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Abstract. We continue the study of (p, c) -uniform domains. Special emphasis is on (p, c) -
NUD sets. The ambient space is assumed to be a Hilbert space.

1. Introduction

This paper is a continuation to [Al] and [AV], and we assume that the reader
is familiar with these papers. They will be cited as I and II. For example, I.6.11
means the result 6.11 of [Al]. For basic notation and terminology, see I, p. 6, and
II.1.4. However, we assume throughout this paper that the space E is a Hilbert

space instead of a general normed space. This simplifies several proofs and also
gives better estimates for various constants. The finite-dimensional case E = Rn

is probably the most interesting.

The main emphasis will be on the null-sets (NUD) for homotopically (htop)
and homologically (hlog) (p, c)-uniform domains in E . In Section 2 we give ele-
mentary estimates for the uniformity constants of certain standard domains. Sec-
tion 3 deals with cartesian products of NUD sets. The case where the set is
contained in a linear subspace of E is studied in Section 4. In Section 5 we con-
sider compact sets in infinite-dimensional spaces and an application of our theory
to bilipschitz spheres.

We let x · y denote the inner product of two vectors x, y ∈ E . For A ⊂ E
and r > 0 we write

B(A, r) = {x : d(x, A) ≤ r}, S(A, r) = {x : d(x, A) = r}.

Part of this article was written while the first author was visiting the Univer-
sity of Bielefeld in 1995–96. The hospitality of SFB 343 is hereby acknowledged.
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2. Estimates for uniformity constants

2.1. Summary of Section 2. We give estimates for the uniformity constants
of various standard domains. All proofs are elementary. Remember that E is a
Hilbert space. If E is infinite-dimensional, Theorem 5.2 will in certain cases give
constants better than those obtained in this section.

2.2. Lemma. Each bounded set A ⊂ E is contained in a ball B(a, r) with

r = d(A)/
√

2.

Proof. If dimE = n < ∞ , this follows from Jung’s theorem [Fe, 2.10.41].
Indeed, one can choose r = d(A)

√

n/2(n + 1). The infinite-dimensional case was
proved by J. Daneš [Da, Th. 2].

2.3. Theorem. Each ball and half space in E is htop and hlog (p, c) -uniform

for all 0 ≤ p < dimE − 1 with c =
√

3/2 = 1.22474 . . . .

Proof. Suppose first that G is a ball, which can be assumed to be the unit
ball B(1). We show that G is htop (p, c)-uniform. Let f : Sp → G be continuous
with d = d(|f |) > 0. If d ≥ 1, we let g: B p+1 → E be the cone extension of f
with g(0) = 0. The uniformity conditions are clearly satisfied with the constant 1.
Assume that d < 1. By 2.2, there is a ball B = B(a, d/

√
2 ) containing |f | . We

may choose a so that |a| ≤ 1.

Case 1. B ⊂ G . Let g: B p+1 → E be the cone extension of f with g(0) = a .
Each pair of points in |g| lies in a triangle with side lengths at most d , and hence
d(|g|) ≤ d(|f |) . If x ∈ |g| , then x ∈ [a, y] for some y ∈ |f | , and we get

d(x, |f |) ≤ |x − y| ≤ d(x, ∂B) ≤ d(x, ∂G).

Again, the uniformity conditions hold with the constant 1.

Case 2. B 6⊂ G . Choose e ∈ ∂G with a ∈ [0, e] , and set b = (1 − d)e . Then
|b| = 1 − d < |a| and B ∩ G ⊂ B(b, cd) with c =

√

3/2. Let g: B p+1 → E be
the cone extension of f with g(0) = b . Each pair of points in |g| lies in a triangle
with side lengths at most cd , and hence d(|g|) ≤ cd .

To prove the lens condition, let x ∈ |g| . Then x = (1 − t)y + tb for some
y ∈ |f | and 0 ≤ t ≤ 1. We have

|x| ≤ (1 − t)|y|+ t|b| ≤ 1 − t + t(1 − d) = 1 − td,

and hence d(x, ∂G) = 1 − |x| ≥ td . This implies that

d(x, |f |) ≤ |x − y| = t|y − b| ≤ tdc ≤ cd(x, ∂G),

which is the lens condition.
Since the proof made use of solely cone extensions, it is valid with obvious

modifications also in the homological case. The case where G is a half space follows
from the above, since each compact set in G is contained in a ball B ⊂ G .



Uniform domains of higher order III 447

2.4. Theorem. Let B be a closed ball in E . Then the domain G = E \ B
is htop and hlog (p, 5) -uniform for all 0 ≤ p < dimE − 1.

Proof. We may assume that B is the unit ball B(1). We show that G is htop
(p, 5)-uniform. Let f : Sp → G be continuous with d = d(|f |) > 0. We consider
two cases.

Case 1. d ≥ 1. Set r = max{|fx| : x ∈ Sp} . If d < r − 1, then |f | is
contained in a ball in G , and the desired extension of f is given by 2.3. Assume
that d ≥ r − 1. Set R = r + 1

2
d , and let P : G → S(R) be the radial projection

Px = Rx/|x| . Since p < dimE − 1, the map Pf : Sp → S(R) is null-homotopic.
This homotopy and the segmental homotopy from f to Pf give an extension
g: B p+1 → G of f such that |g| is contained in the union of S(R) and all line
segments [x, Px], x ∈ |f | . Since

d(|g|) ≤ 2R = 2r + d ≤ 2(d + 1) + d ≤ 5d,

the turning condition holds with the constant 5. To prove the lens condition let
y ∈ |g| . If y ∈ [x, Px] for some x ∈ |f | , then

d(y, |f |) ≤ |y − x| ≤ |y| − 1 = d(y, B).

If y ∈ S(R) , then
d(y, |f |) ≤ |y| + r = 2r + 1

2
d.

Since d(y, B) = r + 1
2
d − 1, d ≥ 1 and r ≥ 1, we get d(y, |f |) ≤ 5d(y, B) , which

is the lens condition.

Case 2. d ≤ 1. Applying 2.2 we choose a ball B(a, d/
√

2 ) containing |f | . In
view of 2.3, we may assume that this ball meets B . Let L be the ray {ta : t ≥ 0} ,
and write

R = 1 + d
√

2, C = {x : d(x, L) ≤ d|x|/
√

2 }, F = C ∩ S(R).

Let P : G → S(R) be the radial projection. There is an extension g: B p+1 → G
of f such that |g| is contained in the union of F and all line segments [x, Px] ,
x ∈ |f | . It is easy to see that

|g| ⊂ C ∩
(

B(R) \ B
)

⊂ B(w, 2d),

where w is the center of the sphere S(R) ∩ ∂C . Hence d(|g|) ≤ 4d , which is the
turning condition with the constant 4. To prove the lens condition let y ∈ |g| .
The case where y ∈ [x, Px] is treated as in Case 1. If y ∈ F , then

d(y, |f |) ≤ d(|g|) ≤ 4d = 2
√

2 d(y, B).
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Hence the lens condition holds with the constant 2
√

2 < 5. We have proved that
G is htop (p, 5)-uniform.

The proof for the homological case is essentially the same. Let z be a p-
cycle in G and assume, for example, that d(|z|) = d ≤ 1. Choose again a ball
B(a, d/

√
2 ) containing |z| and assume that this ball meets B . With the notation

of Case 2 above, |z| is contained in the union A of F and all line segments [x, Px] ,
x ∈ |z| . Since A is contractible, z = ∂g for some chain g in A . As in Case 2
above we see that g satisfies the uniformity conditions with the constant 5.

2.5. Theorem. The complement of a point x0 ∈ E is htop and hlog (p, 2) -
uniform for all 0 ≤ p < dim E − 1.

Proof. We may assume that x0 = 0. We prove only the homotopical case.
Let f : Sp → G = E \ {0} be continuous with d = d(|f |) > 0, and set r =
max{|fx| : x ∈ Sp} . We may assume that d ≥ r , since otherwise |f | is contained
in a ball in G and we can apply 2.3. Let P : G → S(r) be the radial projection.
Then f has an extension g: B p+1 → G such that |g| is contained in the union
of S(r) and all line segments [x, Px] , x ∈ |f | . We have d(|g|) ≤ 2r ≤ 2d , which
is the turning condition. Let y ∈ |g| . If y ∈ [x, Px] for some x ∈ |f | , then
d(y, |f |) ≤ |x − y| ≤ |y| = d(y, ∂G) . If |y| = r , then d(y, |f |) ≤ 2r = 2d(y, ∂G) .

2.6. Weak uniformity. We recall that an open set U ⊂ E is weakly hlog
(p, c)-uniform if the uniformity conditions hold for every null-homologous p-cycle
in U . Similarly, U is weakly htop (p, c)-uniform if each null-homotopic f : Sp → U
has an extension g: B p+1 → U satisfying the uniformity conditions.

2.7. Theorem. Let T be a closed proper linear subspace of E . Then

U = E \ T is weakly htop and hlog (p,
√

5 ) -uniform for all 0 ≤ p < dim E − 1.

Proof. We prove the homotopical case. Let P : E → T and N : E → T⊥

denote the orthogonal projections. Suppose that f : Sp → U is null-homotopic.
We may assume that 0 ∈ P |f | . We may also assume that |Nfx| ≤ d for all
x ∈ Sp , since otherwise |f | is contained in a ball in U , and the desired extension
is given by 2.3. Let S(d) be the sphere |x| = d in T⊥ , and let Q: T⊥\{0} → S(d)
be the radial projection Qx = dx/|x| . For x ∈ U consider the line segments
Ix = [x, Px + QNx] and Jx = [Px + QNx, QNx] . Then U deformation retracts
along these segments onto S(d) . Thus QNf : Sp → S(d) is null-homotopic, and
we obtain an extension g: B p+1 → U of f such that |g| is contained in the union
of S(d) and all Ix and Jx , x ∈ |f | .

Suppose that y, y′ ∈ |g| . Then Py ∈ [Px, 0] and Py′ ∈ [Px′, 0] for some
x, x′ ∈ |f | . Since 0 ∈ P |f | , we get |Py−Py′| ≤ d(P |f |) ≤ d . Since |Ny−Ny′| ≤
2d , this implies the turning condition d(|g|) ≤ d

√
5.
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To prove the lens condition let y ∈ |g| . If y ∈ Ix for some x ∈ |f | , the lens
condition holds with the constant 1. If y ∈ Jx , then

d(y, |f |) ≤ |x − y| ≤ d
√

2 =
√

2 d(y, T ).

If y ∈ S(d) and x ∈ |f | , then

|x − y|2 = |Px − Py|2 + |Nx − Ny|2 ≤ d2 + 4d2 = 5d(y, T )2.

Hence the lens condition holds with the constant
√

5.

2.8. Theorem. Let T be a closed linear subspace of E with dimT ≥ 1 , and

let S = S(1) ∩ T be the unit sphere of T . Then G = E \ S is weakly htop and

hlog (p, 5) -uniform for all 0 ≤ p < dim E − 1.

Proof. We remark that the result follows with a larger constant from 2.7 and
from the Möbius invariance of uniformity.

Let P : E → T and N : E → T⊥ be the orthogonal projections. For x ∈
E \ T⊥ we have x = Px + Nx = re + Nx for some r > 0 and e ∈ S , which are
uniquely determined by x . We consider T⊥ ×R as a Hilbert space in the natural
way, and let H denote the half space T⊥ × [0,∞) . Then u = (Nx, r) ∈ H . The
pair (u, e) gives the polar coordinates of x with respect to T . If x ∈ T⊥ , then
u ∈ ∂H but e is undefined. We write u0 = (0, 1) ∈ H . In polar coordinates we
have S = {(u, e) : u = u0} .

We prove that G is htop (p, 5)-uniform. Let f : Sp → G be null-homotopic
with d = d(|f |) > 0. We may assume that |f | ⊂ B(S, d) = {x : d(x, S) ≤ d} and
that |f | meets B(1), since otherwise we can apply either 2.3 or 2.4. We consider
three cases.

Case 1. d ≥ 1. Now |f | ⊂ B(1 + d) ⊂ B(2d) . For x ∈ B(S, 1) \ S let Qx be
the point in S(S, 1) closest to x . Explicitly, we can write in polar coordinates

Q(u, e) =
(

u0 +
u − u0

|u − u0|
, e

)

.

We extend Q to E \ S by setting Qx = x for x ∈ A = B(2d) \ B(S, 1) and
Qx = 2dx/|x| for |x| ≥ 2d . Then E \ S deformation retracts onto A along
the line segments [x, Qx] . Hence Qf is null-homotopic in A , and we obtain an
extension g: B p+1 → G of f such that |g| is contained in the union of A and all
segments [x, Qx] , x ∈ |f | . Then d(|g|) ≤ d

(

B(2d)
)

= 4d , which gives the turning
condition.

To prove the lens condition let y ∈ |g| . The case y ∈ [x, Qx] is again clear.
Suppose that y ∈ A . Since |f | meets B(1), we have d(y, |f |) ≤ |y| + 1. If
|y| ≤ 2, this implies that d(y, |f |) ≤ 3 ≤ 3d(y, S) . If |y| ≥ 2, we also get
d(y, |f |) ≤ |y| + 1 ≤ 3(|y| − 1) ≤ 3d(y, S) .
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Case 2. 1/
√

2 ≤ d ≤ 1. We use the same idea as in Case 1, but we let now
A = B(1+d)\B(S, d) . We get an extension g with d(|g|) ≤ 2+2d ≤ (2

√
2+2)d <

5d . If y ∈ A , then

d(y, |f |) ≤ |y| + 1 ≤ 2 + d ≤ (2
√

2 + 1)d < 4d ≤ 4d(y, S).

Case 3. d ≤ 1/
√

2. Applying 2.2 we choose a ball B(a, d/
√

2 ) containing |f | .
We may assume that there is a point b ∈ S ∩ B(a, d/

√
2 ), since otherwise |f | is

contained in a ball in G . Then |f | ⊂ B(b, d
√

2 ). Set α = arcsin d
√

2 and

Z = {(u, e) : |u − u0| ≤ d, ang(e, b) ≤ α}

in polar coordinates; here ang(e, b) is the angle between the unit vectors e and b .
In the case E = R3 , T = R2 , Z is obtained from the solid torus B(S, d) by
cutting it by two half planes whose boundary is the x3 -axis and which touch the
ball B(b, d

√
2 ).

We have |f | ⊂
(

B(S, d) ∩ B(b, d
√

2 )
)

\ S ⊂ Z \ S . Since Ė \ S deformation

retracts onto Z \S , f is null-homotopic in Z \S . Let Q: B(S, d)\S → S(S, d) be
as in the previous cases. Then Z \ S deformation retracts onto W = S(S, d) ∩ Z
along the segments [x, Qx] , and Qf is null-homotopic in W . Hence we obtain
an extension g: B p+1 → G of f such that |g| is contained in the union of W
and all line segments [x, Qx] , x ∈ |f | . We show that g satisfies the uniformity
conditions.

The set S ∩ Z is a cap of S with diameter 2 sinα = 2d
√

2. Since Z ⊂
B(S ∩ Z, d) , this gives the turning condition d(|g|) ≤ d(Z) ≤ 2d

√
2 + 2d < 5d .

To prove the lens condition, it suffices to consider the case y ∈ W , and then
d(y, |f |) ≤ d(Z) < 5d = 5d(y, S) .

2.9. Theorem. Let Z be the infinite cylinder B(1) × R ⊂ E × R . Then Z
is htop and hlog (p,

√
2 ) -uniform for all 1 ≤ p < dim E − 1.

Proof. Of course, we use the natural inner product in E × R ; see 3.5. Let
f : Sp → Z be continuous with d = d(|f |) > 0. If d ≤ 1, we choose a ball
B = B(a, d/

√
2 ) in E × R containing |f | . We may assume that B does not lie

in Z and that a ∈ E × {0} with |a| ≤ 1. The desired extension of f is obtained
by coning with vertex at (1 − d)a . If d ≥ 1, let Q: E × R → {0} × R be the
projection. The extension is now obtained by using a segmental homotopy from
f to Qf and a homotopy of Qf to a point in the segment Q|f | . We omit the
estimates for the uniformity constants, because they are rather similar to those in
the previous theorems. In the homological case we can apply similar constructions
to each component of the carrier of a given p-cycle.

2.10. Remark. Observe that Z is not (0)-uniform.
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3. Product sets

3.1. Summary of Section 3. Recall that an open set U is p-acyclic if it has
trivial (reduced) homology groups Hk(U) for 0 ≤ k ≤ p . Suppose that A ⊂ Rm

and B ⊂ Rn are closed sets without interior points. Assume that Rm \ A is p-
acyclic and that Rn \B is q -acyclic for some p ≤ m− 2 and q ≤ n− 2. It follows
from the Alexander duality and from the Künneth formula for cohomology that
Rm+n \ (A×B) is (p + q + 2)-acyclic. In fact, one can show that it is also simply
connected and hence, by the Hurewicz theorem, it is even (p + q + 2)-connected.
In this section we shall consider quantitative versions of this and related results.

3.2. The homotopical case. Recall that a closed set A ⊂ E is htop (p, c)-
porous if for all r > 0 and for all maps f : ∆p → E there is a map g: ∆p → E such
that ‖g − f‖ ≤ r and d(|g|, A) ≥ r/c . This implies that A is htop (q, c)-porous
for all 0 ≤ q ≤ p ; see I.3.3.3.

We shall prove in 3.5 that the product of a htop (p)-porous set and a htop
(q)-porous set is htop (p + q + 1)-porous. We need the following result, which
shows that one can replace ∆p in the definition of porosity by any p-dimensional
polyhedron if the constant c is allowed to change.

3.3. Lemma. Suppose that A ⊂ E is htop (p, c) -porous and that P is a

p-dimensional polyhedron. Suppose also that f : P → E is continuous and that

r > 0 . Then there is a map g: P → E such that

(1) ‖g − f‖ ≤ r ,

(2) d(|g|, A) ≥ r/c1 ,

where c1 = c1(c, p) .

Proof. Choose a triangulation K of P such that d(f∆) ≤ r′ = r/6p for
every ∆ ∈ K . Let Kk be the k -skeleton of K and set fk = f | |Kk| . Since A
is htop (0, c)-porous, we can define g0: |K0| → E such that |g0v − fv| ≤ r′ and
d(g0v, A) ≥ r′/c for each vertex v of K . Proceeding inductively, assume that
0 ≤ k < p and that we have defined a map gk: |Kk| → E satisfying the following
two conditions:

‖gk − fk‖ ≤ 6kr′,(αk)

d(|gk|, A) ≥ r′/c(c + 2)k.(βk)

Let ∆ ∈ K be a (k + 1)-simplex. Using the cone construction we extend gk | ∂∆
to a map u∆: ∆ → E such that d(|u∆|) = d(gk∂∆). Applying I.3.4 and (βk) we
find an extension g∆: ∆ → E of gk | ∂∆ such that

‖g∆ − u∆‖ ≤ r′/(c + 2)k+1, d(|g∆|, A) ≥ r′/c(c + 2)k+1.
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Setting gk+1 | ∆ = g∆ we obtain a map gk+1: |Kk+1| → E satisfying (βk+1) . To
prove (αk+1) , observe that

d(|g∆|) ≤ d(|u∆|) + 2‖g∆ − u∆‖ ≤ d(gk∂∆) + 2r′/(c + 2)k+1

≤ d(f∂∆) + 2‖fk − gk‖ + r′ ≤ r′ + 2 · 6kr′ + r′ ≤ 4 · 6kr′.

Let x ∈ ∆ and choose a vertex y of ∆. Then

|gk+1x − fx| ≤ |gk+1x − gk+1y| + |gk+1y − fy| + |fy − fx|
≤ d(|g∆|) + ‖g0 − f0‖ + d(f∆) ≤ 4 · 6kr′ + r′ + r′ ≤ 6k+1r′.

Hence (αk+1) is true.

The last step gives a map g = gp: P → E satisfying (1) and (2) with c1 =
6pc(c + 2)p .

3.4. Remark. We consider the special case of 3.3 where dimE ≥ p + 1 and
A consists of a single point, say A = {0} . Then g can be constructed directly
as follows: Let 0 < ε < r . Choose a piecewise linear map f1: P → E with
‖f1 − f‖ < ε . By general position, we may assume that 0 /∈ |f1| . Let P be the
radial retraction of E \ {0} onto E \ B(r − ε) . Then g = Pf1 satisfies (1) and
(2) of 3.3 with a constant c1 arbitrarily close to one. In particular, c1 does not
depend on p .

3.5. Preparations. In the product E1 × E2 of two inner products spaces we
use the inner product

(x, y) · (x′, y′) = x · x′ + y · y′.

We recall the concept of a dual skeleton. Let K be a finite simplicial complex
of dimension n . For 0 ≤ p ≤ n , the dual skeleton D(Kp) of the p-skeleton Kp

of K is the subcomplex of the barycentric subdivision SdK of K consisting of
all simplexes that do not meet |Kp| . The dimension of D(Kp) is n − p − 1.
Thus D(Kn) = ∅ , and D(Kn−1) is the finite set of the barycenters b(∆) of all
n -simplexes ∆ ∈ K . If ∆ is an n -simplex of K , the (n − p − 1)-simplexes of
D(Kp) contained in ∆ are of the form [b(σp+1), . . . , b(σn)] , where σn = ∆ and
each σi is an i-face of σi+1 . The most important property of the dual skeleton
is that given 0 ≤ p ≤ n , each n -simplex ∆′ ∈ Sd K can be uniquely written as
∆′ = σ ∗ τ , where σ ∈ SdKp and τ ∈ D(Kp) . Here σ ∗ τ denotes the join of two
joinable simplexes σ and τ ; see [Ru, p. 10].
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3.6. Theorem. Let A1 ⊂ E1 be htop (p, c) -porous and let A2 ⊂ E2 be htop

(q, c) -porous. Then A1 × A2 is htop (p + q + 1, c1) -porous in E = E1 × E2 with

c1 = c1(c, p, q) .

Proof. Let r > 0 and let f : ∆p+q+1 → E be a map. Choose a triangulation
K of ∆p+q+1 such that d(f∆) ≤ 1

4
r for all ∆ ∈ K . Write f = (f1, f2) with

fi: ∆p+q+1 → Ei , P1 = |Kp| and P2 = |D(Kp)| . By 3.3 we find maps hi: Pi → Ei

such that
‖hi − fi|Pi‖ ≤ r/4, d(|hi|, Ai) ≥ r/4c2

for i = 1, 2, where c2 = c2(c, p, q) .
Let ∆ be a (p + q + 1)-simplex of SdK . Then ∆ can be uniquely expressed

as σ ∗ τ , where σ ∈ SdKp and τ ∈ D(Kp) . Each point z ∈ ∆ can be written as
z = (1 − t)x + ty with x ∈ σ , y ∈ τ , 0 ≤ t ≤ 1. The representation is unique
except for z ∈ σ ∪ τ , which occurs only if t = 0 or t = 1. We define a map
g∆: ∆ → E as follows: For x ∈ σ , y ∈ τ we set

g∆x = (h1x, f2x), g∆y = (f1y, h2y), g∆

(

1
2
(x + y)

)

= (h1x, h2y).

On the line segments [x, 1
2
(x + y)] and [ 1

2
(x + y), y] , g∆ is defined to be affine.

Explicitly, for z = (1 − t)x + ty we set

g∆z =

{

(

h1x, (1 − 2t)f2x + 2th2y
)

if 0 ≤ t ≤ 1
2
,

(

(2 − 2t)h1x + (2t − 1)f1y, h2y
)

if 1
2
≤ t ≤ 1.

The maps g∆ clearly define a map g: ∆p+q+1 → E . We show that this is the
desired map.

Let z = (1 − t)x + ty be as above. If 0 ≤ t ≤ 1
2
, then

|h1x − f1z| ≤ |h1x − f1x| + |f1x − f1z| ≤ 1
4
r + d(f∆) ≤ 1

2
r,

|(1 − 2t)f2x + 2th2y − f2z| ≤ (1 − 2t)|f2x − f2z| + 2t|h2y − f2z|
≤ (1 − 2t)d(f∆) + 2t|h2y − f2y| + 2t|f2y − f2z|
≤ (1 − 2t)d(f∆) + 1

4
r + 2td(f∆) ≤ 1

2
r.

These inequalities imply that |gz−fz| ≤ r/
√

2 < r . Similar arguments show that
this is true also if 1

2
≤ t ≤ 1. Thus ‖g − f‖ ≤ r .

Consider again the point z = (1− t)x+ ty ∈ ∆ = σ ∗ τ . If 0 ≤ t ≤ 1
2
, we have

d(gz, A1 × A2) ≥ d(h1x, A1) ≥ r/4c2.

If 1
2
≤ t ≤ 1, then

d(gz, A1 × A2) ≥ d(h2y, A2) ≥ r/4c2.

Hence d(|g|, A1 × A2) ≥ r/4c2 , and we have proved the theorem with c1 = 4c2 =
4 · 6sc(c + 2)s , s = p ∨ q .



454 Pekka Alestalo and Jussi Väisälä

Recall from II.1.4 that a set A ⊂ E has a property Q(p) involving an integer
p ≥ 0 completely if A has property Q(k) for all 0 ≤ k ≤ p . For example, A is
completely htop (p, c)-NUD if A is htop (k, c)-NUD for all 0 ≤ k ≤ p . By I.4.9,
this is quantitatively equivalent to htop (p + 1, c)-porosity. Hence Theorem 3.6
has the following corollary:

3.7. Theorem. Let A1 ⊂ E1 be completely htop (p, c) -NUD and let A2 ⊂
E2 be completely htop (q, c) -NUD . Then A1×A2 is completely htop (p+q+2, c1) -
NUD in E1 × E2 with c1 = c1(c, p, q) .

3.8. Remark. We consider the special case of 3.6 where dim E2 ≥ q + 1 and
A2 consists of a single point, say A2 = {0} . Let c0 > 1. By 3.4 we can choose
the map h2 in the proof of 3.6 so that d(|h2|, 0) ≥ r/c0 . It follows that A1 × {0}
is htop (p + q + 1, c1)-porous in E with c1 = c1(c, p) = 4 · 6pc(c + 2)p .

3.9. The homological case. It is natural to conjecture that 3.6 and 3.7 are
true if htop is replaced by hlog. In fact, we believe that they are true in the
stronger form where the hlog properties of A1 and A2 imply the corresponding
htop property of A1 × A2 . We prove this for finite-dimensional spaces:

3.10. Theorem. Let A1 ⊂ Rm be completely hlog (p, c) -NUD and let

A2 ⊂ Rn be completely hlog (q, c) -NUD. Then A1 × A2 is completely htop

(p + q + 2, c1) -NUD in Rm+n with c1 = c1(c, m, n) .

Proof. The proof is based on compact families of sets, and it does not give an
explicit estimate for the constant c1 . Since the proof is rather long, we give only
a sketch. The topological fact behind the proof is the inequality dim(A1 × A2) ≤
dim A1 + dim A2 for the topological dimension.

Part 1. The compactness theory of [Vä2 ] cannot be directly applied, because
we cannot allow rotations in Rm × Rn . We must therefore rewrite part of this
theory replacing the group sim of all similarities of Rn by the subgroup sim∗

consisting of all maps f : Rn → Rn of the form fx = λx + a , λ > 0, a ∈ Rn .
Fix an integer n ≥ 1. As before, we let Kn denote the family of all nonempty

compact subsets of Ṙn , and we write Kn
∞ = {A ∈ Kn : ∞ ∈ A} . If L ⊂ Kn , we

set L∗ = {A ∈ L : 0 ∈ ∂A and Sn−1 ∩ ∂A 6= ∅} . We say that L is ∗ -stable if
sim∗L = L and if L∗ is compact. For H ⊂ Kn , we let σ∗(H) denote the union
of all ∗ -stable subfamilies of H . Compared with the theory of [Vä2 ], a stable
family is always ∗ -stable, and we have σ(H) ⊂ σ∗(H) . A ∗ -filtration of σ∗(H) is
a function c 7→ Lc , defined for c ≥ 1, such that

(1) c < d implies Lc ⊂ Ld ,
(2) each Lc is contained in a ∗ -stable subfamily of H ,
(3) each ∗ -stable subfamily of H is contained in some Lc .
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In this case, σ∗(H) = ∪{Lc : c ≥ 1} .
We next give the following modification of I.6.4: Let n ≥ 2, 0 ≤ p ≤ n − 1,

and let M ⊂ Kn
∞ be a ∗ -stable family such that the reduced Čech cohomology

groups Hn−p−1(A) and Hn−1(A) are trivial for all A ∈ M . Then for each c ≥ 1
there is c1 = c1(c, M) ≥ 1 such that Rn \A satisfies the condition HT∗(p, c, c1) of
II.3.4 for all A ∈ M . The proof of this is obtained by modifying the proof of I.6.4.

Using this result and II.3.10, we can show as in I.6.6 that, with the notation
of II.3.16, we have σ∗(Dp) = HU(p) and that c 7→ HU(p, c) is a ∗ -filtration of
σ∗(Dp) . Furthermore, with the notation of II.3.16 we have σ∗(Ln−p−2) = HN(p) ,
and c 7→ HN(p) gives a ∗ -filtration of σ∗(Ln−p−2) . Indeed, I.6.10 implies that
HN(p, c) ⊂ σ∗(Ln−p−2) , and the opposite inclusion follows rather easily from [HW,
VIII 4F]. With the convention of II.3.10, the statement is also valid for p = −1;
then one may have n = 1.

Part 2. We turn to the proof of 3.10. Since htop and hlog (0)-uniformity
coincide, the case p ≤ 0, q ≤ 0 is a special case of 3.7. We may thus assume that
p ≥ 1. From 3.7 it follows that A1×A2 is htop (1, c1)-NUD. By the quantitative
Hurewicz theorem II.4.5, it suffices to prove that A1 × A2 is completely hlog
(p + q + 2, c2)-NUD with c2 depending only on (c, m, n) .

Let M be the family of all sets A1 × A2 where A1 and A2 satisfy the hy-
potheses of 3.10. It is rather easy to see that M is ∗ -stable. We next show that
dim F ≤ m + n − p − q − 4 for all F ∈ M . Indeed, F is of the form B1 × B2 ,
where B1 and B2 are limits of sets satisfying the hypotheses of 3.10. From I.6.3
and from I.6.10 it follows that dim B1 ≤ m − p − 2 and dim B2 ≤ n − q − 2. By
[HW, p. 33] this implies that dimF ≤ dim B1 + dimB2 ≤ m + n − p − q − 4.

We have proved that M is a ∗ -stable family in Lm+n−p−q−4 . By Part 1, M
is contained in some HN(p + q + 2, c2) , and the theorem is proved.

Theorem 3.10 can also be expressed in terms of hlog porosity, defined in II.6.2.
By II.6.15, the complete hlog (c, p)-NUD property is quantitatively equivalent to
complete hlog (c, p +1)-porosity. In view of I.4.9, Theorem 3.10 has the following
corollary:

3.11. Theorem. Let A1 ⊂ Rn be completely hlog (p, c) -porous and let

A2 ⊂ Rn be completely hlog (q, c) -porous. Then A1 ×A2 is htop (p + q + 1, c1) -
porous in Rm+n with c1 = c1(c, m, n) .

4. Subsets and changing dimension

4.1. Summary of Section 4. We first show that the htop and hlog porosity
and complete uniformity properties of a set A ⊂ E are inherited by closed subsets.
Next we consider the case where A is contained in a linear subspace E1 of E ,
and we compare the properties of A in E1 and in E . As a corollary we obtain
results on planar sections of A .
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4.2. Theorem. Suppose that A is htop or hlog (p, c) -porous in E . Then

each closed subset of A has the same property.

Proof. This follows at once from the definition of porosity.

4.3. Theorem. Suppose that A is completely htop or hlog (p, c) -NUD in E .

Then each closed B ⊂ A is completely htop or hlog (p, c′) -NUD for all c′ > c ,

respectively.

Proof. We remark that in view of I.4.9 and II.6.15, we obtain from 4.2 the
weaker result where c′ depends on p and c .

We first consider the homotopical case. If suffices to show that B is htop
(p, c′)-NUD. Let f : Sp → E \ B be a map and let ε > 0. Since A is completely
htop (p, c)-NUD, A is LCp rel E ; see II.5.2 and II.5.3.1. By II.5.4 there is a
map f1: Sp → E \A with ‖f1 − f‖ < ε . Since A is htop (p, c)-NUD, there is an
extension g1: B p+1 → E \ A of f1 satisfying the uniformity conditions in E \ A .
Let e ∈ Sp and 0 ≤ t ≤ 1. Setting

g(te) =

{

(2t − 1)f(e) + (2 − 2t)f1(e) for 1
2
≤ t ≤ 1,

g1(2te) for 0 ≤ t ≤ 1
2
,

we obtain an extension g: B p+1 → E \ B of f . It is easy to see that g satisfies
the uniformity conditions in E \ B with a constant c′ = c′(c, ε) such that c′ → c
as ε → 0. This proves the homotopical case of the theorem.

The homological case is proved similarly, using II.5.10 instead of II.5.4. In-
deed, let z be a p-cycle in E and let ε > 0. Then II.5.10 gives z1 ∈ Zp

(

B(|z|, ε)\
A

)

and g1 ∈ Sp+1

(

B(|z|, ε)
)

such that ∂g1 = z − z1 . Since A is hlog (p, c)-
NUD, z1 = ∂g2 for some g2 satisfying the uniformity conditions in E \ A . Then
z = ∂(g1 + g2) , and g1 + g2 satisfies the uniformity conditions in E \ B with a
constant c′ arbitrarily close to c .

4.4. Raising dimension. Suppose that E1 is a closed linear subspace of E
and that A is a closed subset of E1 . We want to compare the properties of
A in E1 and in E . It turns out that, roughly speaking, raising the dimension
by one improves the order of porosity and NUD by one. An early example of
this phenomenon was given in 1982 by S. Granlund, P. Lindqvist and O. Martio
[GLM, 4.18], who observed that a closed set A ⊂ Sn is (0)-porous if and only if
it is (0)-NUD in Rn+1 .

The converse problem is discussed in 4.6.

4.5. Theorem. Suppose that E is a Hilbert space and that E1 is a closed

linear subspace of E of codimension at least k ≥ 1 . Let A be closed in E1 .

(1) If A is htop (p, c) -porous in E1 , then A is htop (p + k, c1) -porous in E
with c1 = c1(c, p) .
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(2) If A is completely htop (p, c) -NUD in E1 , then A is completely htop

(p + k, c1) -NUD in E with c1 = c1(c, p, k) .

Suppose also that dimE = n < ∞ .

(3) If A is completely hlog (p, c) -porous in E1 , then A is htop (p + k, c1) -
porous in E with c1 = c1(c, n) .

(4) If A is completely hlog (p, c) -NUD in E1 , then A is completely htop

(p + k, c1) -NUD in E with c1 = c1(c, n) .

Proof. Writing E2 = E⊥
1 we can identify E with E1 × E2 and A with

A × {0} . Now (1) follows directly from Remark 3.8, and (2) follows from (1) and
from I.4.9. The statements (3) and (4) follow from 3.10 and 3.11, respectively,
since {0} is completely hlog (k − 1)-porous in Rk by 2.5 and II.6.15.

4.6. Lowering dimension. Let us consider the situation A ⊂ E1 ⊂ E as in 4.4
and in 4.5. We ask whether the properties of A in E imply lower-order properties
of A in E1 . It turns out that in the homotopical case the answer is negative. This
will be shown by counterexamples 4.12 and 4.13, but a partially positive answer
will be given in 4.14. The next result gives a positive answer in the homological
case. In view of an application in 5.5, we give the result also in terms of weak
uniformity; see 2.6.

By a hyperplane in a Hilbert space E we mean the orthogonal complement
b⊥ = {x : x · b = 0} of any nonzero vector b ∈ E .

4.7. Theorem. Suppose that T is a hyperplane in E and that A  T is

[weakly ] hlog (p, c) -NUD in E with p ≥ 0 . If p ≥ 1 , then T \A is [weakly ] hlog

(p − 1, c1) -uniform with any c1 > c
√

2; if p = 0 , then A is 2c2 -porous in T .

Proof. Write T = e⊥ with |e| = 1 and H1 = {x ∈ E : x · e > 0} , H2 = {x ∈
E : x · e < 0} . As in [Do2 , Prop. 1] we can make use of a Mayer–Vietoris sequence
to obtain an isomorphism Hp−1(T \ A) → Hp(E \ A) . Hence it suffices to prove
the weak version.

Suppose first that p = 0, and let x ∈ T , r > 0. We may assume that x = 0.
Writing t =

√
4c2 − 1, a = re/t , b = −re/t , we can find an arc γ ⊂ E\A joining a

to b and satisfying the c-uniformity conditions in E\A . Choose a point y ∈ γ∩T .
Since |y|2 + (r/t)2 ≤ (2rc/t)2 by the turning condition, we have |y| ≤ r . On the
other hand, the cigar condition implies that d(y, A) ≥ |y − a|/c ≥ r/ct > r/2c2 .
Thus A is 2c2 -porous in T .

Suppose then that p ≥ 1. Assume that z ∈ Zp−1(T \ A) with d(|z|) = d > 0
and that z ∼ 0 in T \A . By 2.2, |z| is contained in a ball B(a, s) with a ∈ T and
s = d/

√
2. Setting b1 = se and b2 = −se we consider the cones z1 = b1 · z and

z2 = b2 · z ; see [Do1 , III.(4.7)]. Then ∂z1 = ∂z2 = z by [Do1 , III.(4.8)]. Since
z ∼ 0 in T \A , we have z = ∂h for some h ∈ Sp(T \A) . Setting z′ = z1 − z2 and
h′ = b2 ·h−b1 ·h we get ∂h′ = h−b2 ·z−h+b1 ·z = z′ , and thus z′ ∼ 0 in E \A .
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Since A is weakly hlog (p, c)-NUD, we have z′ = ∂g′ for some g′ ∈ Sp+1(E \ A)
satisfying the uniformity conditions

(4.8)
d(|g′|) ≤ cd(|z′|) ≤ 2cs = cd

√
2,

d(x, |z′|) ≤ cd(x, A)

for all x ∈ |g′| .
Let ε > 0 and set B = B(|g| ∩ T, ε) ∩ T . We first show that z bounds in B .

Choose a positive integer j such that d(|σ|) < ε for all σ < Sdjg′ ; for notation,
see II.1.4. Next choose 0 < δ < ε such that d(|σ|, T ) > δ for all σ < Sdjg′

with |σ| ∩ T = ∅ . Finally, choose an integer k ≥ j such that d(|τ |) ≤ δ for all
τ < Sdkg′ .

Define a map ϕ: R → R by ϕ(t) = 0 for |t| ≤ δ and by ϕ(t) = t− δsgn t for
|t| ≥ δ . For y ∈ T and t ∈ R we write r(y + te) = y + ϕ(t)e . We obtain a map
r: E → E , which retracts the layer T + B(δ) onto T .

Let Sdkg′ =
∑

σ∈J nσσ be the normal representation. Write

g1 =
∑

{nσσ : σ ∈ J, |σ| ∩ H1 6= ∅}, g2 = Sdkg′ − g1, g = r#(Sdkz1 − ∂g1).

Then |g| ⊂ H1 . Since

∂g1 + ∂g2 = ∂Sdkg′ = Sdkz1 − Sdkz2,

we have Sdkz1−∂g1 = ∂g2−Sdkz2 , and hence g = r#(∂g2−Sdkz2) , which implies
that |g| ⊂ H2 . Thus |g| ⊂ H1 ∩ H2 = T .

Since r | T = id, we have

∂g = r#Sdk∂z1 = r#Sdkz = Sdkz.

Hence z bounds in |g| ∪ |z| ; cf. I.1.3.1. Since |z| = |z′| ∩ T ⊂ |g′| ∩ T ⊂ B , it
suffices to show that |g| ⊂ B . Let x ∈ |g| . Then x = ry for some y = x + te ∈
|∂g1| ∪ |Sdkz1| with |t| ≤ δ . Since |∂g1| ∪ |Sdkz1| ⊂ |Sdkg′| ⊂ |Sdjg′| , there is
σ < Sdjg′ with y ∈ |σ| . Then |σ| meets T by the choice of δ . Choosing a point
x1 ∈ |σ| ∩T we have x1 ∈ |g′| ∩T . Since |x−x1| ≤ |y−x1| ≤ d(|σ|) ≤ ε , we have
x ∈ B . We have proved that z bounds in B .

Let c1 > c
√

2. It suffices to show that for sufficiently small ε , B satisfies the
uniformity conditions

d(B) ≤ c1d,

d(x, |z|) ≤ c1d(x, A)

for all x ∈ B . Since d(B) ≤ d(|g′|) + 2ε ≤ cd
√

2 + 2ε by (4.8), the first condition
is clear. To prove the second one, it suffices to show that d(x, |z|) ≤ cd(x, A)

√
2

for all x ∈ |g′| ∩ T . This follows from (4.8) and from the elementary lemma (4.9)
below.
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4.9. Lemma. Let T = b⊥ be a hyperplane in E , b 6= 0 , and let Y ⊂
B(|b|)∩ T . Then d(x, Y ) ≤ d(x, b ∗ Y )

√
2 for all x ∈ T . Here b ∗ Y is the cone of

Y with vertex b .

Proof. Let x ∈ T , let y ∈ Y , and let L be the line through y and b . It
suffices to show that |x − y| ≤ d(x, L)

√
2. Write x = y′ + v with y′ ∈ span(y)

and v ⊥ y . Let P be the orthogonal projection of E onto L . Set z = Px = Py′ .
From similar triangles we obtain

|z − y|
|y′ − z| =

|y|
|b| ≤ 1.

Hence

|x − y|2 = |v|2 + |y′ − z|2 + |z − y|2 ≤ 2|v|2 + 2|y′ − z|2 = 2|x − z|2 = 2d(x, L)2.

4.10. Theorem. Suppose that E1 ⊂ E is a closed linear subspace of finite

codimension k . Let A  E1 be [weakly ] hlog (p, c) -NUD in E with p ≥ k − 1 .

If p ≥ k , then E \A is [weakly ] hlog (p− k, c1) -uniform in E1 for all c1 > 2k/2c ,

and hence with c1 = ( 3
2
)kc . If p = k − 1 , then A is 2kc2 -porous in E1 .

Proof. This follows from 4.7 by induction. To obtain the required constant in
the case p = k−1, notice that the proof of 4.7 actually gives the porosity constant
ct = c

√
4c2 − 1 in the case p = 0.

4.11. Remark. There are several obvious corollaries of Theorem 4.10. For
example, suppose that A is completely hlog (p, c)-NUD in E with p ≥ k . If
A ⊂ E1 , then A is completely hlog (p− k, c1)-NUD in E1 . If A 6⊂ E1 , then still
A ∩E1 is completely hlog (p− k, c1)-NUD in E1 by the monotonicity result 4.3.

4.12. Example. We show that 4.7 is not true if hlog is replaced by htop.
Indeed, we construct a set A ⊂ R3 such that A is completely htop (2)-NUD
in R4 but not htop (1)-NUD in R3 . This set is the famous Antoine’s necklace
constructed in a self-similar manner. Related considerations appear in the recent
work of S. Semmes [Se].

Let S be a circle of radius r in R3 . For 0 < t < r , the set T = B(S, t) is a
solid 3-torus with core S . We say that a line L ⊂ R3 is a piercing line of T if L
meets S in two diametrically opposite points.

The building block of the Antoine set A is a solid 3-torus T together with
a collection of solid 3-tori T1, . . . , Tm , contained in T and linked with each other
in the well-known manner. For details, see [Mo, Section 18] and [Se, Section 3].
We assume that the sets T1, . . . , Tm are mutually congruent and similar to T .

We show that A is completely htop (2)-NUD in R4 . By I.2.2 it suffices to
find a quasiconformal map f : R4 → R4 carrying A to a completely htop (2)-NUD
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set. We show that fA can be chosen to be a porous subset of a line. This will
prove the assertion by I.4.15 or by 4.5(2).

Fix a piercing line L of T . We fatten the solid 3-tori T and Tj to solid
4-tori C and Cj in the natural way. Since the sets Cj are no longer linked in R4 ,
there is a bilipschitz homeomorphism f0: R4 → R4 such that

(1) f0 = id outside C ,
(2) f0 | Cj is a similarity for 1 ≤ j ≤ m ,

(3) L is a piercing line of f0Cj for 1 ≤ j ≤ m .

The map f will agree with f0 outside the sets Cj . In the sets Cj , we iterate
the construction in the obvious manner. A limiting process gives a quasiconformal
homeomorphism f , which maps the Antoine set A onto a Cantor type subset
of L . It is easy to see that fA is porous in L . We have thus proved that A is
completely htop (2)-NUD in R4 . However, it is not htop (1)-NUD in R3 , since
R3 \ A is not simply connected. Observe that A is hlog (1)-NUD in R3 by 4.7.

We can modify this example to get a set A′ ⊂ R3 such that (1) A′ is com-
pletely htop (2)-NUD in R4 , (2) A′ is not htop (1)-NUD in R3 , (3) R3 \ A′

is simply connected. This set A′ is a subset of A , obtained by removing a thin
“slice of sausage” from each of the infinite number of solid 3-tori in the con-
struction of A . Then A′ is no longer topologically wild. But if the slices become
relatively thinner and thinner along the construction, A′ cannot be htop (1)-NUD
in R3 . On the other hand, A′ is completely htop (2)-NUD in R4 by 4.3.

4.13. Example. Assume that A is completely hlog (p)-NUD in Rn . Then
A is completely htop (p + 1)-NUD in Rn+1 by 4.5(4), but A need not be htop
(p)-NUD in Rn . This is the case in Example 4.12 with n = 3, p = 1. We give
another example with n = 4, p = 1.

Let A ⊂ R4 be a BT arc such that R4 \ A is not simply connected. Such an
arc exists by [Vä1 , 6.3] and [Bl, Th. 3E]. Then A is not htop (1)-NUD in R4 .
However, it is completely hlog (1)-NUD in R4 by I.5.6 and [MV, 3.9]. Thus A is
completely htop (2)-NUD in R5 .

However, the following homotopical version of 4.7 was pointed to us by the
referee.

4.14. Theorem. Suppose that T is a hyperplane in Rn and that A  T is

completely htop (p, c) -NUD in Rn and htop (1, c) -NUD in T with p ≥ 1 . Then

A is completely htop (p − 1, c1) -NUD in T with c1 = c1(c, n) .

Proof. By II.4.2, the set A is completely hlog (p, c2)-NUD in Rn with
c2 = c2(c, p) . From 4.7 it follows that A is completely hlog (p − 1, 2c2)-NUD
in T . Since A is also htop (1, c)-NUD in T , the theorem follows from II.4.5.



Uniform domains of higher order III 461

5. Miscellaneous results

5.1. Summary of Section 5. This section consists of two parts. In the first part
we consider the case where dim E = ∞ and A ⊂ E is compact or, more generally,
boundedly compact, which means that A meets every ball B(r) in a compact set.
It turns out that A has all NUD and porosity properties with universal constants.
We prove in detail the htop NUD case in 5.2 and consider the other cases in 5.3.
We thank E. Saksman for useful discussions concerning this part.

In the second part we consider L -bilipschitz maps f : Sk → Rn and give a
new proof for the fact that fSk is completely weakly hlog (n − 2, c)-NUD with
c = c(L, n) .

5.2. Theorem. Let dim E = ∞ and let A ⊂ E be boundedly compact.

Then A is htop (p, c)-NUD for each p ≥ 0 and for each c >
√

3/2 = 1.22474 . . . .

Proof. Let Ip+1 be the cube [−1, 1]p+1 , and let f : ∂Ip+1 → E \ A be
continuous. We may assume that f is piecewise linear and that d(|f |) = d > 0.
By Lemma 2.2 there is a ∈ E with |f | ⊂ B(a, d/

√
2 ). We may assume that a = 0.

Let ε > 0. Since the set A′ = A ∩B(2d) is compact, there is a finite-dimensional
linear subspace E1 of E such that |f | ⊂ E1 and A′ ⊂ B(E1, ε) . Let b be a
vector perpendicular to E1 with |b| = d . Let g: Ip+1 → E be the cone of f with
g(0) = b . We show that g satisfies the uniformity conditions in E \A if ε is small
enough.

Let x1, x2 ∈ |g| . Then xj ∈ [b, yj] for some yj ∈ |f | . Since |b − yj |2 =

d2 + |yj|2 ≤ 3d2/2 and |y1 − y2| ≤ d , we obtain |x1 − x2| ≤ d
√

3/2, and hence

d(|g|) ≤ d
√

3/2, which is the turning condition.

To prove the lens condition let c >
√

3/2 and let x ∈ |g| , z ∈ A . Then

x ∈ [b, y] for some y ∈ |f | , and hence d(x, |f |) ≤ |x − y| ≤ d
√

3/2. If z /∈ A′ , we

have |x− z| ≥ |z| − |x| ≥ 2d− d = d , and hence d(x, |f |) ≤ |x− z|
√

3/2. Assume
that z ∈ A′ , set r = d(|f |, A) , and write x = (1 − t)y + tb with 0 ≤ t ≤ 1. Then
|x− y| = t|y − b| ≤ td

√

3/2 and d(x, E1) = td(b, E1) = td . If td
√

3/2 ≤ 1
2
r , then

2|x − y| ≤ r ≤ |y − z| ≤ |y − x| + |x − z|,

and hence |x − y| ≤ |x − z| . If td
√

3/2 ≥ 1
2
r , then for small ε we get

|x − y|
|x − z| ≤

td
√

3/2

d(x, E1) − ε
=

√

3/2

1 − ε/td
≤

√

3/2

1 − ε
√

6/r
< c.

These estimates yield d(x, |f |) ≤ cd(x, A) .
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5.3. Variations. Theorem 5.2 remains true if htop is replaced by hlog. The
proof is almost the same. Furthermore, the set A is htop and hlog (p, c)-porous
for all p ≥ 0 and c > 1. The proof is easier than that of 5.2, since we can make
use of a translation in a direction perpendicular to a suitable finite-dimensional
subspace.

5.4. Bilipschitz spheres. Suppose that f : Sn−1 → Rn is θ -quasimöbius. It
is well known but not easy to prove that the components of Rn \ fSn−1 are c-
uniform domains with c = c(θ, n) . A proof based on compactness was announced
in [Vä2 , 5.10], and a direct proof with c independent of n was recently given by
P. MacManus [Ma2 ]. He gives c = 322θ(8), but his definition for the uniformity
constant is different from ours. A third proof is given in [Vä3 , 5.25]. It gives an
explicit estimate depending on n . On the other hand, it shows that these domains
are completely hlog (n − 2, c)-uniform.

We shall give a fourth proof, which is valid only in the case where f is
bilipschitz. On the other hand, it is valid for maps f : Sk → Rn , 0 ≤ k ≤ n − 1,
and gives weak hlog (p)-uniformity for all relevant p . It was inspired by the proof
of A. Dold [Do2 ] for the Jordan–Brouwer separation theorem. The basic idea is
to extend f to a bilipschitz map Rn+k → Rn+k . This is possible by the following
Lipschitz version of the well-known Klee trick; see [Ru, p. 74] and [Ma1 , 1.3].

5.5. Theorem. Let A ⊂ Rk and let f : A → Rn be M -bilipschitz. Set

A1 = A×{0} ⊂ Rk×Rn = Rk+n , and define f1: A1 → Rk+n by f1(x, 0) = (0, fx) .
Then f1 extends to an M ′ -bilipschitz map F : Rk+n → Rk+n with M ′ = M2

√
7 .

Proof. By the Kirszbraun theorem [Fe, 2.10.43], there are M -Lipschitz ex-
tensions g: Rk → Rn and h: Rn → Rk of f and f−1 , respectively. Define
G, H: Rk+n → Rk+n by G(x, y) = (x, y + gx) and H(x, y) = (x − hy, y) . The
map F = HG is an extension of f1 . We show that it is M ′ -bilipschitz. Let
z = (x, y) , z′ = (x′, y′) ∈ Rk+n . Since

F (x, y) =
(

x − h(y + gx), y + gx
)

,

we obtain by the Schwarz inequality

|Fz − Fz′|2 ≤
(

|x − x′| + |h(y + gx) − h(y′ + gx′)|
)2

+ (|y − y′| + |gx − gx′|)2

≤
(

|x − x′| + M(|y − y′| + M |x − x′|)
)2

+ (|y − y′| + M |x − x′|)2

≤
(

(1 + M2)2 + M2
)

|z − z′|2 + (1 + M2)|z − z′|2

= (2 + 4M2 + M4)|z − z′|2 ≤ 7M4|z − z′|2.

Hence F is M ′ -bilipschitz. Since F−1(x, y) =
(

x + hy, y − g(x + hy)
)

, similar
estimates show that F−1 is M ′ -Lipschitz.



Uniform domains of higher order III 463

5.6. Question. Is there a quasisymmetric version of 5.5? A direct analogue
is false, since a quasisymmetric map f : A → Rn , A ⊂ Rk , need not be Hölder
continuous. However, this cannot happen if, for example, A is connected.

5.7. Theorem. Let 0 ≤ k ≤ n − 1 and let f : Sk → Rn be M -bilipschitz.

Then fSk is completely weakly hlog (n − 2, c) -NUD with c = 35 · ( 3
2
)k+1M4 .

Proof. By 2.8, the set Sk is completely weakly hlog (k + n − 1, 5)-NUD in
Rk+1+n . Since Sk ⊂ Rk+1 , 5.5 gives an M2

√
7-bilipschitz extension F : Rk+1+n →

Rk+1+n of f1 . Since an L -bilipschitz map increases uniformity constants at most
by a factor L2 , fSk is completely weakly hlog (k+n−1, 35M4)-NUD in Rk+1+n .
Applying Theorem 4.10, with E = Rk+1+n , E1 = {0} ×Rn , p = k + n− 1, gives
the theorem.

5.8. Remarks. 1. Theorem 5.7 remains true if Sk is replaced by Rk and c
by 16 · ( 3

2
)kM4 . In the proof we replace 2.8 by 2.7.

2. In these results, the set fSk or fRk is hlog (p, c)-NUD for p 6= n−k−1,
0 ≤ p ≤ n − 2.

5.9. Corollary. If f : Sn−1 → Rn is M -bilipschitz, the components of Rn \
fSn−1 are c-uniform domains with c = 35 · ( 3

2
)nM4 .
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