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Abstract. One-parameter families of sharp two-point distortion theorems are established for
nonnormalized bounded univalent functions f , that is, univalent functions f defined on the unit
disk D = {z : |z| < 1} with f(D) ⊂ D . These theorems provide sharp upper and lower bounds
on dD(f(a), f(b)) , the hyperbolic distance between f(a) and f(b) , in terms of dD(a, b) and the
“hyperbolic derivatives” (1 − |a|2)|f ′(a)|/(1 − |f(a)|2) , (1 − |b|2)|f ′(b)|/(1 − |f(b)|2) for arbitrary
a, b ∈ D . The weakest upper and lower bounds obtained are invariant versions of the classical
growth theorems for bounded univalent functions that are due to Pick. The lower bounds are also
sufficient conditions to imply that f is univalent in D . As part of establishing these results, a
new, sharp coefficient inequality for bounded univalent functions is derived.

1. Introduction

Many classical growth and distortion theorems for univalent functions f de-
fined on the unit disk D = {z : |z| < 1} are established under the assumption
that f is normalized (f(0) = 0 and f ′(0) = 1). Blatter [B1] obtained a sharp
two-point distortion theorem for nonnormalized univalent functions defined on D .
It is especially interesting that Blatter’s distortion theorem is also sufficient for
univalence; that is, if a holomorphic function f defined on D satisfies Blatter’s
distortion inequality, then f is univalent, or constant. In contrast, many classical
growth and distortion theorems for normalized univalent functions are also satisfied
by nonunivalent functions. Kim and Minda [KM] extended the work of Blatter;
they established a one-parameter family of sharp two-point distortion theorems for
univalent functions on D . This enabled them to establish a connection between
Blatter’s distortion theorem and a classical growth theorem of Koebe for univa-
lent functions. They also obtained similar results for convex univalent functions.
Recently, Ma and Minda [MM2 ] obtained various one parameter families of sharp
two-point distortion theorems for strongly close-to-convex functions. All of these
two-point distortion theorems yield comparison theorems between hyperbolic and
euclidean gometry on simply connected regions.
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It is natural to consider the class of bounded univalent functions. By the
phrase “bounded univalent function” we always mean a univalent function f de-
fined on D with f(D) ⊂ D . In addition, we always assume that f(D) is a proper
subset of D . If f(D) = D , then f is a Möbius transformation. Pick [Pi] estab-
lished a number of sharp results for bounded univalent functions f , often using
the assumption that f is normalized (f(0) = 0 and f ′(0) = α ∈ (0, 1]). We shall
obtain one-parameter families of sharp two-point distortion theorems for nonnor-
malized bounded univalent functions. The classical growth theorems of Pick for
bounded univalent functions are the weakest cases of our results. Since our re-
sults are rather complicated to state, we shall not give them here. But we shall
give the flavor of our work. Let dD(a, b) denote the hyperbolic distance between
a, b ∈ D . For a bounded univalent function f we prove sharp upper and lower
bounds on dD

(

f(a), f(b)
)

in terms of dD(a, b) and the value of the “hyperbolic
derivative” of f at a and b . Our technique of proof uses second-order linear dif-
ferential inequalities for real-valued functions together with coefficient inequalities
for bounded univalent functions. As part of our work we establish a new coeffi-
cient inequality for bounded univalent functions. Our approach is similar to that
employed in [MM2 ].

2. Preliminaries

Hyperbolic geometry plays an important role in this paper. The hyperbolic
metric on D is

λD(z)|dz| =
|dz|

1 − |z|2 .

A region Ω in C is called hyperbolic if C\Ω contains at least two points. In
this paper all regions will be subsets of D and so automatically hyperbolic. The
density of the hyperbolic metric on a hyperbolic region Ω is derived from

λΩ

(

f(z)
)

|f ′(z)| =
1

1 − |z|2 ,

where f : D → Ω is any holomorphic universal covering projection. The hyperbolic
metric is independent of the choice of the covering projection of D onto Ω. If
Ω is simply connected, then a covering f : D → Ω is a conformal mapping. The
distance function induced on Ω by the hyperbolic metric is

dΩ(A, B) = inf

∫

γ

λΩ(w) |dw|,

where the infimum is taken over all paths γ in Ω joining A and B . There always
exists a path δ in Ω connecting A and B such that

dΩ(A, B) =

∫

δ

λΩ(w) |dw|;
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such a path δ is called a hyperbolic geodesic arc between A and B . When Ω is
not simply connected, there can be more than one hyperbolic geodesic joining A
and B . For the unit disk we have the explicit formula

dD(a, b) = artanh
∣

∣

∣

b − a

1 − ab

∣

∣

∣
.

In the unit disk hyperbolic geodesics are arcs of circles orthogonal to the unit
circle. When Ω is simply connected the hyperbolic geodesics are the images of
these circular arcs under a conformal mapping f : D → Ω.

Several invariant differential operators will be used. Suppose f : D → D is
holomorphic. Define

Dh1f(z) =
(1 − |z|2)f ′(z)

1 − |f(z)|2 ,

Dh2f(z) =
(1 − |z|2)2f ′′(z)

1 − |f(z)|2 +
2(1 − |z|2)2f(z)f ′(z)2

(

1 − |f(z)|2
)2 − 2z(1 − |z|2)f ′(z)

1 − |f(z)|2 ,

Dh3f(z) =
(1 − |z|2)3f ′′′(z)

1 − |f(z)|2 +
6(1 − |z|2)3f(z)f ′(z)f ′′(z)

1 − |f(z)|2

− 6z(1 − |z|2)2f ′′(z)

1 − |f(z)|2 +
6z2(1 − |z|2)f ′(z)

1 − |f(z)|2

− 12z(1 − |z|2)2f(z)f ′(z)2
(

1 − |f(z)|2
)2 +

6(1 − |z|2)3f(z)2f ′(z)3
(

1 − |f(z)|2
)3 .

For simplicity we write Djf in place of Dhjf (j = 1, 2, 3) throughout this paper.
The reader should note that Djf has a different meaning in [KM], [MM1 ] and
[MM2 ]. For a locally univalent holomorphic function f : D → D set

Qf (z) =
D2f(z)

D1f(z)
= (1 − |z|2)f ′′(z)

f ′(z)
+

2(1 − |z|2)f(z)f ′(z)

1 − |f(z)|2 − 2z

and note that
D3f(z)

D1f(z)
− 3

2

(

D2f(z)

D1f(z)

)2

= (1 − |z|2)2Sf (z),

where

Sf (z) =
f ′′′(z)

f ′(z)
− 3

2

(

f ′′(z)

f ′(z)

)2

is the Schwarzian derivative of f . These operators are invariant in the sense that
|Dj(S ◦ f ◦ T )| = |Djf | ◦ T , whenever S and T are conformal automorphisms
of D .
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3. Coefficient inequalities

We begin by recalling two known coefficient inequalities for bounded uni-
valent functions and then expressing them in the invariant form we require. In
addition, we derive a new sharp coefficient inequality for bounded univalent func-
tions. Throughout this section we let g(z) = a1z + a2z

2 + a3z
3 + · · · denote a

normalized (g(0) = 0) univalent function with g(D) ⊂ D , while f will designate
an arbitrary bounded univalent function.

Pick [Pi] established the sharp inequality

|a2| ≤ 2|a1|(1 − |a1|)

with equality if and only if |a1| = α ∈ (0, 1] and g is a rotation of

kα(z) =
(1 − z)2 + 2αz − (1 − z)

√

(1 − z)2 + 4αz

2αz

= αz + 2α(1 − α)z2 + α(1 − α)(5 − 3α)z3 + · · · .

The function kα satisfies

(

1 + kα(z)

1 − kα(z)

)2

− 1 = α

[(

1 + z

1 − z

)2

− 1

]

,

or kα(z) = k−1
(

αk(z)
)

, where k(z) = z/(1 − z)2 is the Koebe function. The
image of D under kα is the unit disk with the slit (−1,−rα] removed, where
rα = −kα(−1) = (2 − α − 2

√
1 − α )/α . The function kα is extremal for a num-

ber of problems involving bounded univalent functions. A simple proof of Pick’s
inequality is contained in [FO]. The invariant formulation of Pick’s inequality is

|D2f(z)| ≤ 4|D1f(z)|
(

1 − |D1f(z)|
)

or
|Qf (z)| ≤ 4

(

1 − |D1f(z)|
)

for any bounded univalent function f . Equality holds at z0 ∈ D if and only if
|D1f(z0)| = α and f = S ◦ kα ◦ T , where S , T are conformal automorphisms of
D and T (z0) = 0. In fact, for α ∈ (0, 1) and z ∈ D ,

|D2kα(z)|
|D1kα(z)|

(

1 − |D1kα(z)|
) ≤ 4

with equality if and only if z ∈ (−1, 1). Therefore, if f = S ◦kα ◦T , then equality
holds along the entire hyperbolic geodesic T−1(−1, 1) while strict inequality is
valid off this geodesic.
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For a normalized bounded univalent function g Nehari [Ne] proved

∣

∣

∣

∣

a3

a1
−
(

a2

a1

)2∣
∣

∣

∣

≤ 1 − |a1|2

with equality if and only if g is a rotation of kα . This result is a consequence
of certain general inequalities of Nehari for bounded univalent functions; a simple
proof is given in [MM1 ]. The invariant formulation is

(1 − |z|2)2|Sf (z)| ≤ 6
(

1 − |D1f(z)|2
)

with equality at z0 if and only if |D1f(z0)| = α and f = S ◦ f ◦ T , where S , T
are conformal automorphisms of D and T (z0) = 0. More precisely, for α ∈ (0, 1)
and z ∈ D ,

(1 − |z|2)2|Skα
(z)| ≤ 6

(

1 − |D1kα(z)|2
)

with equality if and only if z ∈ (−1, 1). Hence, if f = S ◦ kα ◦ T , then equality
holds on the hyperbolic geodesic T−1(−1, 1) and strict inequality is valid off the
geodesic.

Theorem 1. Suppose g(z) = a1z + a2z
2 + a3z

3 + · · · is univalent in D and

g(D) ⊂ D . Then for p ≥ 3
2

∣

∣

∣

∣

3

[

a3

a1
−
(

a2

a1

)2]

+
p + |a1|
1 − |a1|

(

a2

a1

)2∣
∣

∣

∣

+
p + |a1|
1 − |a1|

∣

∣

∣

∣

a2

a1

∣

∣

∣

∣

2

≤ (8p − 3 + 5|a1|)(1 − |a1|).

Proof. There is no harm in assuming a1 > 0. Define

G(z) =
g(z)

a1
= z +

(

a2

a1

)

z2 +

(

a3

a1

)

z3 + · · · = z + A2z
2 + A3z

3 + · · ·

and a1 = e−τ . Then G ∈ S , the class of normalized univalent functions and G is
bounded, |G(z)| < eτ for z ∈ D . We want to prove

∣

∣

∣

∣

3

(

A3 − A2
2

)

+
p + e−τ

1 − e−τ
A2

2

∣

∣

∣

∣

+
p + e−τ

1 − e−τ
|A2|2 ≤ (8p − 3 + 5e−τ )(1 − e−τ ).

It is sufficient to prove

L(G) ≤ (8p − 3 + 5e−τ )(1 − e−τ ),

where

L(G) = Re

{

3(A3 − A2
2) +

p + e−τ

1 − e−τ
A2

2

}

+
p + e−τ

1 − e−τ
|A2|2

= 3 Re{A3 − A2
2} +

2(p + e−τ )

1 − e−τ
Re2{A2}.



430 William Ma and David Minda

We shall establish this result by embedding G in a Löwner chain. There is a
Löwner chain

G(z, t) =

∞
∑

n=1

An(t)zn

defined for t ≥ 0 such that G(z, 0) = G(z) , G(z, t) = etz for t ≥ τ and

∂G(z, t)

∂t
= z

∂G(z, t)

∂z
p(z, t),

where

p(z, t) = 1 +
∞
∑

n=1

Cn(t)zn

has positive real part in D [Po, Section 6.1]. From G(z, t) = etz for t ≥ τ , it
follows that Cn(t) = 0 for t ≥ τ and n = 1, 2, . . . . Then

A2 = A2(0) = −
∫ τ

0

e−tC1(t) dt,

A3 = A3(0) = −
∫ τ

0

e−2tC2(t) dt +

(
∫ τ

0

e−tC1(t) dt

)2

,

and

A3 − A2
2 = −

∫ τ

0

e−2tC2(t) dt,

so that

L(G) = −3

∫ τ

0

e−2t Re{C2(t)} dt +
2(p + e−τ )

1 − e−τ

(
∫ τ

0

e−t Re{C1(t)} dt

)2

.

Since [Po, p. 166]
−Re{C2(t)} ≤ 2 − Re2{C1(t)},

we obtain

L(G) ≤ 3(1−e−2τ )−3

∫ τ

0

e−2t Re2{C1(t)} dt+
2(p + e−τ )

1 − e−τ

(
∫ τ

0

e−t Re{C1(t)} dt

)2

.

The Cauchy–Schwarz inequality gives

(
∫ τ

0

e−t Re{C1(t)} dt

)2

≤
∫ τ

0

e−t dt

∫ τ

0

e−t Re2{C1(t)} dt

= (1 − e−τ )

∫ τ

0

e−t Re2{C1(t)} dt,
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so

L(G) ≤ 3(1 − e−2τ ) +

∫ τ

0

[2(p + e−τ ) − 3e−t]e−t Re2{C1(t)} dt.

Since p ≥ 3
2 , 2(p + e−τ ) − 3e−t ≥ 0. Also |Re{C1(t)}| ≤ 2 since p(z, t) has

positive real part. Therefore,

L(G) ≤ 3(1−e−2τ )+8(p+e−τ )(1−e−τ )−6(1−e−2τ ) = (8p−3+5e−τ )(1−e−τ ),

which is the desired result.

Corollary 1. Suppose g(z) = a1z + a2z
2 + a3z

3 + · · · is univalent in D and

g(D) ⊂ D . Then for p ≥ 3
2

∣

∣

∣

∣

3

[

a3

a1
−
(

a2

a1

)2]

+
p + |a1|
1 − |a1|

(

a2

a1

)2∣
∣

∣

∣

+
1 + p

1 − |a1|

∣

∣

∣

∣

a2

a1

∣

∣

∣

∣

2

≤ (8p + 1 + |a1|)(1 − |a1|).

Equality holds if and only if g is a rotation of kα .

Proof. Use the identity

1 + p

1 − |a1|

∣

∣

∣

∣

a2

a1

∣

∣

∣

∣

2

=
p + |a1|
1 − |a1|

∣

∣

∣

∣

a2

a1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

a2

a1

∣

∣

∣

∣

2

in conjunction with Pick’s inequality and the theorem in order to obtain the corol-
lary. The equality statement follows from the case of equality in Pick’s result.

Corollary 2. Suppose f is univalent in D and f(D) ⊂ D . Then for p ≥ 3
2

∣

∣

∣

∣

(1 − |z|2)2Sf (z)+
p + |D1f(z)|

2
(

1 − |D1f(z)|
)Qf (z)2

∣

∣

∣

∣

+
1 + p

2(1 − |D1f(z)|) |Qf (z)|2

≤ 2
(

8p + 1 + |D1f(z)|
)(

1 − |D1f(z)|
)

.

Equality holds at z0 ∈ D if and only if |D1f(z0)| = α and f = S ◦ kα ◦ T , where

S , T are conformal automorphisms of D with T (z0) = 0 .

Corollary 2 is just the invariant formulation of Corollary 1. Also, for the
function kα equality holds in Corollary 2 for all z ∈ (−1, 1) with strict inequality
off this interval. Therefore, if f = S ◦kα ◦T , then equality holds on the hyperbolic
geodesic T−1(−1, 1) with strict inequality off this geodesic.
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4. Differential inequalities

In this section we establish integral inequalities which are elementary conse-
quences of second-order linear differential inequalities.

Proposition 1. Suppose u, v ∈ C2[a, b] , k, p > 0 and v′′ ≤ k2p2v , u′′ =
k2p2u . If v(a) ≥ u(a) and v(b) ≥ u(b) , then either v = u or else v > u on (a, b) .

Proof. See [MM2 ].

Proposition 2. Suppose v ∈ C2[−L, L] , v > 0 , k > 0 , p ≥ 1 , |v′| ≤ kpv
and v′′ ≤ k2p2v . Then

(i)
1

k
log

[1 + exp(−2kpL)]1/p + [v(L) + v(−L)]1/p

[1 + exp(−2kpL)]1/p + [v(L) + v(−L)]1/p exp(−2kL)

≤
∫ L

−L

v(s)1/p

1 + v(s)1/p
ds

and equality holds if and only if v(s) = Ae±kps , A > 0 .

(ii)

∫ L

−L

ds

1 + v(s)1/p
≤ 1

k
log

[1 + exp(−2pkL)]1/p exp(2kL) + [v(L) + v(−L)]1/p

[1 + exp(−2pkL)]1/p + [v(L) + v(−L)]1/p

and equality holds if and only if v(s) = Ae±kps , A > 0 .

Proof. We begin by determining u ∈ C2[−L, L] so that u′′ = k2p2u and
u satisfies the boundary conditions u(−L) = v(−L) , u(L) = v(L) . The general
solution of u′′ = k2p2u is u(s) = A cosh(kps)+B sinh(kps) where A, B ∈ R . The
boundary conditions yield

A =
v(L) + v(−L)

2 cosh(kpL)
, B =

v(L) − v(−L)

2 sinh(kpL)
.

If

τ =
B

A
=

v(L) − v(−L)

v(L) + v(−L)
· cosh(kpL)

sinh(kpL)
,

then u(s) = A[cosh(kps) + τ sinh(kps)] . Integration of the double inequality
−kp ≤ v′/v ≤ kp over the interval [−L, L] results in

e−2kL ≤ v(L)

v(−L)
≤ e2kL.

Because h(t) = (t − 1)/(t + 1) is increasing for t > −1, we deduce that

− sinh(kpL)

cosh(kpL)
≤ v(L) − v(−L)

v(L) + v(−L)
≤ sinh(kpL)

cosh(kpL)
,

or τ ∈ [−1, 1] . From A > 0 and τ ∈ [−1, 1] it follows that u > 0 and |u′| ≤ kpu .
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(i) Since t 7→ t/(1 + t) is strictly increasing,

∫ L

−L

v(s)1/p

1 + v(s)1/p
ds ≥

∫ L

−L

u(s)1/p

1 + u(s)1/p
ds

=

∫ L

−L

A1/p[cosh(kps) + τ sinh(kps)]1/p

1 + A1/p[cosh(kps) + τ sinh(kps)]1/p
ds = I(τ).

Direct calculation shows that

I(1) = I(−1) =
1

k
log

(

1 + A1/pekL

1 + A1/pe−kL

)

and

I ′′(τ) =
1

p2

∫ L

−L

A2 sinh2(kps)u(s)1/p−2[(1 − p) − (1 + p)u(s)1/p]

[1 + u(s)1/p]3
ds.

Since p ≥ 1, I ′′(τ) < 0, or I(τ) is strictly concave down on [−1, 1] . Therefore,
I(τ) ≥ I(±1) with strict inequality unless τ = ±1. This proves (i) and shows
that strict inequality holds unless u(s) = Ae±kps .

(ii) In order to establish (ii), just note that

∫ L

−L

ds

1 + v(s)1/p
= 2L −

∫ L

−L

v(s)1/p

1 + v(s)1/p
ds

and make use of (i).

5. Main results

We now establish some differential identities that will be used later. Assume
γ : z = z(s) , −L ≤ s ≤ L , is a smooth path in D parametrized by hyperbolic
arclength; this means that z′(s) =

(

1−|z(s)|2
)

eiθ(s) , where θ = arg z′(s) , or eiθ(s)

is a unit tangent to γ at z(s) , and 2L is the hyperbolic length of γ . Let f be
any locally univalent function defined on D with f(D) ⊂ D . We always assume
f is not a conformal automorphism of D , so |D1f(z)| < 1 for all z ∈ D .

It is straightforward to verify that

d

ds

∣

∣D1f
(

z(s)
)
∣

∣ =
∣

∣D1f
(

z(s)
)
∣

∣Re
{

eiθ(s)Qf

(

z(s)
)}

.

Then
d

ds

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

=

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

Re
{

eiθ(s)Qf

(

z(s)
)}

1 −
∣

∣D1f
(

z(s)
)
∣

∣
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and for any real number p

d

ds

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p

= p

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p Re
{

eiθ(s)Qf

(

z(s)
)}

1 −
∣

∣D1f
(

z(s)
)
∣

∣

.

Since
d

ds

(

1

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

=

∣

∣D1f
(

z(s)
)
∣

∣Re
{

eiθ(s)Qf

(

z(s)
)}

(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)2 ,

we obtain

d2

ds2

[(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p]

= p2

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p Re2
{

eiθ(s)Qf

(

z(s)
)}

(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

2)2

+ p

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p Re
{

(d/ds)
[

eiθ(s)Qf

(

z(s)
)]}

1 −
∣

∣D1f
(

z(s)
)
∣

∣

+ p

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p

Re
{

eiθ(s)Qf

(

z(s)
)} d

ds

(

1

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

= p

( |D1f(z(s))|
1 − |D1f(z(s))|

)p
1

(1 −
∣

∣D1f
(

z(s)
)
∣

∣)2

×
[

(

p +
∣

∣D1f
(

z(s)
)
∣

∣

)

Re2
{

eiθ(s)Qf

(

z(s)
)}

+
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

Re
{ d

ds

[

eiθ(s)Qf

(

z(s)
)]

}]

.

A lengthy, but straightforward, calculation produces

eiθ(s) d

ds
Qf

(

z(s)
)

= e2iθ(s)
(

1 −
(

z(s)
)2)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
))2

+
(

e2iθ(s)z(s) − z(s)
)

Qf

(

z(s)
)

− 2 + 2
∣

∣D1f
(

z(s)
)
∣

∣

2
.

The hyperbolic curvature of γ at z(s) is

κh

(

z(s), γ
)

=
(

1 − |z(s)|2
)

κe

(

z(s), γ
)

+ Im
{

2eiθ(s)z(s)
}

=
(

1 − |z(s)|2
)

κe

(

z(s), γ
)

− i
(

eiθ(s)z(s) − e−iθ(s)z(s)
)

,

where

κe

(

z(s), γ
)

=
1

|z′(s)| Im

{

z′′(s)

z′(s)

}

is the euclidean curvature of γ at z(s) . Since γ is parametrized by hyperbolic
arclength,

κe

(

z(s), γ
)

=
dθ(s)/ds

1 − |z(s)|2
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so that

κh

(

z(s), γ
)

=
dθ(s)

ds
− i
(

eiθ(s)z(s) − e−iθ(s)z(s)
)

and

ieiθ(s)κh

(

z(s), γ
)

=
d

ds
eiθ(s) +

(

e2iθ(s)z(s) − z(s)
)

.

Therefore,

Qf

(

z(s)
) d

ds
eiθ(s) = iκh

(

z(s), γ
)

eiθ(s)Qf

(

z(s)
)

−
(

e2iθ(s)z(s) − z(s)
)

Qf

(

z(s)
)

.

Next,

d

ds

(

eiθ(s)Qf

(

z(s)
))

= e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
))2 − 2

+ iκh

(

z(s), γ
)

eiθ(s)Qf

(

z(s)
)

+ 2
∣

∣D1f
(

z(s)
)
∣

∣

2
.

From this expression we obtain

d2

ds2

[(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p]

= p

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p
1

(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)2

×
[

(

p +
∣

∣D1f
(

z(s)
)
∣

∣

)

Re2
{

eiθ(s)Qf

(

z(s)
)}

+
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

(

Re
{

e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
))2}

− 2 − κh

(

z(s), γ
)

Im
{

eiθ(s)Qf

(

z(s)
)}

+ 2
∣

∣D1f
(

z(s)
)
∣

∣

2
)]

.

It is useful to have this second derivative expressed in terms of the hyperbolic
curvature of f ◦γ rather than the hyperbolic curvature of γ . A formula connecting
the hyperbolic curvature of f ◦ γ to the hyperbolic curvature of γ is

κh

(

f
(

z(s)
)

, f ◦ γ
)
∣

∣D1f
(

z(s)
)
∣

∣ = κh

(

z(s), γ
)

+ Im
{

eiθ(s)Qf

(

z(s)
)}

,

so that

d2

ds2

[(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p]

= p

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p
1

(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)2

×
{

(

p +
∣

∣D1f
(

z(s)
)
∣

∣

)

Re2
{

eiθ(s)Qf

(

z(s)
)}

+
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

[

Im2
{

eiθ(s)Qf

(

z(s)
)}

+ Re
{

e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
))2}

− 2 − κh

(

f(z(s)
)

, f ◦ γ)
∣

∣D1f
(

z(s)
)
∣

∣ Im
{

eiθ(s)Qf

(

z(s)
)}

+ 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]}

.
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Theorem 2. Suppose f is univalent in D and f(D) ⊂ D .

(i) For a, b ∈ D and p ≥ 3
2
,

1

4
log

([

[

1 + exp
(

−4pdD(a, b)
)]1/p

+

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p
]

/ [

[

1 + exp
(

−4pdD(a, b)
)]1/p

+ exp
(

−4dD(a, b)
)

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p
])

≤ dD

(

f(a), f(b)
)

.

(ii) For a, b ∈ D and p ≥ 1 ,

dD

(

f(a), f(b)
)

≤ 1

4
log

([

exp
(

4dD(a, b)
)[

1 + exp
(

−4pdD(a, b)
)]1/p

+

[( |D1f(a)|
1 − |D1f(a)|

)−p

+

( |D1f(b)|
1 − |D1f(b)|

)−p]1/p
]

/ [

[

1 + exp
(

−4pdD(a, b)
)]1/p

+

[( |D1f(a)|
1 − |D1f(a)|

)−p

+

( |D1f(b)|
1 − |D1f(b)|

)−p]1/p
])

.

In either inequality equality holds for distinct points a, b ∈ D if and only if f =
S ◦ kα ◦T , where S, T are conformal automorphisms of D and a, b ∈ T−1(−1, 1) .

Proof. (i) Fix a, b ∈ D . Intially we assume that the hyperbolic geodesic arc
[f(a), f(b)]D = Γ lies in f(D) = Ω and set γ = f−1 ◦ Γ. Then γ is a smooth arc
in D joining a and b and we suppose γ : z = z(s) , −L ≤ s ≤ L , is a hyperbolic
arclength parametrization of γ . Then 2L ≥ dD(a, b) with equality if and only if
γ is the hyperbolic geodesic arc joining a and b . For p > 0 define

v(s) =

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)p

.

Then

v′(s) = pv(s)
Re
{

eiθ(s)Qf

(

z(s)
)}

1 −
∣

∣D1f
(

z(s)
)
∣

∣

,
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so the invariant form of Pick’s inequality yields

|v′(s)| ≤ 4pv(s).

Since κh

(

f
(

z(s)
)

, f ◦ γ
)

= 0, we obtain

v′′(s) =
pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

p +
∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

Re2
{

eiθ(s)Qf

(

z(s)
)}

+ Im2
{

eiθ(s)Qf

(

z(s)
)}

+ Re
{

e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
)

)2
}

− 2 + 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]

=
pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

1 + p

2
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

∣

∣Qf

(

z(s)
)
∣

∣

2

+ Re

{

e2iθ(s)

(

(1 − |z(s)|2)2Sf

(

z(s)
)

+
p +

∣

∣D1f
(

z(s)
)
∣

∣

2
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)Qf

(

z(s)
)2
)}

− 2 + 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]

≤ pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

1 + p

2
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

∣

∣Qf

(

z(s)
)
∣

∣

2

+

∣

∣

∣

∣

(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+
p +

∣

∣D1f
(

z(s)
)
∣

∣

2
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)Qf

(

z(s)
)2
∣

∣

∣

∣

− 2 + 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]

.

By making use of Corollary 2 of Theorem 1 we obtain

v′′(s) ≤ pv(s)
[

2
(

8p + 1 +
∣

∣D1f
(

z(s)
)
∣

∣− 2
(

1 +
∣

∣D1f
(

z(s)
)
∣

∣

]

= 16p2v(s)

since p ≥ 3
2
.

We have shown that v satisfies the hypotheses of Proposition 2 for k = 4 and
p ≥ 3

2
. Now

dD

(

f(a), f(b)
)

=

∫

f◦γ

λD(w) |dw| =

∫

γ

|f ′(z)|
1 − |f(z)|2 |dz|

=

∫ L

−L

∣

∣f ′
(

z(s)
)
∣

∣

1 −
∣

∣f
(

z(s)
)
∣

∣

2

(

1 − |z(s)|2
)

ds =

∫ L

−L

∣

∣D1f
(

z(s)
)
∣

∣ ds

=

∫ L

−L

v(s)1/p

1 + v(s)1/p
ds.
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From part (i) of Proposition 2 we conclude that

∫ L

−L

v(s)1/p

1 + v(s)1/p
ds ≥ 1

4
log

[1 + exp(−8pL)]1/p + C

[1 + exp(−8pL)]1/p + C exp(−8L)
,

where

C = C(a, b) =

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p

,

and equality implies v′′ = 16p2v on [−L, L] . The right-hand side of this inequality
is a strictly decreasing function of L when p ≥ 1. Therefore,

1

4
log

[1 + exp(−8pL)]1/p + C

[1 + exp(−8pL)]1/p + C exp(−8L)

≥ 1

4
log

[

1 + exp
(

−4pdD(a, b)
)]1/p

+ C
[

1 + exp
(

−4pdD(a, b)
)]1/p

+ C exp
(

−4dD(a, b)
)

with strict inequality unless 2L = dD(a, b) , that is, unless γ is the hyperbolic
geodesic arc between a and b . This proves (i) in the special case [f(a), f(b)]D ⊂
f(D) .

Let us check when equality holds in (i) in the special situation [f(a), f(b)]D ⊂
f(D) . Equality implies v′′ = 16p2v on [−L, L] . But this means that equality
must hold in Corollary 2 of Theorem 1 along the hyperbolic geodesic arc γ . This
forces f = S ◦ kα ◦ T , where S , T are conformal automorphisms of D and
a, b ∈ T−1(−1, 1).

Now, we turn to the situation in which the geodesic arc [f(a), f(b)]D is not
entirely in f(D) . Then there exist α, β ∈ ∂Ω such that [f(a), α)D and (β, f(b)]D
are disjoint, contained in f(D) and their union is in [f(a), f(b)]D . If z ∈ D , and
f(z) ∈ [f(a), α]D , then the first part of the proof gives

dD(f(a), f(z)) ≥ 1

4
log

[

1 + exp
(

−4pdD(a, z)
)]1/p

+ C
[

1 + exp
(

−4pdD(a, z)
)]1/p

+ C exp
(

−4dD(a, z)
)

where C = C(a, z) . Since

C(a, z) ≥ |D1f(a)|
1 − |D1f(a)|

we get

dD

(

f(a), f(z)
)

≥1

4
log

[

1 + exp
(

−4pdD(a, z)
)]1/p

+
|D1f(a)|

1 − |D1f(a)|
[

1 + exp
(

−4pD(a, z)
)]1/p

+
|D1f(a)|

1 − |D1f(a)| exp
(

−4dD(a, z)
)

.



Two-point distortion theorems for bounded univalent functions 439

If f(z) → α along [f(a), α)D , then the point z → ∂D and so dD(a, z) → ∞ .
Therefore, we obtain

dD

(

f(a), α
)

≥ 1

4
log

(

1 +
|D1f(a)|

1 − |D1f(a)|

)

.

Similarly,

dD

(

β, f(b)
)

≥ 1

4
log

(

1 +
|D1f(b)|

1 − |D1f(b)|

)

,

so that

dD

(

f(a), f(b)
)

≥ dD

(

f(a), α
)

+ dD

(

β, f(b)
)

≥ 1

4
log

[(

1 +
|D1f(a)|

1 − |D1f(a)|

)(

1 +
|D1f(b)|

1 − |D1f(b)|

)]

>
1

4
log

[

1 +
|D1f(a)|

1 − |D1f(a)| +
|D1f(b)|

1 − |D1f(b)|

]

≥ 1

4
log

[

1 +

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p]

=
1

4
log[1 + C(a, b)]

>
1

4
log

[

1 + exp
(

−4pdD(a, b)
)]1/p

+ C(a, b)

[1 + exp
(

−4pdD

(

a, b)
)]1/p

+ C(a, b) exp
(

−4dD(a, b)
)

.

Thus, strict inequality holds in this situation.

(ii) Fix a, b ∈ D and let γ be the hyperbolic geodesic arc between a and b ,
say γ : z = z(s) , −L ≤ s ≤ L , is a hyperbolic arclength parametrization of γ . In
this situation dD(a, b) = 2L and κh

(

z(s), γ
)

= 0. If p > 0 and

v(s) =

(

∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)−p

,

then

v′(s) = −pv(s)
Re
{

eiθ(s)Qf

(

z(s)
)}

1 −
∣

∣D1f
(

z(s)
)
∣

∣

and so

|v′(s)| ≤ 4pv(s)
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since f is univalent. Since κh

(

z(s), γ
)

= 0, we have

v′′(s) =
pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

p −
∣

∣D1f
(

z(s)
)
∣

∣

1 −
∣

∣D1f
(

z(s)
)
∣

∣

Re2
{

eiθ(s)Qf

(

z(s)
)}

− Re
{

e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)

+ 1
2

(

eiθ(s)Qf

(

z(s)
))2}

+ 2 − 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]

=
pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

1
2

∣

∣Qf

(

z(s)
)
∣

∣

2
+

p − 1

1 −
∣

∣D1f
(

z(s)
)
∣

∣

Re2{eiθ(s)Qf (z(s))
}

− Re
{

e2iθ(s)
(

1 − |z(s)|2
)2

Sf

(

z(s)
)}

+ 2 − 2
∣

∣D1f
(

z(s)
)
∣

∣

2
]

≤ pv(s)

1 −
∣

∣D1f
(

z(s)
)
∣

∣

[

2p − 1 −
∣

∣D1f
(

z(s)
)
∣

∣

2
(

1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

∣

∣Qf

(

z(s)
)
∣

∣

2

+
(

1 − |z(s)|2
)2∣
∣Sf

(

z(s)
)
∣

∣+ 2
(

1 −
∣

∣D1f
(

z(s)
))2)

]

.

By using the invariant forms of the inequalities of Pick and Nehari we get

v′′(s) ≤ pv(s)
[

8
(

2p − 1 −
∣

∣D1f
(

z(s)
)
∣

∣

)

+ 6
(

1 +
∣

∣D1f
(

z(s)
)
∣

∣

)

+ 2
(

1 +
∣

∣D1f
(

z(s)
)
∣

∣

)]

= 16p2v(s).

This shows that v satisfies the hypotheses of Proposition 2 with k = 4 and
p ≥ 1. Because f ◦ γ is a path joining f(a) and f(b) ,

dD

(

f(a), f(b)
)

≤
∫

f◦γ

λD(w) |dw| =

∫

γ

|f ′(z)|
1 − |f(z)|2 |dz|

=

∫ L

−L

∣

∣f ′
(

z(s)
)
∣

∣

1 −
∣

∣f
(

z(s)
)
∣

∣

2

(

1 − |z(s)|2
)

ds =

∫ L

−L

∣

∣D1f
(

z(s)
)
∣

∣ ds

=

∫ L

−L

ds

1 + v(s)1/p

with equality if and only if f ◦γ is the hyperbolic geodesic joining f(a) and f(b) .
From part (ii) of Proposition 2 we have

∫ L

−L

ds

1 + v(s)1/p
≤ 1

4
log

[1 + exp(−8pL)]1/p exp(8L) + D

[1 + exp(−8pL)]1/p + D
,

where

D = D(a, b) =

[( |D1f(a)|
1 − |D1f(a)|

)−p

+

( |D1f(b)|
1 − |D1f(b)|

)−p]1/p



Two-point distortion theorems for bounded univalent functions 441

and equality implies v′′ = 16p2v on [−L, L] . Since 2L = dD(a, b) , this establishes
part (ii) of the theorem. Equality forces v′′ = 16p2v on [−L, L] , which means
that equality must hold in the invariant forms of both the Pick and the Nehari
inequalities along the hyperbolic geodesic γ . This implies that f = S ◦ kα ◦ T ,
where S , T are conformal automorphisms of D and a, b ∈ T−1(−1, 1).

The lower bound in part (i) is a decreasing function of p while the upper
bound in (ii) is an increasing function of p . Therefore, the cases p = ∞ of both
inequalities are the weakest inequalities contained in Theorem 2. We state these
results as a corollary.

Corollary 3. Suppose f is univalent in D and f(D) ⊂ D . Then for a, b ∈ D

max

{

1

4
log

(

1

1 − |D1f(a)| + |D1f(a)| exp
(

−4dD(a, b)
)

)

,

1

4
log

(

1

1 − |D1f(b)|+ |D1f(b)| exp
(

−4dD(a, b)
)

)}

≤ dD

(

f(a), f(b)
)

≤ min

{

1

4
log

(

1 − |D1f(a)| + |D1f(a)| exp
(

4dD(a, b)
)

)

,

1

4
log

(

1 − |D1f(b)|+ |D1f(b)| exp
(

4dD(a, b)
)

)}

.

This corollary is nothing more than an invariant version of the classical growth
theorem for bounded univalent functions. Pick [Pi] proved that if g(z) = αz +
a2z

2 + · · · is univalent in D with g(D) ⊂ D , then

−kα(−|z|) ≤ |g(z)| ≤ kα(|z|)

with equality only for rotations of kα . If we choose a = 0, b = z in the corollary,
then we obtain

1

(1 − α) + α
(

(1 − |z|)/(1 + |z|)
)2 ≤

(

1 + |g(z)|
1 − |g(z)|

)2

≤ (1 − α) + α

(

1 + |z|
1 − |z|

)2

.

These inequalities are equivalent to Pick’s.

Remarks. Part (i) of Theorem 2 is also sufficient for univalence. More
precisely, if a holomorphic function f : D → D satisfies the inequality (i) for some
p ≥ 3

2 and all a, b ∈ D , then either f is univalent in D , or f is constant. The
proof is similar to that given in [KM]. Also, the inequalities in Theorem 2 are
linearly invariant in the sense that they are unchanged when f is replaced by
S ◦ f ◦ T , where S , T are conformal automorphisms of D .
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Theorem 2 bounds dD

(

f(a), f(b)
)

above and below in terms of dD(a, b) . By
slightly rewriting the conclusion of Theorem 2 we can make the bounds more
explicit and relate Theorem 2 to the Schwarz–Pick lemma. If f is univalent in D

and f(D) ⊂ D , then for p ≥ 3
2

dD(a, b)− 1

4
log

(

[

[

1 + exp
(

−4pdD(a, b)
)]1/p

exp
(

4dD(a, b)
)

+

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p]

/

[

[

1 + exp
(

−4pdD(a, b)
)]1/p

+

[( |D1f(a)|
1 − |D1f(a)|

)p

+

( |D1f(b)|
1 − |D1f(b)|

)p]1/p]
)

≤ dD

(

f(a), f(b)
)

,

while for p ≥ 1

dD

(

f(a), f(b)
)

≤ dD(a, b)

− 1

4
log

(

[

[

1 + exp
(

−4pdD(a, b)
)]1/p

+

[( |D1f(a)|
1 − |D1f(a)|

)−p

+

( |D1f(b)|
1 − |D1f(b)|

)−p]1/p]

/

[

[

1 + exp
(

−4pdD(a, b)
)]1/p

+ exp
(

−4pdD(a, b)
)

[( |D1f(a)|
1 − |D1f(a)|

)−p

+

( |D1f(b)|
1 − |D1f(b)|

)−p]1/p]
)

.

For p = ∞ we obtain

dD(a, b) − min
{1

4
log
(

|D1f(a)| +
(

1 − |D1f(a)|
)

exp
(

4dD(a, b)
))

,

1

4
log
(

|D1f(b)| +
(

1 − |D1f(b)|
)

exp
(

4dD(a, b)
))

}

≤ dD

(

f(a), f(b)
)

≤ dD(a, b) − max

{

1

4
log

(

1

|D1f(a)| +
(

1 − |D1f(a)|
)

exp
(

−4dD(a, b)
)

)

,

1

4
log

(

1

|D1f(b)| +
(

1 − |D1f(b)|
)

exp
(

−4dD(a, b)
)

)}

.
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For a general holomorphic function f : D → D Beardon and Carne [BC] proved a
refinement of the Schwarz–Pick lemma:

2dD

(

f(a), f(b)
)

≤ log
[

cosh
(

2dD(a, b)
)

+ |D1f(a)| sinh
(

2dD(a, b)
)]

.

(They used 2λD(z)|dz| as the hyperbolic metric.) This inequality is not symmetric
in a and b . It can be written more symmetrically as

dD

(

f(a), f(b)
)

≤ dD(a, b)− max

{

1

2
log

(

2

1 + |D1f(a)|+
(

1 − |D1f(a)|
)

exp
(

−4dD(a, b)
)

)

,

1

2
log

(

2

1 + |D1f(b)| +
(

1 − |D1f(b)|
)

exp
(

−4dD(a, b)
)

)}

.

Our upper bounds for univalent functions are stronger and we also obtain lower
bounds.

Two-point distortion theorems for univalent functions on D can be recast as
two-point comparison theorems between hyperbolic and euclidean geometry on a
simply connected region Ω 6= C [KM]. Similarly, the two-point distortion theorems
for bounded univalent functions in Theorem 2 can be reformulated as comparison
theorems between hyperbolic geometry on a simply connected region Ω ⊂ D and
hyperbolic geometry on the ambient space D . For the sake of brevity we do
not explicitly state all of these comparison results, but only give one comparison
theorem that follows from Corollary 3.

Corollary 4. Suppose Ω ⊂ D is a simply connected region, Ω 6= D . Then

for w ∈ Ω
λD(w)

1 − exp
(

−4εΩ(w)
) ≤ λΩ(w),

where εΩ(w) = inf{dD(w, ω) : ω ∈ ∂Ω} .

Proof. Let f : D → Ω be a conformal mapping. Then for a ∈ D , |D1f(a)| =
λD

(

f(a)
)

/λΩ

(

f(a)
)

, so it suffices to show

|D1f(a)| ≤ 1 − exp
(

−4εΩ

(

f(a)
))

for a ∈ D . Fix a ∈ D . Then take a sequence {bn}∞n=1 in D with |bn| → 1 and
dD

(

f(a), f(bn)
)

→ εΩ

(

f(a)
)

. Now, Corollary 3 gives

1

4
log

1

1 − |D1f(a)| + |D1f(a)| exp
(

−4dD(a, bn)
) ≤ dD

(

f(a), f(bn)
)

.

By letting n → ∞ we obtain

1

4
log

1

1 − |D1f(a)| ≤ εΩ

(

f(a)
)

since dD(a, bn) → ∞ . This is equivalent to the desired result.
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Remark. Corollary 4 is an invariant version of a classical covering theorem
for bounded univalent functions. If g(z) = αz + a2z

2 + · · · is univalent in D with
g(D) ⊂ D , then Pick [Pi] proved that

g(D) ⊃
{

w : |w| < −kα(−1) =
2 − α − 2

√
1 − α

α

}

.

Suppose Ωα = kα(D) . Then λΩα
(0) = 1/α . Also,

εΩα
(0) = dD

(

0,−kα(−1)
)

=
1

4
log

1

1 − α
,

so that
λD(0)

1 − exp
(

−4εΩα
(0)
) =

1

α
= λΩα

(0).

This shows that the inequality in Corollary 4 is best possible. In fact, Corollary 4
is equivalent to Pick’s covering theorem. This is the analog of the fact that the
Koebe 1

4 -theorem for univalent functions is equivalent to the inequality λΩ(w) ≥
1/
(

4δΩ(w)
)

for a simply connected region Ω 6= C , where δΩ(w) = inf{|w − ω| :
ω ∈ ∂Ω} .
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[Pi] Pick, G.: Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich
beschränktes Gebiet. - S.-B. Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 126,
1917, 247–263.

[Po] Pommerenke, Ch.: Univalent Functions. - Vandenhoeck and Ruprecht, Göttingen, 1975.

Received 16 February 1996


