remark, x cannot be fixed by a loxodromic g ∈ G and if x is fixed by a
parabolic g ∈ G , then we can put the orbit of x at will either to the conservative
or to the dissipative part. Consequently, to prove the theorem we can assume that
no atom of µ is fixed by an element of G of infinite order. Under this assumption,
we will prove:

A. Sn \ Hb(G) has a measurable fundamental set.
B. The action of G is conservative on Hb(G) .
C. If C ⊂ Sn is G-invariant and G acts conservatively on C , then C ⊂

Hb(G) up to a nullset.
D. If D ⊂ Sn is G-invariant and G is dissipative on D , then D ⊂ Sn\Hb(G)

up to a nullset.

Proof of A. Denote D = Sn \Hb(G) . If z ∈ D , then Γz = {g ∈ G : |g′(z)| ≥
|h′(z)| for all h ∈ G} is finite and non-empty by Lemma 2. Thus the set

(4) F0 = {x ∈ D : |f ′(x)| ≤ 1 for all f ∈ G}

which is also the union
⋃

z∈D
Γzz , is a measurable set containing a finite and non-

zero number of points from each orbit Gz , z ∈ D . It is not difficult to extract a
measurable fundamental set from F0 , for instance as follows. Let {ei}i>0 , be a
dense set of Sn and define measurable F1 ⊂ F0 by

F1 = {x ∈ F0 : |x − e1| ≤ |z − e1| for all z ∈ Gx ∩ F0}.

Even this may fail to give a fundamental set but we continue and set F2 = {x ∈
F1 : |x− e2| ≤ |z − e2| for all z ∈ Gx ∩ F1} , etc. The intersection

⋂

i Fi will be a
measurable fundamental set for D .

Proof of B. Unless the action of G on Hb(G) is conservative, there is a
set A ⊂ Hb(G) of positive measure such that µ(A ∩ gA) > 0 for only finitely
many g ∈ G . Applying Lemma 4 below, we can find measurable B ⊂ A of
positive measure and a finite subgroup H ⊂ G such that the stabilizer Gx = {g ∈
G : g(x) = x} = H for every x ∈ B and that gB ∩ hB = ∅ if g, h ∈ G and
gH 6= hH . In view of Lemma 2, and possibly by making B smaller but still of
positive measure, we can assume that there is m > 0 such that, for each z ∈ B ,
|g′(z)| ≥ m for an infinite number of g ∈ G . It follows that we can find distinct
g11, . . . , g1n1

∈ G such that if

E1 = {z ∈ B : |g′

1i(z)| ≥ m for some i, 1 ≤ i ≤ n1},

then µ(E1) > 1

2
µ(B) . Since |g′(z)| ≥ m for an infinite number of g ’s, we can

continue and find for each k elements gk1, . . . , gknk
∈ G for i ≤ nk such that

gki = gpr only if k = p and i = r and such that if

Ek = {z ∈ B : |g′

ki(z)| ≥ m for some i, 1 ≤ i ≤ nk}
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then µ(Ek) > 1

2
µ(B) . Let Eki = {z ∈ B : |g′

ki(z) ≥ m} so that Ek =
⋃

i Eki .
We can now estimate when #H is the number of elements of H

∞ > µ

(

⋃

g∈G

gB

)

=
1

#H

∑

g∈G

µ(gB) ≥ 1

#H

∑

k,i

µ(gkiB)

≥ 1

#H

∑

k,i

µ(gkiEki) ≥
1

#H

∑

k,i

mµ(Eki) ≥
m

#H

∑

k

µ(Ek) = ∞

since µ(Ek) ≥ 1

2
µ(B) > 0. This contradiction implies B.

Proof of C. Suppose that G is conservative on C and that µ(C \Hb(G)) > 0.
We derive a contradiction from this.

By A, there is a fundamental set F for Sn \ Hb(G) . Replacing F by some
gF , g ∈ G , we can assume that µ(C ∩ F ) > 0. Let A = C ∩ F . By Lemma 3
below, there are B ⊂ A and a finite subgroup H ⊂ G such that µ(B) > 0 and
that g(x) 6= x if x ∈ B and g ∈ G \ H . However, if x ∈ B ∩ gB for some g ∈ G ,
then x must be fixed by g since B is a subset of the fundamental set. Hence g
is in the finite set H , contradicting the conservativity in C .

Proof of D. Suppose that G is dissipative on D and Z = Hb(G) ∩ D has
positive µ-measure. Since the action is dissipative on D and hence on Z , there
is a fundamental set F1 for Z . Then µ(F1) > 0 and hence by B, µ(F1 ∩ gF1) > 0
for infinitely many g ∈ G . Pick one such g1 and set F2 = F1 ∩ g1F1 . Find
then g2 6= g1 such that F3 = F2 ∩ g2F2 has positive µ-measure. Continuing
in this manner we find a sequence of distinct gi ∈ G and a decreasing sequence
F1 ⊃ F2 ⊃ · · · of sets of positive µ-measure such that µ(Fi ∩ giFi) > 0. Since
Fi are subsets of the fundamental set F1 , Fi ∩ giFi consists of fixed points of gi .
If gi is of infinite order, then gi fixes at most two points and neither of them is
an atom by our assumptions. It follows that each gi is elliptic and similarly, the
group Gi generated by g1, . . . , gi , all of whose elements fix points of Fi , must be
purely elliptic. Thus

⋃

i Gi would be a purely elliptic infinite group and this is
impossible by [6].

We still need to prove two lemmas. As above µ is a conformal measure such
that no parabolic or loxodromic fixed point is an atom of µ .

Lemma 3. Let A ⊂ Sn be measurable with positive µ-measure. Then there

are a finite subgroup H ⊂ G and measurable B ⊂ A of positive measure such

that g(x) = x for every x ∈ B and g ∈ H but that g(x) 6= x if g ∈ G \ H .

Proof. Remove first all fixed points of loxodromic or parabolic elements of G .
Since these points are not atoms of µ and their number is countable, still µ(A) > 0.
Thus if x ∈ A and g(x) = x for some g ∈ G , then g is elliptic.



Conservative action and the horospheric limit set 393

In the following XF = {x ∈ Sn : g(x) = x for all g ∈ F} when F ⊂
G is a subgroup. We claim that there is a maximal finite subgroup H ⊂ G
such that µ(XH ∩ A) > 0. If there is no such maximal group, we can find a
sequence H1 ⊂ H2 ⊂ · · · with proper inclusions of finite subgroups of G such that
µ(XHi

∩A) > 0. Now H =
⋃

i Hi is a purely elliptic discrete subgroup and hence,
by [6, Corollary C], H is finite. This is a contradiction and hence there is such a
maximal H .

Let B = XH ∩ A . If g ∈ G \ H and x ∈ B and g(x) = x , then the group F
generated by g and H is purely elliptic (since x is not a parabolic or loxodromic
fixed point) and hence F is finite as we saw. So µ(XF ∩ B) = 0 by maximality
of H . Removing a countable number of nullsets of this form, we obtain the set B
with the required properties.

Lemma 4. Suppose that A ⊂ Sn is of positive µ-measure and that µ(A ∩
gA) > 0 for only finitely many g ∈ G . Then there are a finite subgroup H ⊂ G
and a measurable subset B ⊂ A of positive µ-measure such that g(x) = x for all

x ∈ B and g ∈ H but that gB ∩ B = ∅ for all g ∈ G \ H .

Proof. Let B ⊂ A and H ⊂ G be the set and subgroup given by Lemma 3.
Since G is countable and each g ∈ G is absolutely continuous with respect to µ ,
we can obtain by removing a countable number of nullsets that µ(B ∩ gB) > 0 if
and only if B ∩ gB 6= ∅ whenever g ∈ G .

Let G0 = {g ∈ G : µ(B ∩ gB) > 0} = {g ∈ G : B ∩ gB 6= ∅} . It is a
finite union of cosets gH . Choose representatives g1, . . . , gk from each coset. Pick
x ∈ B such that µ(U) > 0 for every neighborhood U of x in B . Now gi(x) ,
i ≤ k , are all distinct and hence it is possible to choose a neighborhood U of x
such that giU are disjoint. If U ∩ gU 6= ∅ , then g ∈ G0 and hence gU = giU for
some i . This is possible only if g ∈ H and so U ∩ gU = ∅ for all g ∈ G\H . Thus
the lemma is true if U is substituted for B .

Remark. It may be useful to see to what extent the proof depends on special
properties of Möbius transformations. Proof of A works generally. Let X be a
separable metric space, µ a finite Borel regular measure on X and G a countable
group of absolutely continuous measurable bijections of X ; we need the Radon–
Nikodym derivative for g ∈ G , and hence we still need to assume, for instance,
that that the family of balls of X satisfy the assumptions of the Vitali covering
theorem [2, 2.8.16]. Interpret |g′(x)| as the Radon–Nikodym derivative of g and
the formula (4) gives a measurable set F0 containing a finite and nonzero number
from each orbit Gz when z ∈ D and D is the set of x ∈ X such that the Radon–
Nikodym derivative |g′(x)| exists for all g ∈ G and Em = {g ∈ G : |g′(x)| ≥ m}
is finite for every m > 0; this latter condition could even be relaxed to the form
that Em is finite and non-empty for some m > 0. The proof of A is valid and
extracts a measurable fundamental set from F0 .
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In contrast, to show that the action is conservative on X \ D and that the
division to conservative and dissipative parts is unique up to nullsets, requires in
addition two more specific assumptions: The set of points fixed by some g ∈ G of
infinite order is a nullset, and every subgroup of G consisting of elements of finite
order is finite. With these assumptions our proof is valid.

Appendix. We now give the promised proof that µ(G \ G0) = 0.
Let Z = G \ G0 . We will show that the action is dissipative on Z . It follows

by Theorem 1 that Z is up to a nullset a union of atoms at parabolic fixed points.
However, a parabolic fixed point is not a point of Z as one easily sees.

We use here the method in Sullivan’s paper [4]. Notice that if x ∈ Z , then
there is a unique horoball Bx at x such that Gz ∩ ∂Bx 6= ∅ but that Gz ∩ Bx

is non-empty and finite; here z is the reference point used to define G0 . Let
Γx = ∂Bx ∩ Gz which is finite and non-empty. If F ⊂ G is finite and non-empty,
set

DF = {x ∈ Z : Γx = F}.
The sets DF , as F varies over finite and non-empty subsets of G , form a countable
family of measurable, mutually disjoint sets covering Z . Obviously, g(DF ) = DgF

and hence it is possible to find a countable family F of finite and non-empty
subsets of G such that the countable union ∪{DF : F ∈ F} will be a measurable
fundamental set for Z .
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