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Abstract. Let D be a simply connected plane domain and let B be the unit disk. The
inner radius of D , σ(D) , is defined by

σ(D) = sup{a : a ≥ 0, ‖Sf‖D ≤ a implies f is univalent in D}.

Here Sf is the Schwarzian derivative of f , ̺D the hyperbolic density on D and ‖Sf‖D =
supz∈D |Sf (z)|̺−2

D (z) . Domains for which the value of σ(D) is known include disks, angular
sectors and regular polygons. All of the mentioned domains except non-convex angular sectors
have an interesting property in common, namely that σ(D) = 2 − ‖Sh‖B , where h maps B
conformally onto D . Because of the importance of this property, we say that D is a Nehari disk
if σ(D) = 2 − ‖Sh‖B is satisfied.

First we use the definition of a Nehari disk to give a new proof of the result on regular
n -sided polygons Pn due to D. Calvis. Next we study rectangles and equiangular hexagons. We
prove that if R is a rectangle whose ratio of longer over shorter side is bounded from above by a
specific constant (∼= 1.52346 . . .), then R is a Nehari disk and σ(R) = 1/2 = σ(P4) , and if H is
an equiangular hexagon whose sides form the sequence baabaa with b/a ≤ 1.67117 . . ., then H is
a Nehari disk and σ(H) = 8/9 = σ(P6) .

1. Introduction

The inner radius of a domain is a constant frequently used in the study of
univalence criteria for analytic functions on a domain. This paper is devoted to
studying some values and properties of the inner radius.

We use the symbol C to denote the complex plane and C to denote the
extended complex plane. Within C , we use the symbol B to refer to the unit disk
(B = {z : |z| < 1}) and U for the upper half-plane (U = {z : Im(z) > 0}). The
symbol D will denote a domain in C with at least two points on its boundary.

For z ∈ B , the hyperbolic density of B at z is the quantity ̺B(z) given
by ̺B(z) = 1/(1 − |z|2) . For a general simply connected domain D , hyperbolic
density ̺D is then defined in terms of ̺B and h: B → D where h maps B
conformally onto D (see [10, p. 5]).

Next we recall an operator on locally univalent meromorphic functions, known
as the Schwarzian derivative. If f is holomorphic in D ⊂ C , with f ′(z) 6= 0 for z ∈
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D , the Schwarzian derivative Sf , of f , is defined in D by Sf (z) = (f ′′/f ′)′(z)−
1
2
(f ′′/f ′)2(z) . This definition can easily be extended to include locally univalent

meromorphic functions. A detailed explanation of the extended definition can be
found in [10, p. 52]. To make our terminology more concise, locally univalent
meromorphic functions will be referred to simply as locally univalent functions.

An important fact about the Schwarzian derivative is that, in a simply con-
nected domain, it can be prescribed, i.e., given a holomorphic function ϕ in a
simply connected domain D , there is a locally univalent function f in D such
that Sf = ϕ (see [10, p. 53]).

In order to discuss a univalence criterion for f we introduce a norm for Sf .
Let D be a simply connected domain in C . For ϕ holomorphic in D , we define
the hyperbolic norm of ϕ with respect to D by ‖ϕ‖D = supz∈D |ϕ(z)|̺−2

D (z) .

In particular, we will be concerned with ‖Sf‖D = supz∈D |Sf (z)|̺−2
D (z) ,

where f is locally univalent on D . We list some properties of ‖Sf‖D (see [11,
p. 4]):

(i) ‖Sf‖D = 0 if and only if f is a Möbius transformation;

(ii) ‖Sf◦g‖D = ‖Sf − Sg−1‖g(D) when g is conformal on D ;
(iii) ‖Sf‖D = ‖Sf−1‖f(D) when f is conformal on D ;

(iv) ‖Sf‖D = ‖Sλ◦f◦µ‖µ−1(D) when λ and µ are Möbius transformations.

Suppose D is some fixed simply connected domain in C . If f is locally
univalent on D and ‖Sf‖D = 0, then f is Möbius and hence univalent in D .
Therefore it seems natural to consider constants a ≥ 0 for which ‖Sf‖D ≤ a
implies f is univalent on D . This brings us to the following definition of the inner
radius of a domain.

Suppose D is a simply connected domain in C . We define the inner radius

of D , σ(D) , by

σ(D) = sup{a : a ≥ 0, ‖Sf‖D ≤ a implies f is univalent in D}.

The sup in the definition of σ(D) can be replaced by max (see [10, p. 118]).
Moreover, property (iv) implies that images of D under Möbius transformations
have the same inner radius as D .

Nehari [12] and Hille [7] proved that σ(B) = 2. Later, Lehtinen showed in
[8] that σ(D) ≤ 2 for all simply connected domains in C with equality occurring
only when D is a disk in C (i.e., an image of B under a Möbius transformation).
In view of these results, the question that arises naturally is whether there are
any domains D with σ(D) = 0. This question was answered by Ahlfors [1] and
Gehring [5], who proved that when D is a simply connected domain, σ(D) > 0 if
and only if D is quasidisk.

Finally, we list some known values of σ(D) . Let S denote the parallel strip
defined as the image of U under h(z) = log z . Since S is not a Jordan domain, it
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is not a quasidisk. Hence σ(S) = 0. Lehto and Lehtinen have calculated the inner
radii of angular sectors in [9] and [8]. If Ak = {z : z ∈ C, 0 < arg z < kπ} then,

σ(Ak) =

{

2k2 if 0 < k ≤ 1 ,
4k − 2k2 if 1 < k < 2

for 0 < k < 2. Another class of domains for which the inner radii have been
calculated are regular polygons. Calvis [3], proved that σ(Pn) = 2(n − 2)2/n2

where Pn is an open regular n -sided polygon.
The section that follows will be devoted to demonstrating some elementary

properties of σ(D) .

2. Elementary properties of σ(D)

We begin by stating a simple lemma which gives a natural lower bound for
the inner radius of a domain.

Lemma 2.1. If D is a simply connected domain and if h maps B conformally

onto D , then σ(D) ≥ 2 − ‖Sh‖B .

The proof of this lemma is elementary and it follows from the definitions
and properties given in the previous section. It will be used to calculate a lower
bound for σ(D) , with U replacing B whenever it is more convenient (the lower
bound remains unaffected by this). Actually, it turns out that the lower bound
2−‖Sh‖B is equal to σ(D) in the case of many domains for which σ(D) is already
known—disks, parallel strips, convex angular sectors and regular polygons. In the
case of disks this is trivial. For convex angular sectors, Lehto [9] showed that
‖Sh‖U = 2 − 2k2 when 0 < k ≤ 1 where h(z) = zk , which maps U conformally
onto Ak and thus σ(Ak) = 2−‖Sh‖U . Also, for the parallel strip S , h(z) = log z
maps U onto S , so Sh(z) = 1/(2z2) and consequently ‖Sh‖U = 2, showing that
σ(S) = 2−‖Sh‖U . The case of regular polygons will be treated in the next section,
where we give a new proof of Calvis’s result [3].

The notion of the lower bound in Lemma 2.1 being equal to σ(D) leads us
to the definition of a Nehari disk. A simply connected domain D in C is called a
Nehari disk if

σ(D) = 2 − ‖Sh‖B,

where h maps B conformally onto D . We remark that disks, parallel strips,
convex angular sectors and regular polygons are all Nehari disks.

Of course, there exist many simply connected domains which are not Nehari
disks. From the calculations in Lehto [9] and Lehtinen [8], one can easily see that
the angular sectors Ak with 1 < k < 2 are not Nehari disks. We provide more
results on the nature of Nehari disks in [11]. In the next sections, we will show
that rectangles and equiangular hexagons with certain restrictions on the ratio of
the lengths of their sides furnish additional Nehari disks.
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Next, we examine how σ(D) is affected by convergence of domains. We derive
a relation between the inner radii of Dn and D when {Dn} converges to D in the
sense of Carathéodory kernel convergence (for the definition of this convergence
see [13, p. 13]). The following theorem describes this relation and its corollary will
be used to prove our main results.

Theorem 2.2. If Dn and D are simply connected domains and if Dn → D
with respect to w0 , then

(2.1) σ(D) ≥ lim sup
n→∞

σ(Dn).

Proof. Without loss of generality, we may assume that w0 is a finite point.
For n ∈ N , let gn and g map B conformally onto Dn and D , normalized so that
gn(0) = w0 , g′

n(0) > 0 and g(0) = w0 , g′(0) > 0. By the Carathéodory kernel
theorem, gn → g locally uniformly in B (see [13, p. 14]).

Let F be a locally univalent function in D with ‖SF ‖D < lim supn→∞
σ(Dn) .

We will show that F is univalent in D . Let f = F ◦ g in B . Then f is locally
univalent in B and ‖SF ‖D = ‖Sf◦g−1‖D = ‖Sf −Sg‖B . From a result mentioned
in the introduction (see [10, p. 53]) it is clear that for every n ∈ N , we can choose
fn locally univalent in B such that

(2.2) Sfn
= Sf − Sg + Sgn

in B . Then

‖Sfn◦g−1
n

‖Dn
= ‖Sfn

− Sgn
‖B = ‖Sf − Sg‖B < lim sup

n→∞

σ(Dn)

for n ∈ N .
Now by passing to a subsequence and relabeling, we can find n0 ∈ N such that

‖Sfn◦g−1
n

‖Dn
< σ(Dn) for every n ≥ n0 . Hence, fn ◦ g−1

n is univalent in Dn for
n ≥ n0 and therefore fn is univalent in B for n ≥ n0 . Next, by replacing fn with
µn ◦ fn for suitable Möbius transformations µn and passing to a subsequence, we
can assume that fn → ϕ locally uniformly in B , where ϕ is a univalent mapping
in B . As the Schwarzian derivative is unaffected by this type of substitution,
Sfn

→ Sϕ in B and, from (2.2), Sfn
→ Sf in B . Thus, Sf = Sϕ in B and

f = µ ◦ ϕ for some Möbius transformation µ . Since ϕ is univalent in B , f must
be univalent in B . As F = f ◦ g−1 , F is univalent in D , completing the proof.

It is not difficult to provide examples which show that a strict inequality can
occur in (2.1). If D = U and {Dn} is a sequence of open squares exhausting
U , then σ(D) = 2 and σ(Dn) = 1

2 for all n ∈ N . Consequently, σ(D) >
limn→∞ σ(Dn) .

There is a simple consequence of Theorem 2.2 that will prove to be very useful
in the next sections.
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Corollary 2.3. Suppose P is a convex n -sided polygon. If P has kπ as an

interior angle, then σ(P ) ≤ 2k2 .

Proof. As P is convex we know that 0 < k < 1 and hence σ(Ak) = 2k2 .
Now Ak can trivially be exhausted by an increasing sequence of domains—images
of P under a succession of Möbius transformations (which consequently converge
to Ak ). Thus, from Theorem 2.2 we conclude that σ(P ) ≤ 2k2 .

We established a much broader generalization of Corollary 2.3 in [11, p. 69–
72].

The general problem we are concerned with is as follows: Given a simply
connected domain D in C , how does one calculate σ(D)?

A useful lower bound for σ(D) is the one given in Lemma 2.1, σ(D) ≥
2 − ‖Sh‖B , where h: B → D is the Riemann mapping. To get an upper bound
on σ(D) one chooses a domain D′ whose inner radius is known (such as an
angular sector), and shows that a sequence of images of D under suitable Möbius
transformations converges to D′ . In this case, by Theorem 2.2, σ(D′) is an upper
bound for σ(D) . If D is a convex polygon, Corollary 2.3 can be used directly to
get the same upper bound. If the described upper and lower bounds are equal, we
will have found the value of σ(D) and will have demonstrated that D is a Nehari
disk.

In the following sections we apply the above described method to regular
polygons as well as rectangles and equiangular hexagons with restricted ratios of
sides.

3. Regular polygons

Here, Lemma 2.1 and Corollary 2.3 are used to give a new proof and a refine-
ment of a theorem due to Calvis. We restate the theorem, adding the notion of a
Nehari disk to it.

Theorem 3.1. Suppose Pn is an open regular n -sided polygon. Then

σ(Pn) = 2
(n − 2

n

)2

.

Moreover, Pn is a Nehari disk.

Proof. Since σ(Pn) is invariant under Möbius transformations, we can assume
that Pn is the image of B under the Schwarz–Christoffel transformation gn(w) =
∫ w

0
(1 − zn)−2/n dz . An elementary calculation shows that

(3.1) Sgn
(w) =

2(n − 1)wn−2

(1 − wn)2
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for w ∈ B . Now we will show that

sup
w∈B

∣

∣Sgn
(w)(1 − |w|2)2

∣

∣ =
8(n − 1)

n2
.

By (3.1),

lim
r→1

∣

∣Sgn
(r)(1 − r2)2

∣

∣ = lim
r→1

(2(n − 1)rn−2

(1 − rn)2
· (1 − r2)2

)

=
8(n − 1)

n2
,

so

(3.2) sup
w∈B

∣

∣Sgn
(w)(1 − |w|2)2

∣

∣ ≥
8(n − 1)

n2
.

Next,

1

|w|
− |w| = 2 sinh

(

log
1

|w|

)

≤ 2 ·
2

n
sinh

(n

2
log

1

|w|

)

≤
2

n

( 1

|w|n/2
− |w|n/2

)

,

which implies

(3.3)
|w|n−2(1 − |w|2)2

(1 − |w|n)2
≤

4

n2

for all w ∈ B .
Then (3.1) and (3.3) yield

(3.4)
∣

∣Sgn
(w)(1 − |w|2)2

∣

∣ =
∣

∣

∣

2(n − 1)wn−2

(1 − wn)2
(1 − |w|2)2

∣

∣

∣
≤

8(n − 1)

n2

for all w ∈ B . Hence ‖Sgn
‖B = 8(n − 1)/n2 by (3.2) and (3.4).

From Lemma 2.1, we obtain σ(Pn) ≥ 2 − ‖Sgn
‖B = 2(n − 2)2/n2 . From

Corollary 2.3, we have σ(Pn) ≤ 2(n − 2)2/n2 . Thus, σ(Pn) = 2(n − 2)2/n2 and
Pn is a Nehari disk.

4. Rectangular domains

From Calvis [3] we know that σ(P4) = 1
2
, where P4 is an open square. We

prove here that if we stretch two parallel sides of P4 (thus obtaining a rectangle)
up to a certain limit, the inner radius remains unchanged. It also turns out that
all rectangles obtained in this way are Nehari disks.

For an open rectangle R , let r(R) denote the ratio of the length of R ’s longer
side to the length of its shorter side. We can state:
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Theorem 4.1. Suppose R is an open rectangle such that 1 ≤ r(R) ≤ c ,

where c = 1.52346 . . . . Then σ(R) = 1
2

= σ(P4) and R is a Nehari disk.

e
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Figure 1. Schwarz–Christoffel mapping of B onto Rα

To obtain this result we will study Schwarz–Christoffel transformations map-
ping B onto open rectangles. See, for example, [2, pp. 228–233] for details. Let

(4.1) Fα(w) =

∫ w

0

1
√

(z2 − e2iα)(z2 − e−2iα)
dz,

where 0 < α ≤ 1
4π . For 0 < α ≤ 1

4π , let Rα be the image of B under Fα .
(See Figure 1.) Then, Rα is an open rectangle centered at Fα(0) whose vertices
coincide with the images of eiα , −eiα , e−iα and −e−iα under Fα . The ratio
r(Rα) is a continuous monotone function of α which maps the interval (0, 1

4
π]

bijectively onto the interval [1,∞) . When α = 1
4π , we have r(Rα) = 1 and

Rα is an open square; as α approaches 0, r(Rα) approaches ∞ . Thus for any
rectangle (up to a similarity transformation), there is a unique α , 0 < α ≤ 1

4π
corresponding to it.

We can restate Theorem 4.1 in a form that will facilitate its proof.

Theorem 4.2. If 1
2 arccos( 3

4 ) ≤ α ≤ 1
4π , then σ(Rα) = 1

2 and Rα is a

Nehari disk.

Our approach to proving Theorem 4.2 (and verifying that Theorem 4.1 is
equivalent to it) is exactly the one outlined in general. Our first goal is to cal-
culate ‖SFα

‖B —we show that ‖SFα
‖B = 3

2
when 1

2
arccos( 3

4
) ≤ α ≤ 1

4
π . The

calculation, as will be apparent later, reduces to showing that fourth degree poly-
nomials of a certain type take only nonpositive values on the nonnegative reals.
Our next goal is to verify this preliminary fact.

We begin by stating an elementary lemma.

Lemma 4.3. Let f(y; t, u) = C4y
4 +C3y

3 +C2y
2 +C1y +C0 , where for real
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t and u

C4 = 16u2 − 9,

C3 = 8(−9 − 3tu + 8u2 + 4tu3),

C2 = 8(u − t)(9t − 21u + 10tu2 + 2u3),

C1 = 288(u − t)2(tu − 1),

C0 = −144(u − t)4.

Then, f(y; t, u) ≤ 0 whenever −1 ≤ t ≤ 1 , 0 ≤ u ≤ 3
4 and 0 ≤ y .

Proof. The proof rests on three observations. In order to simplify the presen-
tation, we do not provide the computational details here, but the interested reader
can find them in the appendix. We assert:

(i) C4, C3, C1, C0 ≤ 0 for −1 ≤ t ≤ 1 and 0 ≤ u ≤ 3
4 ;

(ii) C2 ≤ 0 for −1 ≤ t ≤ u and 0 ≤ u ≤ 3
4 ;

(iii) D = C2
2 − 4C3C1 ≤ 0 for u ≤ t ≤ 1 and 0 ≤ u ≤ 3

4
.

Now we are ready to complete the proof of the lemma. From (i) and (ii)
we conclude that C0, C1, . . . , C4 ≤ 0 when −1 ≤ t ≤ u and 0 ≤ u ≤ 3

4 . Thus
f(y; t, u) ≤ 0 for −1 ≤ t ≤ u , 0 ≤ u ≤ 3

4 and y ≥ 0.

From (i) and (iii) we get C3y
2 +C2y +C1 ≤ 0. Consequently, C3y

3 +C2y
2 +

C1y ≤ 0 and C4, C0 ≤ 0, which implies that f(y; t, u) ≤ 0 for u ≤ t ≤ 1,
0 ≤ u ≤ 3

4
and y ≥ 0. Thus f(y; t, u) ≤ 0 for −1 ≤ t ≤ 1, 0 ≤ u ≤ 3

4
and y ≥ 0,

so the lemma is proved.

We proceed to the proofs of Theorems 4.2 and 4.1.

Proof of Theorem 4.2. Suppose α , 1
2 arccos( 3

4 ) ≤ α ≤ 1
4π , is arbitrarily fixed.

We will verify that ‖SFα
‖B ≤ 3

2 . From (4.1), after a tedious but elementary
calculation we get

(4.2)

SFα
(w) =

(

F ′′

α (w)

F ′
α(w)

)′

−
1

2

(

F ′′

α (w)

F ′
α(w)

)2

= 2
cos(2α)w4 −

(

sin2(2α) + 2
)

w2 + cos(2α)
(

w4 − 2 cos(2α)w2 + 1
)2

for w ∈ B .

Now fix w = reiθ where 0 ≤ r < 1 and 0 ≤ θ < 2π . If r = 0, using (4.2) we
get

(4.3) |SFα
(w)|(1 − |w|2)2 = 2| cos(2α)| ≤ 3

2
,
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since 0 ≤ cos(2α) ≤ 3
4 whenever 1

2 arccos( 3
4 ) ≤ α ≤ 1

4π . Suppose 0 < r < 1.
Then (4.2) yields

SFα
(w) =

2

w2

cos(2α)(w2 + w−2) −
(

sin2(2α) + 2
)

(

w2 + w−2 − 2 cos(2α)
)2

=
2 cos(2α)

w2

w2 + w−2 − 3 sec(2α) + cos(2α)
(

w2 + w−2 − 2 cos(2α)
)2 ,

and hence
(4.4)

|SFα
(w)|(1− |w|2)2 = 2 cos(2α)

(1 − |w|2)2

|w|2
|w2 + w−2 − 3 sec(2α) + cos(2α)|

|w2 + w−2 − 2 cos(2α)|2
.

Noting that

w2 + w−2 =
(

r2 +
1

r2

)

cos(2θ) + i
(

r2 −
1

r2

)

sin(2θ)

and setting y = (r− r−1)2 , u = cos(2α) and t = cos(2θ) , one readily verifies that

|w2 + w−2 − 3 sec(2α) + cos(2α)|2 =
(

(y + 2)t + u −
3

u

)2

+ y(y + 4)(1 − t2)

= h(y; t, u)

and

|w2 + w−2 − 2 cos(2α)|2 =
(

ty + 2(t − u)
)2

+ y(y + 4)(1 − t2) = g(y; t, u).

From (4.4) we see that

|SFα
(w)|(1− |w|2)2 = 2uy

√

h(y; t, u)

g(y; t, u)
.

Now |SFα
(w)|(1 − |w|2)2 ≤ 3

2 whenever

f(y; t, u) = 16u2y2 · h(y; t, u)− 9g2(y; t, u) ≤ 0.

By expanding f(y; t, u) as a polynomial in y we see that

f(y; t, u) = C4y
4 + C3y

3 + C2y
2 + C1y + C0

where Cj , for j = 0, 1, . . . , 4, are as in Lemma 4.3. Since y = (r − r−1)2 ≥ 0,
−1 ≤ t = cos(2θ) ≤ 1 and 0 ≤ u = cos(2α) ≤ 3

4
, we conclude from Lemma 4.3

that f(y; t, u) ≤ 0 for w ∈ B \ {0} . Consequently,

|SFα
(w)|(1 − |w|2)2 ≤ 3

2
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for all w ∈ B \ {0} . From this fact and (4.3) it follows that

(4.5) ‖SFα
‖B ≤ 3

2
.

Now, from (4.5), Lemma 2.1 and Corollary 2.3 it follows that

1
2 ≤ 2 − ‖SFα

‖B ≤ σ(Rα) ≤ 1
2

and hence
σ(Rα) = 1

2 , ‖SFα
‖B = 3

2 ;

and Rα is a Nehari disk.

We remark that it is easy to demonstrate that |SFα
(w)|(1−|w|2)2 → ‖SFα

‖B

as w → ∂B along the four rays corresponding to the angles α , π − α , π + α and
2π − α , under the assumptions of Theorem 4.2.

At the beginning of this section, we mentioned the fact that the mapping
α → r(Rα) is a monotone, continuous bijection between the intervals (0, 1

4π] and
[1,∞) . Since the inner radius is invariant with respect to Möbius transformations,
Theorem 4.1 is proved except for establishing the estimate for c . The constant c
in question can be written as a quotient of elliptic type integrals and, in this way,
estimates for its value can be given. Now we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. From the above observations, it is clear that all that
is left to do is to calculate r(Rα) for α = 1

2 arccos( 3
4) . From the definition of Fα ,

for 0 < α ≤ 1
4π , r(Rα) = Lα/lα where

Lα =

∣

∣

∣

∣

∣

∫ ei(π−α)

eiα

dw
√

w4 − 2 cos(2α)w2 + 1

∣

∣

∣

∣

∣

and

lα =

∣

∣

∣

∣

∣

∫ eiα

e−iα

dw
√

w4 − 2 cos(2α)w2 + 1

∣

∣

∣

∣

∣

.

From the above we get

(4.6)

Lα =

∣

∣

∣

∣

∣

∫ π−α

α

ieiθ dθ
√

e4iθ − 2 cos(2α)e2iθ + 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π−α

α

i dθ
√

e2iθ + e−2iθ − 2 cos(2α)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π−α

α

dθ
√

2
(

cos(2θ) − cos(2α)
)

∣

∣

∣

∣

∣
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and, in the same way,

(4.7) lα =

∣

∣

∣

∣

∣

∫ α

−α

dθ
√

2
(

cos(2θ) − cos(2α)
)

∣

∣

∣

∣

∣

for 0 < α ≤ 1
4π .

The integrals in (4.6) and (4.7) are (improper) integrals of continuous real-
valued functions, so consultation with a standard table of integrals or a symbolic
mathematics software package can provide an estimate. We obtained

r(Rα) = 1.52346 . . .

for α = 1
2 arccos( 3

4 ) . This completes the proof of the theorem.

Finally, what remains unsettled is the behavior of the inner radius of a rect-
angle R with r(R) > c (or analogously of σ(Rα) when 0 < α < 1

2
arccos( 3

4
)).

However, the bound α = 1
2 arccos( 3

4 ) is natural, since from (4.3) it is apparent
that

|SFα
(0)|(1− |0|2)2 ≤ 3

2

exactly when 1
2 arccos( 3

4) ≤ α ≤ 1
4π , with equality occurring for α = 1

2 arccos( 3
4 ) .

This means that for 0 < α < 1
2

arccos( 3
4
) ,

‖SFα
‖B ≥ 2 cos(2α) > 3

2 ,

so the argument from the proof of Theorem 4.2 cannot be used. It is clear that
a parallel strip S can be exhausted by an increasing sequence of rectangles with
ratios of sides approaching infinity. In view of Theorem 2.2, this means that the
inner radii of rectangles R approach 0 as r(R) approach infinity (i.e., σ(Rα) → 0
as α → 0). Aside from this fact, the behavior of σ(Rα) for α in the interval
0 < α < 1

2 arccos( 3
4 ) remains unclear.

In the following section, we develop a completely analogous result for equian-
gular hexagons.

5. Hexagonal domains

If P6 denotes an open, regular hexagon, from Calvis [3] we know that σ(P6) =
8
9 . Here, we will study equiangular hexagons whose sides have lengths forming the
sequence baabaa for some positive numbers a, b with b ≥ a . We will establish a
result about the inner radii of such hexagons, analogous to the result shown for
rectangles. In fact, we show that, if we take a regular hexagon and stretch two
of its parallel sides (thus obtaining a hexagon of the above description) up to a
certain limit, the inner radius remains unchanged. It again turns out that such
hexagons are Nehari disks.

Before stating our result, we introduce some notation to simplify matters.
We will say that an equiangular hexagon H has the side sequence baabaa , if the
lengths of its sides form the sequence baabaa for some a, b where b ≥ a . In this
case we set r(H) = b/a .
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Theorem 5.1. Suppose H is an open equiangular hexagon with side sequence

baabaa , such that 1 ≤ r(H) ≤ c , where c = 1.67117 . . . . Then σ(H) = 8
9

= σ(P6)
and H is a Nehari disk.

e

e
−ia

1−1

−e

−e

−ia

1−1

−e
−ia

Fa
aa

a

FF
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)( ( )

( )

ia

aF ( )ia

aF ( )iae

aF (e−ia )

0 0aF ( )

−e

ia

Figure 2. Schwarz–Christoffel mapping of B onto Hα

The hexagons under discussion here are images of B under Schwarz–Christoffel
transformations of the form

(5.1) Fα(w) =

∫ w

0

1
(

(z2 − e2iα)(z2 − e−2iα)(z2 − 1)
)1/3

dz,

where 0 < α ≤ 1
3π . For each α , 0 < α ≤ 1

3π , Hα = Fα(B) is an equiangular
hexagon with side sequence baabaa for some b ≥ a > 0, centered at Fα(0), whose
vertices are the images of ±1, ±eiα and ±e−iα under Fα . (See Figure 2.) It
is easy to see that the mapping α → r(Hα) describes a continuous, monotone
bijection from (0, 1

3
π] onto [1,∞) . When α = 1

3
π , we have r(Hα) = 1 and Hα

is a regular hexagon, while as α approaches 0, r(Hα) approaches infinity. Hence
for each equiangular hexagon with side sequence baabaa for some b ≥ a > 1 (up
to a similarity transformation) there is a unique α , 0 < α ≤ 1

3π corresponding to
it.

As we did in the case of Theorem 4.1, we restate Theorem 5.1 in a way that
enables us to use Schwarz–Christoffel transformations in the proof.

Theorem 5.2. If 1
2 arccos( 1

3 ) ≤ α ≤ 1
3π , then σ(Hα) = 8

9 and Hα is a

Nehari disk.

The proof of Theorem 5.2 (and afterwards of Theorem 5.1) is analogous to
the proof of the corresponding results on rectangles. We show that ‖SFα

‖B = 10
9

when 1
2 arccos( 1

3) ≤ α ≤ 1
3π . The proof of this, again, reduces to showing that

sixth degree polynomials of a certain type take only nonpositive values on the
nonnegative reals.

We record the specific information required in a lemma, the counterpart of
Lemma 4.3. Its elementary but rather lengthy proof is omitted. (The proof can
be found in [11].)
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Lemma 5.3. Let f(y; t, u) = C6y
6 +C5y

5 +C4y
4 +C3y

3 +C2y
2 +C1y +C0 ,

where for real t and u

C6 = (3u + 4)(3u − 1),

C5 = (−40u + 1 − 72u2 + 24u3)t + (72u + 72u2 − 57),

C4 = (63 + 88u + 24u3 − 64u2)t2 + (−40u − 432u2 + 106 + 144u3)t

+ (16u4 − 124u3 + 260u + 244u2 − 285),

C3 = (96u3 + 104 + 112u2 + 40u)t3 + (−448u − 656u2 − 48 + 96u3)t2

+ (16u4 + 584u − 136u2 + 304u3 + 288)t

+ (−584 + 64u4 + 464u + 200u2 − 496u3),

C2 = 8(t − 1)(u − t)
(

(32u2 + 82u + 33)t2 + (8u3 − 114u2 − 95u − 93)t

+ (12u3 + 2u2 + 113u + 20)
)

,

C1 = 400(t − 1)(u − t)2(u2 + 2ut2 − 4ut + t2 − 2t + 2),

C0 = −400(t − 1)2(u − t)4.

Then, f(y; t, u) ≤ 0 whenever −1 ≤ t ≤ 1 , −1
2 ≤ u ≤ 1

3 and 0 ≤ y .

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. Suppose α , 1
2 arccos( 1

3 ) ≤ α ≤ 1
3π , is arbitrarily fixed.

We will verify that ‖SFα
‖B ≤ 10

9
. From (5.1), we have that

F ′′

α (w)

F ′
α(w)

= −
2

3
·
w

(

3w4 − 2w2 − 4w2 cos(2α) + 2 cos(2α) + 1
)

(w2 − e2iα)(w2 − e−2iα)(w2 − 1)

for w ∈ B . After some simplification, we obtain

(5.2)

SFα
(w) =

(

F ′′

α (w)

F ′
α(w)

′
)

−
1

2

(

F ′′

α (w)

F ′
α(w)

)2

=
2

9

[

(

3 + 6 cos(2α)
)

(w8 + 1)
(

w4 − 2 cos(2α)w2 + 1
)2

(w2 − 1)2

]

+
2

9

[

(

8 cos2(2α) − 28 cos(2α) − 16
)

(w6 + w2)
(

w4 − 2 cos(2α)w2 + 1
)2

(w2 − 1)2

]

+
2

9

[

(

46 + 4 cos2(2α) + 4 cos(2α)
)

w4

(

w4 − 2 cos(2α)w2 + 1
)2

(w2 − 1)2

]

for w ∈ B .
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Now fix w = reiθ where 0 ≤ r < 1 and 0 ≤ θ < 2π . If r = 0, using (5.2) we
get

(5.3) |SFα
(w)|(1 − |w|2)2 = 2

3
|1 + 2 cos(2α)| ≤ 10

9

since −1
2
≤ cos(2α) ≤ 1

3
whenever 1

2
arccos( 1

3
) ≤ α ≤ 1

3
π . Suppose 0 < r < 1.

Then, with the aid of (5.2), we obtain
(5.4)

|SFα
(w)|(1 − |w|2)2 =

2

9
·
(1 − |w|2)2

|w|2
·

|Gα(w)|

|w2 + w−2 − 2 cos(2α)|2|w2 + w−2 − 2|
,

where
Gα(w) =

(

3 + 6 cos(2α)
)(

(w2 + w−2)2 − 2
)

+
(

8 cos2(2α) − 28 cos(2α) − 16
)

(w2 + w−2)

+
(

46 + 4 cos2(2α) + 4 cos(2α)
)

.

Setting y = (r − r−1)2 , u = cos(2α) and t = cos(2θ) , and noting that

w2 + w−2 =
(

r2 +
1

r2

)

cos(2θ) + i
(

r2 −
1

r2

)

sin(2θ),

it is not difficult to see that there are polynomials h and g (in y , t , and u) such
that h(y; t, u) = |Gα(w)|2 and

g(y; t, u) = |w2 + w−2 − 2 cos(2α)|4|w2 + w−2 − 2|2.

(The exact expressions are lengthy so we avoid writing them explicitly.) From (5.4),
we get

|SFα
(w)|(1 − |w|2)2 =

2

9
y

√

h(y; t, u)

g(y; t, u)
,

so |SFα
(w)|(1− |w|2)2 ≤ 10

9 when 4 · 81y2h(y; t, u)− 100 · 81g(y; t, u) ≤ 0. Setting
f(y; t, u) =

(

y2h(y; t, u)− 25g(y; t, u)
)

/4 we have that

|SFα
(w)|(1− |w|2)2 ≤ 10

9

whenever f(y; t, u) ≤ 0 . We expand f(y; t, u) as a polynomial in y (we used the
Maple software package), obtaining

f(y; t, u) = C6y
6 + C5y

5 + C4y
4 + C3y

3 + C2y
2 + C1y + C0

with Cj , for j = 0, 1, . . . , 6, as in Lemma 5.3. Since y = (r − r−1)2 ≥ 0,
−1 ≤ t = cos(2θ) ≤ 1 and −1

2 ≤ u = cos(2α) ≤ 1
2 , we conclude from Lemma 5.3

that f(y; t, u) ≤ 0 when w ∈ B \ {0} . Consequently,

|SFα
(w)|(1− |w|2)2 ≤ 10

9
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for all w ∈ B \ {0} . From the above and (5.3) it follows that

(5.5) ‖SFα
‖B ≤ 10

9
.

Now from (5.5), Lemma 2.1 and Corollary 2.3 it follows that

8
9 ≤ 2 − ‖SFα

‖B ≤ σ(Hα) ≤ 8
9

and hence
σ(Hα) = 8

9 , ‖SFα
‖B = 10

9 ;

and Hα is a Nehari disk.

We remark that it is simple to verify that, under the assumptions of Theo-
rem 5.2, |SFα

(w)|(1− |w|2)2 approaches the value 10
9

as w approaches ∂B along
the rays corresponding to the angles 0, α , π − α , π , π + α and 2π − α .

At the beginning of this section, we mentioned the fact that the mapping
α → r(Hα) is a monotone, continuous bijection between the intervals (0, 1

3π] and
[1,∞) . Since the inner radius is invariant with respect to Möbius transformations,
Theorem 5.1 is proved except for establishing the estimate for c . The last step of
the proof mimics the last part of the proof of Theorem 4.1.

Proof of Theorem 5.1. From the above observations, it is clear that all we
need to do is calculate r(Hα) for α = 1

2 arccos( 1
3 ) . From the definition of Fα , for

0 < α ≤ 1
3
π , r(Hα) = Lα/lα where

Lα =

∣

∣

∣

∣

∣

∫ ei(π−α)

eiα

dw
((

w4 − 2 cos(2α)w2 + 1
)

(w2 − 1)
)1/3

∣

∣

∣

∣

∣

and

lα =

∣

∣

∣

∣

∣

∫ eiα

1

dw
((

w4 − 2 cos(2α)w2 + 1
)

(w2 − 1)
)1/3

∣

∣

∣

∣

∣

.

Now, from the above,

(5.6)

Lα =

∣

∣

∣

∣

∣

∫ π−α

α

ieiθ dθ
((

e4iθ − 2 cos(2α)e2iθ + 1
)

(e2iθ − 1)
)1/3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π−α

α

i dθ
((

e2iθ + e−2iθ − 2 cos(2α)
)

(eiθ − e−iθ)
)1/3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π−α

α

i dθ
((

2 cos(2θ) − 2 cos(2α)
)

(2i sin(θ))
)1/3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π−α

α

dθ
(

4
(

cos(2θ) − cos(2α)
)

sin(θ)
)1/3

∣

∣

∣

∣

∣
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and, in the same way,

(5.7) lα =

∣

∣

∣

∣

∫ α

0

dθ
(

4
(

cos(2θ) − cos(2α)
)

sin(θ)
)13

∣

∣

∣

∣

for 0 < α < 1
3π .

Referring to a standard table of integrals or using a symbolic mathematics
software package, one arrives at

r(Hα) = 1.67117 . . .

for α = 1
2 arccos( 1

3 ) .

There remains the question of what happens to the inner radius of an equian-
gular hexagon H with side sequence baabaa (b ≥ a > 0) for which r(H) > c =
1.67117 . . . (or analogously σ(Hα) when 0 < α < 1

2 arccos( 1
3 )). Proceeding along

lines similar to those in our treatment of rectangles, one sees that

‖SFα
‖B ≥ 2

3

(

1 + 2 cos(2α)
)

> 10
9

in this case, so the argument from the proof of Theorem 5.1 cannot be used.
As with rectangles, it is clear that the parallel strip S can be exhausted by an
increasing sequence of equiangular hexagons H with side sequence baabaa , with
r(H) approaching infinity. In view of Theorem 2.2, this means that the inner radii
of these hexagons must approach 0 as r(H) approaches infinity (i.e., σ(Hα) → 0
as α → 0). Aside from this fact, the behavior of σ(Hα) remains unclear for
α ∈

(

0, 1
2

arccos( 1
3
)
)

.
One can also ask how the inner radius is affected if we shrink two parallel

sides of a regular hexagon (instead of stretching them). In this case, we have
that α ∈

[

1
3π, 1

2π
]

and consequently (5.3) still holds for all hexagons obtained this
way. However, a rhombus with angles 2

3π , 1
3π can be exhausted by an increasing

sequence of these hexagons (with α → 1
2π ), which means that the inner radius

becomes smaller than 8
9 after a certain amount of shrinking is done. We conclude

that, unlike the stretching case, nothing significant changes at the origin as α
approaches 1

2π , which makes this case more difficult to explore.

6. Appendix

Here we furnish the proofs of assertions (i), (ii) and (iii) from the proof of
Lemma 4.3. Recall that

C4 = C4(t, u) = 16u2 − 9,

C3 = C3(t, u) = 8(−9 − 3tu + 8u2 + 4tu3),

C2 = C2(t, u) = 8(u − t)(9t − 21u + 10tu2 + 2u3),

C1 = C1(t, u) = 288(u − t)2(tu − 1),

C0 = C0(t, u) = −144(u − t)4.



Univalence criteria for classes of rectangles and equiangular hexagons 423

Proof of (i). We see first that C4(t, u) ≤ 0 since 0 ≤ u ≤ 3
4 , C1(t, u) ≤ 0

since |tu| ≤ 3
4
, and C0(t, u) ≤ 0 for all u and t in the specified range.

Next, C3(t, u) is linear (and hence monotone) in t with

C3(−1, u) = −32(u + 1)(u − 3
2
)2 < 0

and
C3(1, u) = 32(u − 1)(u + 3

2 )2 < 0

since 0 ≤ u ≤ 1. Hence C3(t, u) < 0 for −1 ≤ t ≤ 1 and 0 ≤ u ≤ 3
4 .

Proof of (ii). If −1 ≤ t ≤ u and 0 ≤ u ≤ 3
4 , then

C2(t, u) = −8(u − t)
(

9(u − t) + 10u(1 − ut) + 2u(1 − u2)
)

≤ 0

is obvious.
Proof of (iii). The proof of this step is somewhat lengthy. The factorization

that follows was generated by using the Maple software package.

D(t, u) =
(

C2(t, u)
)2

− 4C3(t, u)C1(t, u)

=
(

8(u − t)(9t − 21u + 10tu2 + 2u3)
)2

− 9216(u − t)2(tu − 1)(−9 − 3tu + 8u2 + 4tu3)

= 64(u − t)2
(

a2(u)t2 + a1(u)t + a0(u)
)

= 64(u − t)2F (t, u)

where
a2(u) = −476u4 + 612u2 + 81,

a1(u) = 40u5 − 960u3 + 486u,

a0(u) = 4u6 − 84u4 + 1593u2 − 1296,

and
F (t, u) = a2(u)t2 + a1(u)t + a0(u).

Now, for 0 ≤ u ≤ 3
4 ,

a′

2(u) = −1904u3 + 1224u2 ≥ 0

which implies that a2(u) ≤ 275. Similarly,

a′

1(u) = 200u4 − 2880u2 + 486

has exactly one zero for u in [0, 3
4 ] , which implies a1(u) ≤ 134. Again, for

0 ≤ u ≤ 3
4
,

a′

0(u) = 24u5 − 336u3 + 3186 ≥ 0

which implies that a0(u) ≤ −424 . Therefore, since 0 ≤ u ≤ t ≤ 1,

F (t, u) = a2(u)t2 + a1(u)t + a0(u) ≤ −15

and thus D = C2
2 − 4C3C1 ≤ 0 for u ≤ t ≤ 1, 0 ≤ u ≤ 3

4
.
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