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Abstract. We show that a homeomorphism f of euclidean n -space is bilipschitz continuous
if and only if there is a constant M such that

|M(f(A)) −M(A)| ≤M

for all (spherical) annuli A , where M(A) is the modulus of A . We also present a local version of
this result and give an application concerning absolute continuity on lower dimensional sets.

1. Introduction and results

Let n ≥ 2 be an integer and f a homeomeorphism of Rn . There are
three conceptually different but equivalent characterizations of quasiconformal-
ity, namely the geometric definition (using the modulus of curve families or rings),
the metric definition (distortion of relative distances) and the analytic definition
(absolute continuity on lines together with the relation |Df |n ≤ K|Jf | a.e. be-
tween the norm of the derivative and the Jacobian). The latter two definitions
have obvious analogues for bilipschitz maps, and the purpose of this paper is to
give a “geometric definition” of bilipschitz maps. Let us recall some definitions
first.

It is usual to call a domain A ⊂ Rn a ring if the complement of A (with
respect to the n -sphere R

n
) has exactly two components. For a ring A , consider

the family Γ of curves in A that join the components of the complement of A
and let M(Γ) denote the modulus of the curve family Γ, that is

M(Γ) = inf
ρ

∫

Rn

ρn dx,

where the infimum is over all non-negative Borel functions ρ: Rn → R∪{∞} with
the property that

∫

γ
ρ ds ≥ 1 for all γ ∈ Γ. Here dx is Lebesgue n -measure and ds

arclength. If A is a spherical ring {r < |x| < R} then M(Γ) = ωn−1

(

log(R/r)
)1−n
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where ωk is the Lebesgue measure of the sphere Sk , see [Vä, 7.5]. The modulus
of a ring A is defined by

M(A) =

(

M(Γ)

ωn−1

)1/(1−n)

.

Thus M(A) = log(R/r) for spherical rings with radii r < R .
With the usual “geometric” definition of K -quasiconformal maps [Vä, 13.1]

a homeomorphism is K -qc if and only if

(1.1)
M(A)

K ′
≤M

(

f(A)
)

≤ K ′M(A)

for all rings A , where K ′ = K1/(n−1) [Vä, 36.2]. For a qc-map f , we denote by
‖f‖qc the smallest number K such that K ′ satisfies (1.1) for all rings, that is the
smallest K such that f is K -qc.

A homeomorphism f of Rn is called L-bilipschitz if

(1.2)
|x− y|

L
≤ |f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ Rn . We refer to the smallest L satisfying (1.2) as the bilipschitz
norm ‖f‖bl of f . Bilipschitz maps are quasiconformal, whereas the converse is
false. The counterpart of (1.2) for quasiconformal maps is the metric definition
[Vä, 34.1]. Specialized to homeomorphisms of Rn it says that f is K -qc if and
only if there is a number H <∞ so that

(1.3)
max|y−x|=r |f(y)− f(x)|

min|y−x|=r |f(y) − f(x)|
≤ H

for all x ∈ Rn and all r > 0. The numbers H and K are bounded in terms
of each other and n . It is well known that the right hand side of (1.3) may be
replaced by the lim supr→0 of the same expression. A beautiful recent result of
Heinonen and Koskela [HK] says that limsup may even be replaced by liminf.

The analytic definition of qc-maps [Vä, 34.6] has an analog in the bilipschitz
world, too. Namely, a homeomorphism f is L -bilipschitz if and only if f is ACL
and the derivative has bounded dilatation a.e., that is

1

L
|y| ≤

∣

∣

(

Df(x)
)

y
∣

∣ ≤ L|y|

for a.e. x ∈ Rn and all y ∈ Rn , y 6= 0.
In this paper, we will show that the geometric definition (1.1) has a counter-

part for bilipschitz maps, and give an application.
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Theorem 1.1. Let f be a homeomorphism of Rn . Then f is bilipschitz if

and only if there is a constant M such that

(1.4)
∣

∣M
(

f(A)
)

−M(A)
∣

∣ ≤M

for all rings A ⊂ Rn .

If f is bilipschitz then M is bounded in terms of ‖f‖bl and n only. Con-

versely, if (1.4) holds for all rings A , and if f fixes two points, then f is L -

bilipschitz with L depending on M and n only.

The proof shows that rings can be replaced by spherical rings in Theorem 1.1.
In Section 2 (Theorem 2.2) we will also show that M is small if and only if ‖f‖bl

is close to 1 (provided f fixes two points).
Note that conformal linear transformations of Rn satisfy (1.4) with M = 0,

but can have arbitrarily large bilipschitz norm. Thus a normalization such as
f(0) = 0, f(1) = 1 is necessary in order to obtain a bound for ‖f‖bl .

Note further that it is essential to consider rings in Theorem 1.1. The corre-
sponding statement with rings replaced by rectangles is false.

That bilipschitz maps satisfy (1.4) (for spherical rings in n = 2) has been
observed and used already in [FH]. For the converse, note that there is no regularity
of f assumed in Theorem 1.1. The first part of its proof consists in showing that
f is quasiconformal if (1.4) holds. Taking this for granted, Theorem 1.1 follows
from

Theorem 1.2. Let f be a K -quasiconformal homeomorphism of Rn and

E ⊂ Rn any set. Assume that there is a constant M such that
∣

∣M
(

f(A)
)

−M(A)
∣

∣ ≤M

holds for all spherical rings A centered at points of E with the property that both

boundary spheres meet E . Then the restriction of f to E is bilipshitz. If f fixes

two points of E , then the bilipschitz norm (on E ) is bounded by K , M and n
only.

For many questions concerning bilipschitz maps, such as factorization ques-
tions, it would be desirable to have a characterization of bilipschitz maps in terms
of analytic quantities such as the Beltrami coefficient µf (z) = ∂f(z)/∂f(z) in the
plane. Beginning with the work of Carleson [Ca], several sufficient conditions for a
quasiconformal homeomorphism of R2 to be absolutely continuous (with respect
to one dimensional Hausdorff measure), when restricted to R , have been given,
see [Be], [Se], [AZ], [Dy] and the references therein, and [FKP] for generalizations.
These results have in common that usually an a priori assumption on the regularity
of f(R) (for instance f(R) = R) is made, as well as a certain control on |µf (z)|
as z approaches R . Not much seems to be known (and can be said) for arbitrary
sets E instead of R . However, there is a classical Dini-type condition on the di-
latation implying the modulus estimate (1.4). When combined with Theorem 1.2,
it yields Corollary 1.3 below which is best possible.
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For orientation preserving K -quasiconformal homeomorphisms f of R2 , let
µf = ∂f/∂f be the Beltrami coefficient and set

If (x) =

∫

{|y−x|≤1}

|µf (y)|

|x− y|2
dy.

Corollary 1.3. Let f : R2 → R2 be quasiconformal , E ⊂ R2 bounded. If

If (x) ≤M for some M > 0 and all x ∈ E , then f is bilipschitz on E .

In particular, if If (x) <∞ for all x ∈ E , then f is absolutely continuous for
Hausdorff-measure Ht : For t ≥ 0,

(1.5) Ht(E) = 0 if and only if Ht

(

f(E)
)

= 0.

This is sharp in the following sense:

Theorem 1.4. Let h: [0,∞) → [0,∞) be any decreasing function with

h(t)/t→ 0 as t→ 0 and let 0 < d < 2 . Then there is M > 0 , a compact set E ⊂
R2 and a quasiconformal homeomorphism f of R2 such that 0 < Hd(E) < ∞ ,

Hd

(

f(E)
)

= 0 and

Ĩf (x) ≡

∫

{|y−x|≤1}

h
(

|µf (y)|
)

|x− y|2
dy ≤M

for all x ∈ E .

In the next section, we discuss the relation between modulus and euclidean
quantities, prove Theorems 1.2 and 1.3 and discuss the case that ‖f‖bl or M is
small (Theorem 2.2 below). Section 3 is devoted to a discussion of Corollary 1.3
and the construction of an example as stated in Theorem 1.4.

I would like to thank the referee for his comments, leading to an improvement
of the exposition.

2. Bilipschitz maps

Consider a ring A ⊂ Rn . The idea behind Theorems 1.1 and 1.2 is the
well-known fact that the modulus of A can be estimated by euclidean quantities.
To make this precise, denote by A1 , respectively A2 , the bounded, respectively
unbounded, component of Rn \A and set r(A) = diamA1 , R(A) = dist(A1, A2) .
The following lemma is just a combination of well-known estimates.

Lemma 2.1. For each n ≥ 2 there is a constant C such that

(2.1)

∣

∣

∣

∣

M(A) − log

(

1 +
R(A)

r(A)

)
∣

∣

∣

∣

≤ C

for all rings A ⊂ Rn .
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Notice that

M(A) ≥ log
R(A)

r(A)

for R(A) > r(A) by the monotonicity of the modulus (with respect to inclusion),
see [Vä, 11.4]. The lower bound M(A) − log

(

1 + R(A)/r(A)
)

> −C of (2.1)
(with C = log 2) follows at once. The corresponding upper bound is deeper. For
n = 2 it is not hard to prove using the Koebe distortion theorem. In general
(n ≥ 2) it follows from the monotonicity of the modulus under spherical sym-
metrization [Ge], together with an estimate of the modulus of the Teichmüller
ring. See [Ge, Theorem 4] for n = 3 and for instance [Vu, Chapter 2] for estimates
in all dimensions.

Proof of Theorem 1.2. Composing with a conformal transformation of Rn ,
we may assume that f fixes two points of E . Of course, the bilipschitz norm
could change.

Let a, b ∈ E with f(a) = a , f(b) = b and consider a conformal transforma-
tion T of Rn with T (a) = 0, T (b) = 1 (where we write 1 for the unit vector
(1, 0, . . . , 0) of Rn ). Then T ◦ f ◦T−1 fixes 0 and 1, and has the same bilipschitz
norm (on T (E)) as f (on E ). We thus may assume f(0) = 0, f(1) = 1 and
0, 1 ∈ E .

First we show that f is bilipschitz at 0, that is

(2.2) L−1|x| ≤ |f(x)| ≤ L|x|

for x ∈ E . As f was supposed to be quasiconformal, it satisfies (1.3). A formally
stronger but equivalent statement is that there is an increasing homeomorphism
φ: (0,∞) → (0,∞) (depending on K and n only) such that

(2.3) |f(x) − f(z)| ≤ φ(t)|f(y)− f(z)|

whenever |x− z| ≤ t|y − z| (see [TV1]).
From this (2.2) (with L depending on K and n only) is immediate if 1

2 <
|x| < 2 (even without the restriction x ∈ E ).

We will write a ∼ b (respectively a . b) if |a/b| is bounded above and below
(respectively bounded above) by positive constants depending on K and n only.

For |x| ≤ 1
2
, x ∈ E , let A be the spherical annulus with radii |x| and 1,

centered at 0. Then both boundary components of A meet E . By quasisymmetry
(2.3) with z = 0, r(f(A)) ∼ |f(x)| . 1 and R

(

f(A)
)

∼ 1 (since f(1) = 1).
Together with (2.1) we get

∣

∣

∣

∣

log
|f(x)|

|x|

∣

∣

∣

∣

=

∣

∣

∣

∣

log
1

|x|
− log

1

|f(x)|

∣

∣

∣

∣

.
∣

∣M(A) −M
(

f(A)
)
∣

∣ + 1

and conclude (2.2). The case |x| ≥ 2 is similar (take the annulus with radii 1
and |x|).
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The same argument, switching the roles of 0 and 1, yields

(2.4) L−1|x− 1| ≤ |f(x) − 1| ≤ L|x− 1|.

Now let x, y ∈ E \ {0} be arbitrary. Choose conformal linear transformations
T , S of Rn with T (1) = x , S

(

f(x)
)

= 1 and set F = S ◦ f ◦T . Then F (0) = 0,
F (1) = 1, and by the invariance of the modulus under conformal mappings

∣

∣M
(

F (A)
)

−M(A)
∣

∣ =
∣

∣M
(

f
(

T (A)
))

−M
(

T (A)
)
∣

∣ ≤M

for all annuli A centered at points of T−1(E) with the property that both bound-
ary components meet T−1(E) . Hence (2.4) applies to F and T−1(E) . In partic-
ular

L−1|T−1(y) − 1| ≤
∣

∣F
(

T−1(y)
)

− 1
∣

∣ =
∣

∣S
(

f(y)
)

− S
(

f(x)
)
∣

∣ ≤ L|T−1(y) − 1|.

Using the linearity of S and T , and |T (u)| = |x| |u| , |S(u)| = |u|/|f(x)| for all
u ∈ Rn \ {0} we obtain

L−1 |y − x|

|x|
≤

|f(y)− f(x)|

|f(x)|
≤ L

|y − x|

|x|
.

Using (2.2) we conclude

|x− y|

L2
≤ |f(x) − f(y)| ≤ L2|x− y|

and are done.

Proof of Theorem 1.1. If f is L -bilipschitz and A a ring, then L−1r(A) ≤
r
(

f(A)
)

≤ Lr(A) and L−1R(A) ≤ R
(

f(A)
)

≤ LR(A) , thus (2.1) yields

∣

∣M(A)−M
(

f(A)
)
∣

∣ ≤ 2C+

∣

∣

∣

∣

log

(

1+
R(A)

r(A)

)

− log

(

1+
R

(

f(A)
)

r
(

f(A)
)

)
∣

∣

∣

∣

≤ 2(C+logL).

The converse follows from Theorem 1.2, once we have shown that f is K -
quasiconformal with K depending on M only. This will be achieved by verifying
the metric definition (1.3).

Set ε = exp(−M − 2C) where C is from (2.1) and M from (1.4). Given
x ∈ Rn and r > 0, consider the spherical rings A1 = A(x, rε, r) , A2 = A(x, r, r/ε)
and A3 = A(x, rε, r/ε) , where we used the notation A(x, r, R) = {y ∈ Rn : r <
|y − x| < R} . Write Rj and rj for R

(

f(Aj)
)

and r
(

f(Aj)
)

.
By Lemma 2.1 and (1.4) we have

C ≤ log
(

1 +
Rj

rj

)

≤ 3M + 5C

and conclude

c−1 ≤
Rj

rj
≤ c

for j = 1, 2, 3, with some c > 1 depending on n and M only. Now

max|y−x|=r |f(y)− f(x)|

min|y−x|=r |f(y)− f(x)|
≤

r2
R1

≤ c
r2
r1

= c
r2
r3

≤ c2
r2
R3

≤ c2
r2
R2

≤ c3

and the proof is finished.
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We now discuss the dependence of ‖f‖bl and M if one of the quantities is
small. For a bilipschitz map f of Rn , denote by M(f) the smallest M such that
(1.4) holds for all spherical rings.

Theorem 2.2. For each n ≥ 2 there are continuous functions φ: [1,∞) →
[0,∞) and ψ: [0,∞) → [1,∞) with φ(1) = 0 , ψ(0) = 1 , such that

M(f) ≤ φ(‖f‖bl), ‖f‖bl ≤ ψ
(

M(f)
)

for all bilipschitz maps f of Rn that fix two points.

In the special case M = 0, the conclusion is that 1-quasiconformal homeo-
morphisms of R

n
are Möbius transformations (since the isometries of Rn are

conformal). But our proof relies on this well-known result of Gehring and Reshet-
njak. See [TV2] for an elementary proof and references.

Proof. First consider a bilipschitz homeomorphism f of Rn with L = ‖f‖bl

close to 1. Then f is quasiconformal with ‖f‖qc ≤ L2n−2 . If A is a spherical
ring with M(A) ≤ 2, we obtain (see (1.1)) M

(

f(A)
)

−M(A) ≤ (K ′ − 1)M(A) ,

M(A) −M
(

f(A)
)

≤ (K ′ − 1)M
(

f(A)
)

≤ K ′(K ′ − 1)M(A) and conclude

∣

∣M
(

f(A)
)

−M(A)
∣

∣ ≤ 2L2(L2 − 1).

For M(A) > 2 we use the monotonicity of the modulus as in [FH]: If A = A(x, r, R)
is a spherical ring with R/r > e2 , then

A
(

f(x), r/L,RL
)

⊂ f(A) ⊂ A
(

f(x), Lr, R/L
)

(provided that L < e) and

∣

∣M
(

f(A)
)

−M(A)
∣

∣ ≤ 2 logL

follows.
For the opposite direction, consider a homeomorphism f with M(f) close to

zero that fixes two points. We may assume f(0) = 0, f(1) = 1.
Observe first that ‖f‖qc is close to one: For (affine) linear maps this is

easy, using a normal family argument. As the differential y 7→ Df(x)y satisfies
M

(

Df(x)
)

≤M(f) in all points of differentiability of f , hence almost everywhere
(we have already proven that f is bilipschitz), the claim follows.

The proof of Theorem 1.2 shows that it suffices to show

(2.5) L−1|x| ≤ |f(x)| ≤ L|x|

for all x ∈ Rn with L close to one. Again we distinguish three cases: If 1
2 < |x| <

2, (2.5) follows at once from the aforementioned fact that 1-quasiconformal maps
of Rn are conformal, together with a normal family argument.
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To deal with the other cases, we need an improved version of Lemma 2.1
applying to rings which are almost spherical: For each n ≥ 2 there is a continuous
function C: [1, ε0) → [0,∞) with C(1) = 0 such that

∣

∣

∣

∣

M
(

f(A)
)

− log

(

1 +
R

(

f(A)
)

r
(

f(A)
)

)
∣

∣

∣

∣

≤ C(‖f‖qc)

for all spherical rings A ⊂ Rn with M(A) > log 2 and all quasiconformal maps f
of Rn . This is easily proven using monotonicity of the modulus (under inclusion)
as above, together with the conformality of 1-quasiconformal maps and normal
families. Now (2.5) (and the theorem) follows as in the proof of Theorem 1.2.

3. Absolute continuity

Proof of Corollary 1.3. By [LV, Chapter V.6],

∣

∣M
(

f(A)
)

−M(A)
∣

∣ ≤ C(K)

∫

A

|µf (y)|

|x− y|2
dy

for rings A = A(x, r, R) ⊂ R2 and orientation preserving K -quasiconformal maps
of A . Thus the assumptions of Theorem 1.2 are satisfied if If (x) ≤ M for all
x ∈ E and if E is bounded. Hence f is bilipschitz on E by Theorem 1.2.

The assumption If (x) <∞ is very strong and implies (Teichmüller, Wittich
and Belinskij) that f is conformal at x , see [LV, Chapter V.6]. Notice that (1.5)
already follows from this (without using Corollary 1.3).

If f is a quasiconformal homeomorphism of the upper half plane H and
if µ(t) = ess sup{z=x+iy:0<y<t}|µ(z)| , then the condition If (x) < ∞ is slightly

weaker than the condition
∫ 1

0
µ(t)/t dt < ∞ . Carleson showed in [Ca] that the

latter condition implies smoothness of the extension of f on R , and that already
∫ 1

0
µ(t)2/t dt < ∞ implies absolute continuity (even |f ′| ∈ A∞ ) on R . The im-

provement in the exponent is possible because of the assumption that f(R) = R .
This assumption, as well as the integral condition, has been somewhat weakened
(see the references given in the introduction), but the exponent 2 is best possible.
Roughly speaking, Theorem 1.4 says that the exponent 1 of |µ| in If is best
possible in order to conclude (1.5).

Proof of Theorem 1.4. Choose 0 < ε < 1
4 , an integer 2 ≤ n ≤ c/ε2 (where c is

an absolute constant) and pick n disjoint closed disks D1, . . . , Dn ⊂ {z : |z| < 1
4}

of radius ε . Let ak denote the midpoint of Dk and set φk(z) = εz + ak . Then
the φk are contractions with φk(D) = Dk , where D denotes the unit disk.

Let E be the (unique) compact set with E =
⋃

1≤k≤n φk(E) . Then the

Hausdorff dimension d of E equals its similarity dimension: nεd = 1, that is

(3.1) d =
logn

| log ε|
.
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By choosing ε and n appropriately, every dimension d between 0 and 2 can be
achieved this way. Furthermore, E has finite and nonzero d -dimensional Hausdorff
measure. E can be obtained in the following way: Let Fm be the set of all
compositions of m of the functions φ1, . . . , φn so that Fm has nm elements. Then
the sequence

⋃

f∈Fm

f(D) of compact sets decreases to E as m → ∞ . See [Fa,
Chapter 8.3] for these facts.

Define a family gs (0 < s < 1) of (1 + s)-quasiconformal homeomorphism
of D by gs(z) = z|z|s for 1

2 < |z| < 1 and gs(z) =
(

1
2

)s
z for |z| ≤ 1

2 . Given a
decreasing sequence sk < 1 with limk→∞ sk = 0, we define an infinite sequence
fm of (1 + s1)-quasiconformal homeomorphisms of D inductively as follows:

Let f1 = gs1
. Obtain f2 from f1 by modifying f1 in ∪Dk only: For each

k = 1, 2, . . . , n , set f2 = f1 ◦ φk ◦ gs2
◦ φ−1

k on Dk . As f1 is linear in |z| < 1
2 , it

maps each disk Dk to a disk D′
k (of radius

(

1
2

)s1
ε), and all we have done is to glue

a scaled version of gs2
into Dk . Notice that f2 is still (1 + s1)-quasiconformal

in D : It is (1 + s1)-qc in
{

1
2
< |z| < 1

}

, (1 + s2)-qc in ∪Dk and linear in
{

|z| < 1
2

}

\ ∪Dk .
Assume that fm is already constructed, is (1+s1)-qc in D and linear in each

disk f(D) for f ∈ Fm . Then define fm+1 to coincide with fm on D\
⋃

f∈Fm

f(D) ,
and for each f ∈ Fm define

fm+1 = fm ◦ f ◦ gsm+1
◦ f−1

on f(D) . Now fm+1 is (1 + sm+1)-quasiconformal in each disk f(D) for f ∈ Fm

and linear in each disk f(D) for f ∈ Fm+1 , and the inductive step is complete.
Consider the limiting homeomorphism f∞ = limm→∞ fm . It is (1 + s1)-qc

and maps the disks f(D) (f ∈ Fm ) of radius εm to disks of radius

(3.2) rm = εm
(

1
2

)(s1+···+sm)
.

Extend f∞ to C by the identity outside D , call the resulting map f , and
let us estimate the integral

Ĩf (x) =

∫

{|y−x|≤1}

h
(

|µf (y)|
)

|x− y|2
dy

for x ∈ E . For each m ≥ 1, f is (1+sm)-quasiconformal in Am = A(x, εm+1, εm)
and we get the estimate |µf | ≤ sm in Am . Thus

Ĩf (x) ≤ C + 2π
(

log
1

ε

)

∑

m≥1

h(sm).

Choose the sequence sm in such a way that
∑

h(sm) converges but
∑

sm diverges
(assuming that h(t)/t → 0 as t → 0). Then (3.2) implies Hd

(

f(E)
)

= 0 for the
d -dimensional Hausdorff measure, where d is the Hausdorff dimension of E given
by (3.1).
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