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Abstract. Let Fg be a compact Riemann surface of genus g . A symmetry S of Fg is
an anticonformal involution acting on Fg . The fixed-point set of a symmetry is a collection of
disjoint simple closed curves, called the mirrors of the symmetry. The number of mirrors |S| of
a symmetry of a surface of genus g can be any integer k with 0 ≤ k ≤ g + 1. However, if a
Riemann surface Fg admits a symmetry S1 with k mirrors then work of Bujalance and Costa [1]
and Natanzon [9] on symmetries with g+1 mirrors suggest that there may possibly be restrictions
on the number of mirrors of another symmetry S2 of Fg . In the first three sections of this work
we show that the number of such restrictions is few and only occur if one of the symmetries has
g+1 or 0 mirrors. The main result of Sections 1–3 is Theorem 1.1 below. In Section 4 we study a
finer classification than the number of mirrors, namely the species of a symmetry. The k mirrors
of a symmetry S may or may not separate the surface Fg into two non-empty components. If
the mirrors do separate, then we say that S has species +k , and if the mirrors do not separate
then we say that the species is −k . (See [5].) The species of S determines S up to topological
conjugacy. In Section 4 we investigate which pairs of species can occur for two symmetries S1 , S2

of Fg . There are many more restrictions than when we just ask for the number of mirrors.

1. Introduction

Let Fg be a compact Riemann surface of genus g ≥ 2. A symmetry S of
Fg is an anticonformal involution acting on Fg . By Harnack’s theorem the fixed
points set of S consists of k ≤ g + 1 simple closed curves, called mirrors. The
number of mirrors of a symmetry S is denoted by |S| .

Using Hoare’s theorem [6] Bujalance, Costa and Singerman [4] gave a method
to calculate the total number of mirrors of two symmetries S1 , S2 acting on a
Riemann surface of genus g . The work there suggests that there may be some
restrictions on the possible pairs of integers (|S1|, |S2|) that can occur. In fact, we
show that these restrictions are few and in Theorems 2.1, 2.2 and 3.2 we find all
pairs (|S1|, |S2|) that can occur. These results can be summarised as follows.
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Theorem 1.1. Let k1 , k2 be two integers with 0 ≤ k1 ≤ k2 ≤ g + 1 . Then

we can find a Riemann surface Fg of genus g admitting a pair of symmetries S1 ,

S2 with |S1| = k1 , |S2| = k2 whenever 1 ≤ k1 ≤ k2 ≤ g or when

k2 = g + 1 with g even and k1 = 0, 1 or k1 ≡ g + 1 mod 2 , or

k2 = g + 1 with g odd and k1 = 0, 1, 2 or k1 ≡ g + 1 mod 2 , or

k1 = 0 with g even and k2 = 0 , or k2 is odd or

k1 = 0 with g odd and 0 ≤ k2 ≤ g + 1 arbitrary.

No pairs k1, k2 outside of this list can occur.

The results where k2 = g+1 follow from work of Natanzon [9] and of Bujalance
and Costa [1], (see Theorem 2.1). Further work of Natanzon [11] shows that the
restrictions for a surface admitting more than two conjugacy classes of symmetries
are likely to be more severe. For example it is shown there that if S1 , S2 , S3 are
three non-conjugate symmetries of a surface of genus g then |S1| + |S2| + |S3| ≤
2g + 4.

1.1. Real algebraic curves. One motivation for this study comes from real
algebraic geometry. Whereas a compact Riemann surface corresponds to a com-
plex algebraic curve, a compact symmetric surface corresponds to a real algebraic
curve, each conjugacy class of symmetries in Aut(Fg) , (the group of conformal
and anticonformal automorphisms of Fg ), corresponding to a different real model
of the curve. The mirrors of the symmetry correspond to the components of the
real curve. Thus, if there are two conjugacy classes of symmetries, S1 , S2 with
|S1| = k1 and |S2| = k2 then we have exactly two real models for the curve, one
with k1 components and one with k2 components.

1.2. Preliminaries on NEC groups and Riemann surfaces. A Rie-
mann surface of genus g > 1 is the quotient of the hyperbolic plane H by a
Fuchsian group, a discrete subgroup of Aut+(H) without elliptic elements. A dis-
crete subgroup of Aut(H) with compact quotient is called an NEC (non-Euclidean

crystallographic) group. Given an NEC group Γ the subgroup of Γ consisting of
the orientation-preserving elements is called the canonical Fuchsian group of Γ. It
is denoted by Γ+ . The algebraic structure of an NEC group Γ and the geometric
structure of its quotient orbifold H/Γ are determined by the signature of Γ:

(1.1) s(Γ) =
(
h;±; [m1, . . . , mr]; {(n11, . . . , n1s1

), . . . , (nk1, . . . , nksk
)}

)
.

The quotient space H/Γ is an orbifold with underlying surface of genus h with r
cone points and k mirror lines, each with sj ≥ 0 corner points. The signs + or −
correspond to orientable or non-orientable orbifolds respectively. The integers mi

are called the proper periods of Γ, they are the orders of the cone points of H/Γ.
The k brackets (nj1, . . . , njsj

) are the period cycles of Γ and the integers njh are
the link periods of Γ, the orders of the corner points of H/Γ.

Γ is called the group (or fundamental group) of the orbifold H/Γ.
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Associated to the signature (1.1) there is a presentation for Γ with generators

x1, . . . , xr,

e1, . . . , ek,

cij , 1 ≤ i ≤ k, 0 ≤ j ≤ si,

a1, b1, . . . , ah, bh if H/Γ is orientable or

a1, . . . , ah, if H/Γ is non-orientable.

and relators

xmi

i , i = 1, . . . , r,

c2ij−1, c2ij , (cij−1cij)
nij , i = 1, . . . , k, j = 0, . . . , si,

ci0e
−1
i cisi

ei,

x1x2 · · ·xre1 · · · eka1b1a
−1
1 b−1

1 · · ·a−1
h b−1

h , if H/Γ is orientable or

x1x2 · · ·xre1 · · · eka
2
1 · · ·a

2
h, if H/Γ is non-orientable.

These last two relators are sometimes called the long relators, which give rise
to the long relations by putting them equal to 1. In these presentations, the
only elements of finite order are the elliptic elements and the reflections. The
elliptic elements are conjugates of powers of the xi or cij−1cij and the reflections
are conjugates of the cij . The ei generators are orientation preserving. They
are called the connecting generators. An NEC group without elliptic elements is
called a surface group. If Γ is an NEC group then H/Γ is a Klein surface, i.e.,
a surface with a dianalytic structure. A Klein surface whose complex double has
genus greater than one can be expressed as H/Γ where Γ is an NEC surface group.

The hyperbolic area of the quotient orbifold is:

(1.2) µ(Γ) = 2π

(
εh− 2 + k +

r∑

i=1

(
1 −

1

mi

)
+

1

2

k∑

i=1

si∑

j=1

(
1 −

1

nij

))
,

where ε = 2 if there is a + sign and ε = 1 if there is a − sign. If Γ∗ is a subgroup
of Γ of finite index then the Riemann–Hurwitz formula holds:

(1.3) |Γ : Γ∗| =
µ(Γ∗)

µ(Γ)
.

Let S be a symmetry acting on a Riemann surface F with group Γ. ThenF/〈S〉
is a Klein surface that can be represented as H/Λ where Λ is a surface group with
signature

s(Λ) =
(
h0;±; [ ]; {( )k}

)
,
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and |Λ : Γ| =2. The notation means that there are k empty period cycles in Λ.
As H/Λ = F/〈S〉 , it follows that k is the number of mirrors of S .

We assume that a Riemann surface F with group Γ admits two symmetries
S1 and S2 , with k1 and k2 mirrors respectively, such that S1S2 has order n .
Then S1 and S2 generate a dihedral group Dn of order 2n . Let ∆ be the NEC
group generated by all the liftings to H of the elements of Dn . Then there is
an epimorphism θ: ∆ → Dn such that Γ = Ker(θ) . Note that Γ is a Fuchsian
surface group. If Λ1 = θ−1(〈S1〉) and Λ2 = θ−1(〈S2〉) , then

s(Λ1) =
(
h1;±; [ ]; {( )k1}

)
, and s(Λ2) =

(
h2;±; [ ]; {( )k2}

)
,

where
|∆ : Λ1| = |∆ : Λ2| = n and |Λ1 : Γ| = |Λ2 : Γ| = 2

Notation. From now on Dn is the group with presentation

(1.4) 〈S,Q | S2, Qn, (SQ)2〉,

where we identify S1 with S and S2 with SQ .

1.3. Strategy. Our aim is to compute the integers k1 , k2 , the numbers of
mirrors of S1 , S2 respectively. Now Λ1 and Λ2 are subgroups of the NEC group
∆ and the permutation representation of ∆ on the Λi -cosets is known, being the
same as the permutation representation of Dn on the 〈Si〉 -cosets, ( i = 1, 2). We
can now use Hoare’s theorem [6] which gives an algorithm to compute signatures
of subgroups of NEC groups to calculate k1 , k2 . The use of Hoare’s theorem in
this context is explained in detail in [4]. As every reflection of Λi , (i = 1, 2) is
conjugate to a reflection of ∆, the period cycles of Λ are ‘induced’ by the period
cycles of ∆. (Topologically, we have an orbifold covering H/Λi → H/∆ and we
have to examine how the holes of H/∆ lift.) In [4] a graphical method was used to
facilitate the application of Hoare’s techniques in our context. We have modified
this slightly in the description that we now give.

1.4. Hoare diagrams. If θ: ∆ → Dn is the homomorphism above we
associate a Hoare diagram to every period cycle of ∆, the purpose being to be
able to read off from the diagram the number of period cycles of Λ1 and Λ2 and
hence the number of mirrors of S1 and S2 . The diagrams will have vertices and
edges of two possible colours which we call blue and red and (as we shall see) the
number of mirrors of S1 will be the number of blue components and the number
of mirrors of S2 will be the number of red components. It turns out that the total
number of mirrors is found just by adding the number of mirrors coming from each
period cycle so we just need do the calculations for groups with one period cycle.
Let us assume that ∆ has signature

(
0; +; [ ]; {(n1, n2, . . . , ns)}

)
,
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and presentation

〈c1, . . . , cs | c21, . . . , c
2
s, (c1c2)

n1 , . . . , (csc1)
ns〉.

i.e., ∆ is the group generated by reflections in the sides of a hyperbolic polygon
with angles π/n1, π/n2, . . . , π/ns .

Case 1. Here we assume that at least one of the link periods is even. It then
follows that n is even. The Hoare diagram of the pair (∆, θ) is a coloured graph
whose vertices are those of a regular s -sided polygon. We label the s vertices
with the generating reflections c1, . . . , cs and colour the vertex cj blue or red if
θ(cj) = SQuj with uj even or odd respectively. The edges of the polygon are
labelled with the link periods n1, . . . , ns with the edge joining the vertices ci and
ci+1 labelled ni . If we have two consecutive vertices ci and ci+1 with the same
colour then we colour the edge joining them by that colour if and only if ni is
odd. By [4], the number of period cycles of Λ1 is the number of blue components
and the number of period cycles of Λ2 is the number of red components. These
numbers are just the numbers of mirrors of S1 and S2 respectively.

If the above period cycle is just part of a signature then the situation is slightly
different in that we have a connecting generator e and the relations

(c0c1)
n1 = (c1c2)

n2 = · · · = (cs−1cs)
ns = ec0e

−1cs = 1.

We now consider a polygon with s+1 vertices c0, c1, . . . , cs . We consider conjugate
reflections as representing the same vertex so that ec0e

−1 represents the same
vertex as c0 . Then the relation ec0e

−1cs = 1 implies that c0 and cs are joined
by an edge of the same colour as the vertices c0 and cs . Note that as c0 and cs
are conjugate they must have the same colour. Thus the number of components of
each colour is the same if the period cycle is on its own or just part of a signature.

Case 2. An empty period cycle. We split this up in two subcases.
2(i) n is even. The generators and relations associated to an empty period

cycle are

〈c, e | c2 = ece−1c = 1〉.

Suppose that θ(c) = S . Then as e and c commute, θ(e) = 1 or Qn/2 . In the
first case we find that there are two induced period cycles on Λ1 and none on Λ2

and in the second case we find that there is one induced period cycle on Λ1 and
none on Λ2 . As the empty period cycle case of Hoare’s theorem requires careful
interpretation and as there are some misprints in [4], we outline a proof of these
results.

Writing Li = 〈Si〉 (i = 1, 2), then

Dn = L1 + L1Q+ · · ·+ L1Q
n−1.
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Let g ∈ ∆ obey θ(g) = Q . Then

∆ = Λ1 + Λ1g + · · · + Λ1g
n−1.

We are looking for the number of conjugacy classes of c in Λ1 . Every conjugate
of c in ∆ has the form gkcg−k and gkcg−k ∈ Λ1 if and only if QkSQ−k = S ,
that is if and only if k = 0 or n/2. Thus Λ contains at most two conjugacy
classes represented by c and gn/2cg−n/2 . If these are conjugate in Λ1 then for
some λ ∈ Λ we have

λcλ−1 = gn/2cg−n/2,

so that λ−1gn/2 ∈ centralizer (c) . As centralizer (c) is just the group generated by
e and c [12 ] we find that gn/2 = λek or gn/2 = λekc . Applying θ we find that
Qn/2 = 1 or S , which is false so that we have two conjugacy classes of reflections
in Λ1 and hence there are two induced period cycles in Λ1 . In the second case
θ(e) = Qn/2 and a similar argument shows that there is now only one induced
period cycle in Λ1 . In both cases it is easy to show that there are no induced
period cycles in Λ2 .

2(ii) n is odd. A similar method shows that each empty period cycle induces
one empty period cycle on Λ1 and one on Λ2 .

Graphical representation. (i) n even. If θ(e) = 1, and θ(c) = S , or more gen-
erally, θ(c) = SQh , h even, then our graph consists of two disjoint blue vertices;
if θ(e) = 1 and θ(c) = QSk , k odd, then our graph just consists of two disjoint
red vertices. If θ(e) = Qn/2 and θ(c) = SQh , h even, then our graph consists of
one blue vertex; if θ(e) = Qn/2 and θ(c) = SQk , k odd, then our graph consists
of one red vertex. (ii) n odd. Here the graph consists of one red and one blue
vertex.

Case 3. All link periods n1, . . . , ns are odd. These are called odd period cycles

in [4].
3(i) n is even. Since θ(cj−1cj) has odd order, then θ(cj) = SQuj , where uj

is either even for 1 ≤ j ≤ s or uj odd for 1 ≤ j ≤ s . Therefore an odd period
cycle induces empty period cycles either in Λ1 or in Λ2 , according to the parity
of uj in θ(cj) = SQuj .

Similar arguments as in Case 2, shows that each odd period cycle induces
either two empty period cycles in Λ1 (respectively Λ2 ), if θ(ei) = 1, or one empty
period cycle if θ(ei) 6= 1.

3(ii) n is odd. It is shown that each odd period cycle induces one empty
period cycle in Λ1 and one in Λ2 .

Graphical representation. (i) n even. If θ(e) = 1 and θ(cj) = SQuj , uj even,
then our graph consists of two disjoint blue vertices; if θ(e) = 1 and θ(cj) = QSuj ,
uj odd, then our graph just consists of two disjoint red vertices. If θ(e) 6= 1 and
θ(cj) = SQh , h even, then our graph consists of one blue vertex; if θ(e) 6= 1 and
θ(cj) = SQk , k odd, then our graph consists of one red vertex. (ii) n odd. Here
the graph consists of one red and one blue vertex.
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As reflections from different period cycles cannot be conjugate the total num-
ber of induced period cycles on the Λi is just the sum of those induced from each
period cycle. Thus the Hoare diagram associated to (∆, θ) is just the disjoint
union of the Hoare diagrams for each period cycle. The number of period cycles
induced on Λ1 which is equal to the number of mirrors of S1 is the number of
blue components, and the number of period cycles induced on Λ2 which is equal
to the number of mirrors of S2 is the number of red components.

Note. Case 3(i) was missed in [4] which makes Theorem 2(i) of that paper
incorrect. The equality there should be replaced by the following inequality.

α+ β + 2γ − δ ≤ t ≤ α+ 2β + 2γ − δ.

No other result of [4] is affected.

1.5. Examples. For a simple example, let us use the original example of
Natanzon of a compact Riemann surface of genus g admitting two symmetries
both having g + 1 mirrors. To obtain this we use an NEC group with signature

(
0; +; {(2, 2, . . . , 2)}

)

where there are 2g + 2 link periods equal to 2 and the generating reflections
are c1, . . . , c2g+2 with relations (c1c2)

2 = · · · = (c2g+1c2g+2)
2 = (c2g+2c1)

2 = 1
and the homomorphism θ: ∆ → D2 is defined by the following action on the
generators:

c1 → S, c2 → SQ, c3 → S, . . . c2g+2 → SQ.

As there are no odd link periods the Hoare diagram has no edges and so just
consists of g + 1 blue vertices and g + 1 red vertices. Thus we see that both S1

and S2 have g + 1 mirrors as claimed.

For a more complicated example let ∆ have signature
(
0; +; {(2, 2, 2, 2, 3, 3), (3), ( )}

)

and a canonical presentation as in 1.2. We define a homomorphism θ: ∆ → D6

by defining the action on the generators as follows:

c10 → S

c11 → SQ3

c12 → S

c13 → SQ3

c14 → S

c15 → SQ4

c16 → SQ2

e1 → Q4

c20 → S

c21 → SQ2

e2 → Q2

c30 → S

e3 → 1
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The Hoare diagram is as follows and from it we see that S1 has 5 mirrors and S2

has 2 mirrors. Theorem 2 of [4] just tells us that the total number of mirrors of
S and SQ is equal to 7.

first cycle odd cycle empty cycle

= red vertex

= blue vertex

Figure 2.1

2. Calculation of possible pairs |S1|, |S2|

If Fg is a compact Riemann surface admitting a Dn action with |S| = g+1,
then Bujalance and Costa [1], gave a complete list of possibilities for the number
of mirrors of the paired symmetry SQ . Their result can be stated as follows:

Theorem 2.1. Let Dn with presentation (1.4) act as a group of automor-

phisms of a compact Riemann surface Fg of genus g , with S and SQ acting as

symmetries, and with |S| = g + 1 . If Fg is hyperelliptic then |SQ| = g + 1 , 0 or

1 , if g is even and |SQ| = g + 1 , 0 , 1 or 2 if g is odd. If Fg is non-hyperelliptic

then |SQ| = 0 or g+ 1− 2t , 0 ≤ t < 1
2
(g + 1) if g is even and |SQ| = g+ 1− 2t ,

0 ≤ t ≤ 1
2(g + 1) if g is odd.

Of course, the existence of surfaces with these pairs of symmetries can be ob-
tained using Hoare diagrams. For example, to get a surface admitting symmetries
with g+1 mirrors and g+1−2t mirrors we use an NEC group ∆ with signature

(2.1)
(
0; +; [ ]; {(2(r)), ( )(t)}

)

with r even and 2t + 1
2r = g + 1, (where the notation indicates t empty period

cycles and r link periods equal to 2), and we map each of the connecting generators
ei to 1 and the reflection generators alternately to S and SQ in D2 . The Hoare
diagram then consists of 2t+ 1

2r blue vertices and 1
2r red vertices.

Now that we have considered the case where one of the symmetries fixes the
maximum number of mirrors, we investigate the other possibilities.

Theorem 2.2. Let k1 and k2 be two integers with 1 ≤ k1 ≤ g , 1 ≤ k2 ≤ g .

Then there exists a compact Riemann surface Fg of genus g admitting a pair of

symmetries S1 , S2 , with |S1| = k1 and |S2| = k2 .
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Proof. As above, we find an action of D2 on a surface of genus g with S1 = S
and S2 = SQ . We first assume that k1 ≡ k2 mod 2 and that k1 ≥ k2 . Let ∆ be
a group with signature

(2.2)
(
0; +; [2g−k1+1]; {(2(2k2)), ( )(k1−k2)/2}

)
.

Consider the homomorphism θ: ∆ → D2 that takes every elliptic generator xi to
Q , the reflection generators in the period cycle (22k2) alternately to S and SQ ,
the connecting generators ei of the empty period cycles to 1 and the reflection
generators of the empty period cycles to S . We choose the image of the connecting
generator e1 of the non-empty period cycle to be Q or 1 so as to make the long
relation

x1x2 · · ·xg−k1+1e1 · · · e(k1−k2)/2+1 = 1

consistent with the homomorphism θ . In the Hoare diagram the period cycle
(22k2) contributes k2 blue vertices and k2 red vertices while the empty period
cycles contribute k1 −k2 blue vertices, giving in total k1 blue vertices and k2 red
vertices, as desired. Also, the genus of the kernel of θ is g , so the corresponding
quotient surface has genus g and the symmetries S1 and S2 have k1 and k2

mirrors respectively.
If k1 ≡ k2 + 1 mod 2 then we use an NEC group with signature

(2.3)
(
0; +; [2(g−k1)]; {(2(2k2)), ( )(k1−k2+1)/2}

)
.

The homomorphism θ is defined as before except that θ maps exactly one of the
connecting generators of an empty period cycle to Q and all the others to 1. Thus
the empty period cycles contribute 2(k1 − k2 − 1)/2+1 = k1−k2 red vertices and
now the calculation goes exactly as before.

3. Surfaces admitting a fixed-point free symmetry

We now investigate the case where the compact Riemann surface Fg admits
a pair of symmetries S1 , S2 with |S1| = 0. For a group element A we let o(A)
denote the order of A .

Theorem 3.1. If Fg admits a pair of symmetries S1 , S2 with |S1| = 0 , and

if o(S1S2) is divisible by 4 , then g is odd.

Proof. Suppose that o(S1S2) = 4a , for some positive integer a . Then

T = (S2S1)
a−1S2S1S2(S1S2)

a−1

commutes with S1 , is conjugate to S1 and is distinct from S1 . Let A = 〈S1, T 〉 ,
a group generated by two commuting fixed-point free symmetries. Let ∆1 be the
lift of A to H . As S1 and T act without fixed points, ∆1 cannot have period
cycles and so has signature (h;−; [2(r)]; { }) . In the homomorphism from ∆1 to
A the elliptic generators of ∆1 must map to S1S2 = Q so that r is even. The
Riemann–Hurwitz formula gives

g − 1 = 2h− 4 + r

and so g is odd.
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Theorem 3.2. If g is even and if Fg admits a fixed-point free symmetry S1

and a symmetry S2 with non-empty fixed-point set, then o(S1S2) ≡ 2 mod 4 and

|S2| is odd.

Proof. By Theorem 3.1, o(S1S2) is not divisible by 4. The order is not odd
for then S1 and S2 would be conjugate which is impossible as S2 has non-empty
fixed-point set. Hence o(S1S2) ≡ 2 mod 4. If o(S1S2) = 4a+ 2 then letting

T = (S2S1)
aS2(S1S2)

a

we see that T is conjugate to S2 and o(S1T ) = 2. Let B=〈S1, T 〉 and ∆2 be
the lift of B to H . We first note that ∆2 cannot have non-empty period cycles.
For otherwise these period cycles would consist of link periods equal to 2. In the
homomorphism θ from ∆2 to B the reflection generators would map alternately
to S1 and T . The Hoare diagram would then have both blue and red vertices
contradicting the hypothesis that |S1| = 0. Thus the signature of ∆2 must have
the form (h;±; [2r]; {( )s}

)
and θ maps each reflection generator ci (i = 1, . . . , s)

of ∆2 to T , as S1 acts freely. Let e1, . . . , es be the canonical generators of ∆2

that commute with the ci (the connecting generators). Suppose that θ maps
e1, . . . , es to Q (=S1S2 ) and eu+1, . . . , es to 1. Then the Hoare diagram consists
of 2(s−u)+u red vertices and no blue vertices, so that |T | = 2s−u . As θ(xj) = Q
(j = 1, . . . , r ), then applying θ to the ‘long relation’ shows that r + u is even.
The Riemann–Hurwitz formula gives

4g − 1 = 4εh+ 2s− 4 + r

(where ε = 2 or 1 depending on whether ∆2 is orientable or not) and as g is
even, r is odd so that u is odd and thus |S2| = |T | is odd.

Theorem 3.2 puts some restrictions on the possible pairs (0, |S2|) describing
the number of fixed curves of a pair of symmetries S1 , S2 . We now show by
constructing examples that these are the only restrictions. In the following g
denotes the genus of a surface admitting a fixed-point free symmetry S1 , and m
denotes the number of mirrors of another symmetry S2 .

Case 1. g odd, m odd, m ≤ g . Let ∆ be an NEC group with signature

(3.1)
(
0; +; [4, 2(g−m)/2)]; {(2(m))}

)
.

We can construct a homomorphism θ from ∆ to D4 by mapping the elliptic
generator of order 4 to Q , the elliptic generators of order 2 to Q2 , the reflection
generators alternately to SQ and SQ3 and the connecting generator e1 to Q
or Q−1 . The kernel of θ is a Fuchsian surface group Γ. The Hoare diagram has
m isolated red vertices and no blue vertices, so that S1 and S2 are symmetries of
H/Γ with |S1| = 0 and |S2| = m as claimed.
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Case 2. g odd, m even, 1 < m < g . We now let ∆ have signature

(3.2)
(
0; +; [2g+1−m]; {( )m/2}

)

and construct a homomorphism φ: ∆ → D2 that takes the elliptic generators to Q
the reflection generators to SQ and the connecting generators ei to 1. As above
we see that the kernel of φ is a Fuchsian surface group of genus g and that the
corresponding Riemann surface has a pair S1 , S2 of symmetries with |S1| = 0,
|S2| = m .

Case 3. g even, m odd. We now let ∆ have signature

(3.3)
(
0; +; [2g+2−m]; {( )(m+1)/2}

)

and construct a homomorphism ψ: ∆ → D2 that takes the elliptic generators to
Q , the reflection generators to SQ , the connecting generators e1, . . . , e(m−1)/2 to
1 and e(m+1)/2 to Q . The kernel of ψ is a Fuchsian surface group of genus g
and the corresponding Riemann surface has a pair of symmetries S1 , S2 with
|S1| = 0, |S2| = m .

Case 4. g odd, m = 0. This is achieved using an NEC group with signature
(1;−; [2g+1]; { }) and considering a homomorphism onto D2 , taking the elliptic
generators to Q and the glide reflection generator to S .

Case 5. g even, m = 0. This is achieved using an NEC group with signature
(1;−; [3(g+2)/2]; { }) and considering a homomorphism onto D3 .

Theorems 2.1, 2.2 and 3.2 together with the above examples prove Theo-
rem 1.1 announced in the introduction.

4. Computing pairs of species

In this section we consider a finer classification by taking into account whether
the mirrors of S separate or do not separate the surface.

4.1. Separating symmetries. If S is a symmetry of Fg then either the
fixed point set of S separates Fg into two homeomorphic components or the fixed
point set of S does not separate. Thus we may have separating or non-separating
symmetries. If |S| = k and S is separating (respectively non-separating) then we
say that S has species +k (respectively −k ), (see [5]). The species of a symme-
try determines the symmetry up to topological conjugacy. In [7] an algorithmic
method was described that can be used to determine whether a symmetry is sep-
arating. We briefly recall this method.

Let Γ be the Fuchsian surface group that uniformizes Fg and let G be a group
of automorphisms of Fg that contains a symmetry S . Let ∆ be the lift of G to the
upper half-plane H and θ: ∆ → G be the canonical epimorphism with kernel Γ.
Let Λ = θ−1(〈S〉) and consider the Schreier coset graph S (∆,Λ). If ci is a
reflection in ∆ that fixes a coset then this corresponds to a loop in S (∆,Λ). We
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let Ŝ = Ŝ (∆,Λ) be the Schreier graph with all loops corresponding to reflection

generators deleted. Each edge of Ŝ is labelled by a generator of ∆ so every path
corresponds to an element of ∆, namely the products of the labels of the edges.
In [7] it is shown that S is a separating symmetry if and only if every closed path

in Ŝ (∆,Λ) corresponds to an orientation preserving element. Thus we only need
one closed path corresponding to an orientation-reversing element to imply that
S is non-separating. We would thus expect S to be separating to impose strong
restrictions on the signature of ∆ and hence on the quotient orbifold Fg/G . For
example it is well known that if S is separating then

(4.1) |S| ≡ g + 1 mod2.

This follows by an easy Euler characteristic argument as the quotient Fg/〈S〉 is
orientable or see [5].

We now revert to our special case G = Dn = 〈S,Q|S2 = Qn = (SQ)2 = 1〉 .
The Schreier graph S is isomorphic to the Schreier graph of Dn with respect

to the subgroup 〈S〉 . As Dn = 〈S〉∪〈S〉Q∪· · ·∪〈S〉Qn−1 we can label the vertices
of the graph by the elements of Zn and the edges by the elements of Dn . Note
that an edge labelled Qi will join the vertex r to the vertex r + i and SQj will
join i to j − i .

Notation. We let Y denote the canonical set of generators of ∆ and let Y + ,
Y − denote the subsets consisting of the orientation-preserving and orientation-
reversing generators respectively. We may assume that S ∈ θ(Y −) .

Lemma 4.1. Assume that S separates. Then if n ≡ 2 mod4 , θ(Y +) ⊆
{1, Qn/2}; otherwise, θ(Y +) = 1 .

Proof. If Qi ∈ θ(Y +) , (i 6= n/2), then an orientation-reversing path lies in
S as in Figure 4.1.

−i

Qi

0

i

S Qi

Figure 4.1

Thus if S separates and Qi ∈ θ(Y +) then i = 0 or n/2. If n is odd
then i = 0; if 4|n then we can find the following orientation-reversing path with
k = n/4.

   

-k -k+n/2

S

Q
n/2
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Figure 4.2

Lemma 4.2. Assume that S separates. If n is odd then θ(Y −) = {S, SQi}
for some integer i with (i, n) = 1 .

Proof. If SQi, SQj ∈ θ(Y −) then because n is odd, we can find k such that
i−j ≡ kmodn and we can now find an orientation-reversing path as in Figure 4.3.

k S −k

i− k = j + k

SQi SQj

Figure 4.3

By Lemma 4.1, θ(Y +) = {1} , so θ(Y ) = {S, SQi} . As θ is an epimorphism
(i, n) = 1.

As there is an automorphism of Dn that fixes S and maps Q to Qr , for any
r co-prime to n , we may assume that i = 1 in Lemma 4.2.

Lemma 4.3. Assume that S separates. If n is even and if S, SQi, SQj ∈
θ(Y −) , with i 6≡ jmodn then i , j have different parities.

Proof. If i ≡ jmod 2 then we can find k such that i − j ≡ 2kmodn and
then we can find an orientation-reversing path as in Lemma 4.2.

We may assume that i is odd and j is even.

Lemma 4.4. Assume that S separates. If n is even and S, SQi, SQj ∈
θ(Y −) with i 6≡ jmodn , then j ≡ 2imodn .

Proof. We consider the following pentagon in the Schreier graph S .

i− j

S

j − i

i
SQi0

SQj
SQj

j

SQi

Figure 4.4
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As S separates we cannot have this orientation-reversing path so that one of
the edges must be a loop. We first consider the possibility that the edge labelled
S is a loop. In this case, i− j ≡ j− imodn or i− j ≡ 1

2nmodn . By Lemma 4.3,

n ≡ 2 mod4. Now θ(Y +) contains at most 1 and Qn/2 and θ(Y −) contains
at most S, SQi, SQi+(n/2) with i odd. As θ(Y ) generates Dn we must have
(i, n) = 1 and so we can apply an automorphism of Dn and assume that i = 1
and so j = 1 + 1

2
n . Now SQj: 1 → 1

2
n and so we can find the following path of

odd length in S :

1 → −1 (by S)
−1 → 2 (by SQ)

2 → −2 (by S)
−2 → 3 (by SQ)
. . .
. . .

1
2n− 1 → 1 − 1

2n (by S)
1 − 1

2
n → 1

2
n (by SQ)

1
2n → 1 (by SQj).

This is a contradiction so that the edge labelled S cannot be a loop. Hence
the edge labelled SQj joining i to j − i is a loop and then i ≡ j − imodn or
j ≡ 2imodn .

Now if n is odd and S separates then as all symmetries in Dn are conjugate
SQ must necessarily separate so that both symmetries of the pair are separating
symmetries. Now suppose that n is even and that both symmetries of the pair
separate. By Lemma 4.4 we may suppose, after applying an automorphism of Dn

that θ(Y −) ⊆ {S, SQ, SQ2} .

Lemma 4.5. If n is even and if both S and SQ separate then θ(Y −) =
{S, SQ} .

Proof. Suppose that θ(Y −) = {S, SQ, SQ2} . Let Λ1 = θ−1(〈SQ〉) and form
the Schreier coset graph S1 = S (∆,Λ1) and delete the reflection loops, as before,

to form Ŝ 1 . Again, SQ is non-separating if there is an orientation-reversing path
in S1 . The cosets are now 〈SQ〉, 〈SQ〉Q, . . . , 〈SQ〉Qn−1 , which we denote by
0, 1, . . . , n − 1. We have (0)SQ2 = 1, 1(SQ) = n − 1 and (n − 1)S = 0, so we
have an orientation reversing triangle.

These lemmas tell us about the possible link periods and proper periods when
there are separating symmetries in the dihedral group.

Theorem 4.1. If G is a group of automorphisms generated by a pair of

symmetries and if ∆ is the lift of G to the upper half-plane H , then if one of the

symmetries separates,

(a) (i) if n is odd then ∆ has no proper periods and all link periods are equal

to n ,
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(a) (ii) if n is even then ∆ has no proper periods if 4|n and all proper periods

are equal to 2 , if n ≡ 2 mod4 , and in both cases, all link periods are equal

to n or 1
2n .

(a) (iii) However, if ∆ contains a proper period equal to 2 then ∆ can have no

link periods equal to n .

If both of the symmetries separate then

(b) ∆ has no proper periods and all link periods are equal to n .

Proof. a(i). Let θ: ∆ → Dn be the canonical homomorphism. If ∆ contains
an elliptic element x then by Lemma 4.1, θ(x) = 1 and then x ∈ ker θ which con-
tradicts ker θ being a surface group. Now assume that ck and ck+1 are reflections
in ∆ with ckck+1 having finite order m . By Lemma 4.2 we may assume that
θ(ck) = S , and θ(ck+1) = SQi with (i, n) = 1. As S(SQi) has order n and ker θ
is a surface group, m = n . The first part of a(ii) also follows from Lemma 4.1 and
the second part from Lemma 4.4, or more particularly the remark at the end of
the proof that θ(Y −) ⊆ {S, SQ, SQ2}. For a(iii) we consider the cosets of 〈S〉 and
label the coset 〈S〉Qr by r . We join 0 to 1

2
n by a path of length n−1 alternately

labelled S and SQ . This path goes from 0 to 1, 1 to n − 1, n − 1 to 2, 2 to
n− 2 etc. Once we have arrived at 1

2
n we go back to 0, by a path labelled Qn/2 .

The resulting closed path is an orientation-reversing path, which shows that if ∆
contains a period equal to 2 and link periods equal to n then S is non-separating.
To prove (b) we may assume, by Lemma 4.1, that n ≡ 2 mod4. By Lemma 4.5
S, SQ ∈ θ(Y −) . We consider the cosets of 〈SQ〉 and label the coset 〈SQ〉Qr by r .
We can find r such that 2r ≡ 1

2n−1 modn and then (r)S = −r−1. Now if there
is an elliptic period, then by Lemma 4.1, it must be equal to 2, and its image in
G is Qn/2 . We then have

(r)Qn/2 = r + 1
2n ≡ −r − 1 modn

and so we can find an orientation-reversing closed path in the Schreier graph. The
fact that all link periods are equal to n follows directly from Lemma 4.5.

4.2. Signatures. We now have enough information to determine the possible
signatures of ∆ given that one or both symmetries of the pair separates.

Theorem 4.2. If n is odd and one (and hence both) symmetries of the pair

separates then the signature of ∆ has the form

(4.2)
(
h; +; [ ]; {(n, . . . , n), . . . , (n, . . . , n), ( ), . . . , ( )}

)
.

where each non-empty period-cycle has even length.

Proof. By Theorem 4.1 above we only need prove that the period cycles have
even length and that we have a positive sign in the signature. The first follows
as the homomorphism θ must be of the form ci0 → S , ci1 → SQ , ci2 → S ,
. . ., cisi

→ S , with ci0 and cisi
conjugate in ∆ and the second because a glide

reflection generator must give an orientation-reversing loop in both the Schreier
graphs.
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Theorem 4.3. If n is divisible by 4 and if one of the symmetries separates

then ∆ has a signature of the form

(4.3)
(
h;±; [ ]; {(. . . , 1

2
n, n, n, . . . , n, 1

2
n, . . .) . . . ( 1

2
n, . . . , 1

2
n) . . . , ( ), . . . , ( )}

)
,

where there are always an even number of link periods equal to n between two

link periods equal to 1
2n , and the period cycles containing only link periods equal

to 1
2n have even length.

Proof. The only statement that we have not proved concerns the even number
of link periods equal to n between two link periods equal to 1

2n . To see this we
normalize the homomorphism so that the images of θ are S, SQ, SQ2 . We only get
link periods equal to n when SQ is an image of θ . The images of the neighbouring
reflections are then S and SQ2 showing that the link periods equal to n occur in
pairs.

Theorem 4.4. If n ≡ 2 mod4 and if one of the symmetries separates then

∆ has signature either of the form

(i) as given in Theorem 4.3 or

(ii) (h;±; [2, . . . , 2]; {( 1
2
n, . . . , 1

2
n), . . . , ( 1

2
n, . . . , 1

2
n), ( ), . . . , ( )}

)

where each period cycle has even length.

Proof. This follows from the above Lemmas and Theorem 4.1.

Theorem 4.5. If both symmetries of the pair separate, then ∆ has signature

of the form (
h; +; [ ]; {(n, . . . , n), . . . , (n, . . . , n), ( ), . . . , ( )}

)
.

Proof. This follows from part (b) of Theorem 4.1.

Remarks. 1. Each of the above theorems tells us about the possible quotient
orbifolds by the Dn action given that one of the symmetries separates. We have
seen for example, that there can only be cone points of order 2 (and this occurs
only in the case that n ≡ 2 mod4) and the corner points can only have orders n
and 1

2
n .

2. The converse of the above theorems will be true as long as the images of the
hyperbolic and glide reflection generators obey the restrictions of Lemmas 4.1–4.4.
In particular the converse always holds if the above NEC groups ∆ have genus 0.

4.3. The existence of Riemann surfaces admitting pairs of symme-

tries with given species. We are now in a position to tackle the question: Let
k1 , k2 , be two integers with −g ≤ k1 ≤ k2 ≤ g + 1. Does there exist a Riemann
surface X of genus g admitting a pair of symmetries S1 , S2 with sp(S1) = k1 ,
sp(S2) = k2 ? (Here we use the above convention that a positive species refers to a
separating symmetry, and a non-positive species to a non-separating symmetry.)
We shall see that most pairs of species do exist but that there are some interesting
exceptions. We divide our investigation into a number of cases.
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Case 1. k1 ≤ −1, k2 ≤ −1.

Theorem 4.7. If −g ≤ k1 ≤ k2 ≤ −1 then there exists a Riemann surface Fg

of genus g admitting a pair of symmetries S1, S2 with sp(S1) = k1 , sp(S2) = k2 .

Proof. In Theorem 2.2 we constructed symmetries with |S1| = |k1| , |S2| =
|k2| . Signature (2.2) must correspond to a negative species by Theorems 4.4, 4.5
and (2.3) gives a negative species as the connecting generator maps to Q .

Case 2. k1 ≤ 0, k2 = 0.

Theorem 4.8. If g is odd and if −g ≤ k1 ≤ 0 then there exists a Riemann

surface Fg of genus g admitting a pair of symmetries S1 , S2 with sp(S1) = k1 ,

sp(S2) = 0 . If g is even and if k1 = 0 or k1 ≤ g is odd then there exists a Riemann

surface Fg of genus g admitting a pair of symmetries S1 , S2 with sp(S1) = k1 ,

sp(S2) = 0 .

Proof. If g is odd and k1 is even then let ∆ be an NEC group of signature

(4.5)
(
1;−; [2(g+1−|k1|]; {( )|k1|/2}

)
.

We construct a homomorphism from ∆ to D2 by mapping the glide reflection and
reflection generators to S1 , the elliptic generators to S1S2 = Q and the connecting
e-generators to the identity. This is a homomorphism as g + 1 − k1 is even and
so the long relation is preserved. As the glide reflection generator maps to S1

the Schreier graph S (∆,Λ1) , where Λ1 is inverse image of 〈S1〉 , has orientation
reversing loops not just coming from reflections so that S1 is non-separating. As
the connecting generators map to the identity each empty period cycle contributes
two mirrors so the species of S1 is k1 as claimed. The Riemann–Hurwitz formula
gives the genus of the Riemann surface as g . If g is odd and k1 is odd we use
the signature (3.1) to construct the symmetries. By forming the Schreier graph
we see that the symmetry with non-empty fixed-point set does not separate. In
this case the product of the symmetries has order 4, and by comparison with the
above case where g is odd it is easy to see that we cannot achieve this when the
product of the symmetries has order 2. If g is even and k1 is odd then we let ∆
be an NEC group of signature

(
1;−; [2g−|k1|]; {( )(|k1|+1)/2}

)

and construct a homomorphism from ∆ to D2 , again sending the glide-reflection
and reflection generators to S1 and the elliptic generators to S1S2 . This time,
however we map one of the connecting generators to S1S2 = Q and the others
to the identity. As g − k1 is odd this is a homomorphism as the long relation is
preserved. The species is calculated as before. If k1 = 0 we refer to Case 5 in
Section 3 where we find a commuting pair of symmetries of a surface of odd genus
both with species 0.
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Case 3. k1 = 0, k2 > 0.

Theorem 4.9. If g is odd and if 1 < k2 ≤ g + 1 , with k2 even then there

exists a Riemann surface Fg of genus g admitting a pair of symmetries S1, S2

with sp(S1) = 0 , sp(S2) = k2 . If g is even and k2 is odd (1 ≤ k2 ≤ g + 1) , then

there exists a Riemann surface Fg of genus g admitting a pair of symmetries S1 ,

S2 with sp(S1) = 0 , sp(S2) = k2 .

Proof. We use Cases 2, 3 of Section 3 and verify that in each case that S2 is
a separating symmetry.

Note. By Theorem 3.2 there does not exist a Riemann surface of even genus
admitting a symmetry of zero species and another one with a non-zero even species.

Case 4. k1 > 0, k2 > 0. Note that by (4.1) we must have k1 ≡ k2 ≡
g + 1 mod2.

Theorem 4.10. (i) If 1 < k1 ≤ k2 ≤ g + 1 then there exists a Riemann

surface Fg of genus g admitting a pair of symmetries S1 , S2 with sp(S1) = k1 ,

sp(S2) = k2 . (ii) If g is even, 1 ≤ k2 ≤ g + 1 , and k2 ≡ g + 1 mod4 then there

exists a Riemann surface Fg of genus g admitting a pair of symmetries of species

S1 , S2 with sp(S1) = +1 , sp(S2) = k2 .

Proof. Let ∆ be an NEC group with signature

(4.7)
(
h; +; [ ]; {(22t), ( )u1+u2}

)

Let θ: ∆ → D2 = 〈S1, S2〉 be defined by mapping the reflections of the non-
empty period cycle alternately to S1 and S2 , the reflections of u1 of the period
cycles to S1 the periods of u2 of the period cycles to S2 and the connecting
generators to the identity. Then letting ki = |Si| , (i = 1, 2) we see that

ki = t+ 2ui

and the Riemann–Hurwitz formula gives

g + 1 = 4h+ 2u1 + 2u2 + t.

If k2 ≡ g+ 1 mod4 we let u1 = 0, u2 = 1
2(k2 − k1) , t = k1 , h = 1

4(g + 1 − k2) to
give sp(S1) = +k1 , sp(S2) = +k2 . We get part (ii) by putting t = 1.

If k2 ≡ g−1 mod4 and k1 > 1 we let u1 = 1, u2 = 1
2 (k2 − k1)+1, t = k1−2,

h = 1
4 (g − 1 − k2) to give sp(S1) = +1, sp(S2) = +k2 .

Theorem 4.9 does not give us information when k1 = 1, k2 ≡ g − 1 mod4.
If k1 = 1 we must have t = 1, u1 = 0 so the Riemann–Hurwitz formula implies
(when n = 2) that

g + 1 = 4h+ 2u2 + 1 = 4h+ k2
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and so necessarily k2 ≡ g + 1 mod4. Thus we cannot have a pair of commuting
separating symmetries with one of the symmetries having just one mirror and the
other having k2 ≡ g − 1 mod4 mirrors. We now investigate the case where we
have a pair S1 , S2 of separating symmetries with S1S2 having even order n > 2.
By Theorem 4.5 the only way we can do this is via a homomorphism from an NEC
group of signature

(4.8)
(
h; +; [ ]; {(n, . . . , n), . . . , (n, . . . , n), ( )u1+u2}

)

onto Dn = 〈S1, S2〉 , where the reflections of the non-empty period cycles map
alternately to S1 and S2 and the length of each period cycle is even, the reflections
of u1 of the empty period cycles map to S1 and the reflections of u2 of the empty
period cycles map to S2 and the connecting generators map to the identity. If
there are q non-empty period cycles and 2t link-periods equal to n then the
Riemann–Hurwitz formula gives

2g − 2 = n(4h+ 2q + 2u1 + 2u2 − 4 + 2t) − 2t.

However, k1 = 1 and so t + 2u1 = 1 giving t = 1 and thus q = 1 and u1 = 0.
We then obtain g = n(2h + u2) and k2 = 2u2 + 1 = (2g/n) − 4h + 1. Thus
k2 ≤ (2g/n) + 1 and k2 ≡ (2g/n) + 1 mod4. On the other hand we can choose u2

and ∆ with signature (4.8) to give this result and thus we have

Theorem 4.11. If k2 ≡ g − 1 mod4 then there exists a Riemann surface Fg

of genus g admitting a pair of symmetries of species 1 and k2 > 0 if and only if

k2 ≡
(2g

n
+ 1

)
mod 4 and k2 ≤

2g

n
+ 1,

where n > 2 is an integer dividing 2g .

For example if k2 ≡ g− 1 mod4 then there is no Riemann surface of genus g
that admits a pair of symmetries of species 1 and k2 where k2 >

1
2
g + 1.

Case 5. k1 < 0, k2 > 0. We first deal with the case when we have commuting
symmetries. As k2 > 0 we must have k2 ≡ g+1 mod 2. What we now find is that
k1 ≡ g + 1 mod2 also.

Theorem 4.12. If −g ≤ k1 < 0 < k2 ≤ g then there exists a Riemann

surface Fg of genus g admitting a commuting pair of symmetries S1 , S2 with

sp(S1) = k1 , sp(S2) = k2 if and only if k1 ≡ k2 ≡ g + 1 mod2 .

Proof. To prove the existence of such a pair of symmetries we use an NEC
group ∆ of signature

(
1
2(g + 1 − k2);−; [ ]; {(22|k1|), ( )(k2−|k1|)/2}

)
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and we define a homomorphism from ∆ to D2 which maps the glide reflection
generators to S1 , the reflection generators of the non-empty period cycle alter-
nately to S1 and S2 , and the generators of the empty period cycles to S2 . On
the other hand, it follows from Theorem 4.4 that the only possible signatures for
∆ are

(
h;±; [2r]; {( )u}

)
or

(
h;±; [ ]; {(2s1), . . . , (2sk)}

)
. In the first signature

both symmetries do not separate, for the second for one of the symmetries to
separate we must have all the connecting generators mapping to the identity. In
this case every empty period cycle contributes two mirrors while the non-empty
period cycles contribute the same number of mirrors to both symmetries. Thus
k1 ≡ k2 mod2.

Theorem 4.11 puts a restriction on the possible pairs k1 , k2 when k1 < 0 < k2

for commuting symmetries S1 , S2 that is, when S1S2 has order n = 2. We now
see what other pairs k1 , k2 are possible if S1S2 has order n > 2. We shall see that
not only are restrictions needed but, unlike the other cases it is not that easy to
find, in a uniform way, what pairs are possible for a given genus. The restrictions
come about because of the inequality in the next theorem.

Theorem 4.13. Let S1 , S2 be a pair of symmetries of a Riemann surface Fg

of genus g > 1 with S1S2 of even order n > 2 . If sp(Si) = ki and if k1 < 0 < k2

then
1
2
n|k1| + ( 1

2
n− 1)k2 ≤ g − 1 + n.

Proof. By Theorems 4.3 and 4.4 we find that the lifted NEC group ∆ has a
signature of the form

(
p;±; [ ]; {(. . . 1

2
n, n, . . . , n, 1

2
n, . . .), . . . , ( 1

2
n, . . . , 1

2
n), . . . , ( )u1+u2}

)

with an even number of link periods equal to n between link periods equal to 1
2n ,

and where for i = 1, 2, ui of the empty period cycles correspond to reflections
that map to Si . Suppose that there are 2s link periods equal to n and r link
periods equal to 1

2
n . By Lemma 4.1 we need the connecting generators to map to

the identity so by Section 1.4 we see that each empty period cycle contributes two
mirrors and then by constructing the appropriate Hoare diagram we find that

k2 = r + s+ 2u2,

k1 = s+ 2u1.

If the total number of period cycles is k ≥ u1 +u2 +1 then the Riemann–Hurwitz
formula now gives

2g − 2 = 2n
(
εp− 2 + k + s

(
1 −

1

n

)
+
r

2

(
1 −

2

n

))

≥ n
(
2u1 + 2u2 − 2 + 2s

(
1 −

1

n

)
+ r

(
1 −

2

n

))

≥ n(2h1 + 2h2 + 2u+ v) − 2u− 2v − 2h1 − 2n

≥ (n− 2)(s+ r + 2u1) + n(s+ 2u2) − 2n

≥ (n− 2)k2 + n|k1| − 2n
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and the result follows.

Corollary 4.14. With the notation of Theorem 4.12, if S1S2 has order n ≥ 4
then

2|k1| + k2 ≤ g + 3.

Proof. We can write the inequality of Theorem 4.12 in the form

2|k1| + k2 + ( 1
2
n− 2)(|k1| + k2) ≤ g + n− 1.

As |k1| ≥ 1, |k2| ≥ 1, the result follows.

Corollary 4.15. If a Riemann surface Fg of genus g admits a non-separating

symmetry S1 with more than 1
2
g + 1 mirrors and if S2 is another symmetry not

commuting with S1 then S2 must be non-separating.

5. Summary

The results 4.7–4.12 give necessary and sufficient conditions for the existence
of a pair S1 , S2 of symmetries of species k1 , k2 . However, 4.13 and 4.14 only
give necessary conditions on the pair k1 , k2 . For example, there is no pair of
symmetries of a Riemann surface of genus 2 of species −2,+1. Such a pair
cannot exist for commuting symmetries by 4.12, and otherwise we have to solve
the equations r + s + 2u2 = 1, s + 2u1 = 2. The only solution is s = u2 = 0,
r = u1 = 1 and then the corresponding NEC group admits no surface-kernel
homomorphism onto Dn for n > 2.

A way of summarising our results is to say that a symmetric Riemann surface
Fg of genus g admits (k1, k2)n if it admits a pair of symmetries S1 , S2 of species
k1 , k2 repectively with S1S2 having order n . Then we have shown:

If k1 ≤ k2 ≤ −1 then (k1, k2)2 exists for all g (Theorem 4.7).
If k1 ≤ −1 is even then (k1, 0)2 exists if g is odd (Theorem 4.8).
If k1 ≤ −1 is odd then (k1, 0)4 exists if g is odd and (0, 0)2 exists (Theorem

4.9).
If 1 < k1 ≤ k2 ≤ g + 1 then (k1, k2)2 exists. If 1 ≤ k2 ≤ g + 1, g even and

k2 ≡ g + 1 mod4 then (1, k2)2 exists (Theorem 4.10).
If k2 ≥ 1, k2 ≡ g− 1 mod4 and k2 ≡

(
(2g/n)+1

)
mod 4, k2 ≤

(
(2g/n)+1

)
,

n > 2 then (1, k2)n exists (Theorem 4.11).
If k1k2 ≥ 0 and if there is a symmetric Riemann surface admitting (k1, k2)n

for some n , then it appears in the above list with the least positive value of n .
If −g < k1 < 0 < k2 < g then (k1, k2)2 exists if and only if k1 ≡ k2 ≡

g + 1 mod2 (Theorem 4.12).
If −g ≤ k1 < 0 < k2 < g , n > 2 is even, and (k1, k2)n exists then it

follows that 1
2
n|k1| + ( 1

2
n− 1)k2 ≤ g − 1 + n (Theorem 4.13). This implies that

2|k1| + k2 ≤ g + 3 (Corollary 4.14).

We would like to thank Emilio Bujalance and Antonio Costa for pointing out
an error in a previous version of this paper.
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