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Abstract. Let g be an integer ≥ 3 and let Bg = {X ∈ Mg | AutX 6= e} , where Mg

denotes the moduli space of a compact Riemann surface.
The geometric structure of Bg is of substantial interest because Bg corresponds to the

singularities of the action of the modular group on the Teichmüller space of surfaces of genus g
(see [H]).

Surprisingly R.S. Kulkarni [K] has found isolated points in Bg . He showed that they appear
if and only if 2g+1 is an odd prime distinct from 7. The aim of this paper is to find a geometrical
explanation of this phenomenon using the fact that the isolated points are given by surfaces admit-
ting anticonformal involutions (symmetries). The points in the Teichmüller space, corresponding
to groups uniformizing surfaces with a symmetry, is a (non disjoint) union of submanifolds. We
shall obtain that the isolated intersections of such submanifolds give us the isolated points in the
branch loci.

Also we prove that there are no isolated points in the moduli space of Klein surfaces which
are not Riemann surfaces.

1. Preliminaries

A non-euclidean crystallographic group, (NEC) group, is a discrete group Γ
of the group G of isometries of the hyperbolic plane H with compact quotient
space H/Γ. If the group Γ is a subgroup of the group G + of orientation-preserving
isometries of H , then it is called a Fuchsian group. Otherwise Γ+ = Γ ∩ G + is a
subgroup of index 2 in Γ, called its canonical Fuchsian subgroup.

Let Γ be an NEC group. Then there is a fundamental region P for Γ which
is a polygon in H whose perimeter, described counterclockwise, is one of the
following:

(1) ε1ε
′

1 · · · εrε
′

rδ1γ10 · · ·γ1s1
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In these symbols each letter denotes an oriented side of the polygon P . The
apostrophe means that the corresponding sides of P are identified by genera-
tors of the group which preserve the orientation, and the asterisk means that the
corresponding sides are identified by generators of the group which reverse the
orientation. As a consequence, if we identify corresponding points on the related
edges of the polygon, we obtain from P a surface with boundary. In the case (1),
the surface will be a sphere with k disks removed and g handles added. In the case
(2), the surface will be a sphere with k disks removed and h cross-caps added.
The angle determined by the sides εiε

′

i is 2π/mi , i = 1, . . . , r , and the angle
given by γijγij+1 is π/nij , i = 1, . . . , k , j = 0, . . . , si−1 . In the group Γ there
are elliptic elements that identify εi with ε′i and reflections whose axe contain
the sides γij . The fundamental region P determines a presentation for Γ. The
side pairing and the reflections give rise to a set of generators and the relations
are given by the way as the images of P by elements of Γ fit together around the
vertices of P .

Then the algebraic structure of an NEC group is determined by its signature

(1.1) s(Γ) =
(

h;±; [m1, . . . , mr]; {(n11, . . . , n1s1
), . . . , (nk1, . . . , nksk

)}
)

.

The presentation for Γ associated to the signature (1.1) have generators

x1, . . . , xr,

e1, . . . , ek,

cij , 1 ≤ i ≤ k, 0 ≤ j ≤ si,

a1, b1, . . . , ah, bh if H/Γ is orientable or

a1, . . . , ah, if H/Γ is non-orientable

and relators

xmi

i , i = 1, . . . , r,

c2
ij−1, c2

ij , (cij−1cij)
nij , i = 1, . . . , k, j = 1, . . . , si,

ci0e
−1
i cisi

ei,

x1x2 · · ·xre1 · · · eka1b1a
−1
1 b−1

1 · · ·a−1
h b−1

h , if H/Γ is orientable or

x1x2 · · ·xre1 · · · eka2
1 · · ·a

2
h, if H/Γ is non-orientable.

These last two relations are sometimes called the long relation. In these
presentations, the only elements of finite order are the elliptic elements and the
reflections. The elliptic elements are conjugate of powers of the xi or cij−1cij

and the reflections are conjugate of the cij . The ei generators are orientation
preserving. They are called the connecting generators.
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The hyperbolic area of H/Γ, which we shall call µ(Γ), is equal to the hyper-
bolic area of a fundamental polygon P , then

(1.2) µ(Γ) = 2π

(

εh − 2 + k +
r

∑

i=1

(

1 −
1

mi

)

+
1

2

k
∑

i=1

si
∑

j=1

(

1 −
1

nij

)

)

,

where ε = 2 if there is a + sign and ε = 1 if there is a − sign. If Γ∗ is a subgroup
of Γ of finite index then the Riemann–Hurwitz formula holds:

(1.3) |Γ : Γ∗| =
µ(Γ∗)

µ(Γ)
.

Let Γ+ be the canonical Fuchsian of an NEC group Γ. Then H/Γ+ is a 2-
sheeted covering of H/Γ, called its complex double. The genus h+ = εh + k− 1 of
H/Γ+ is the algebraic genus of H/Γ. An NEC group Γ without elliptic elements
is called a surface group. Its signature is

(

g;±; [ ]; {( )k}
)

. A Klein surface whose
complex double has genus greater than one can be expressed as H/Γ where Γ
is an NEC surface group. An orientable Klein surface without boundary can be
thought as a Riemann surface. If G is a finite group, then G is a group of
automorphisms of a Klein surface H/Γ if and only if there exists an NEC group
Γ′ and a homomorphism from Γ′ on to G having Γ as the kernel (see [BEGG]).
Then for each symmetry there is a group Γ′ containing Γ as index two subgroup.

Given an NEC group Γ, we denote by R(Γ) the set of monomorphisms r: Γ →
G such that r(Γ) is discrete and H/r(Γ) is compact. Two elements r1, r2 ∈ R(Γ)
are said to be equivalent if there exists g ∈ G such that for each γ ∈ Γ, r1(γ) =
gr2(γ)g−1 . The orbit space T(Γ) is called the Teichmüller space of Γ and it is
homeomorphic to a real ball considering in T(Γ) the Teichmüller metric (see [MS]).

Let A(Γ) denote the automorphism group of Γ, A(Γ)+ be the orientation
preserving automorphism group if Γ is a Fuchsian group, and I(Γ) the subgroup
of inner automorphisms. The modular group M(Γ) = A(Γ)/I(Γ) or M(Γ)+ =
A(Γ)+/I(Γ) if Γ is a Fuchsian group, acts on T(Γ) as follows. If [r] ∈ T(Γ) and
[α] ∈ M(Γ), then [α][r] = [r ◦ α] . The moduli space of Γ is the quotient space

Mg = T(Γ)/M(Γ)

and Mg = T(Γ)/M(Γ)+ if Γ is a Fuchsian group (see [MS]). Let

π: T(Γ) → Mg

be the natural projection.
As an application of the extended Nielsen theorem we have that any auto-

morphism of a surface group can be geometrically realized as a homeomorphism
of the surface. Hence we can identify the branch locus of the action of M(Γ) on
T(Γ) with the set

Bg = {X ∈ Mg | AutX 6= e}.
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This is called the branch locus of Mg .
For surfaces X with algebraic genus 2, B2 = {X ∈ Mg | Aut X 6= Z2} .
Let now Γ ≤ Γ′ be NEC groups and let i: Γ → Γ′ be the inclusion mapping.

Then i induces m: T(Γ′) → T(Γ) defined by m[r] = [r ◦ i] , where m is an
isometric embedding (see [MS]). Then m

(

T(Γ′)
)

is a submanifold of T(Γ). So
each Γ∗ containing Γ as subgroup of index two and each i: Γ → Γ∗ , give rise to
a submanifold in T(Γ).

2. Isolated points in the branch locus of Riemann surfaces

We consider the set N of classes [r, s, t] of unordered triples {r, s, t} of num-
bers counted mod q such that none of them is ≡ 0 mod q and r+s+ t ≡ 0 mod q
under the action of the multiplicative group Zq −{0} . There is a bijection from N
onto the set of Riemann surfaces X admitting Zq -action with quotient orbifold a
sphere with three cone points of order q . Thus we can associate a symbol [r, s, t]
in an one-to-one manner to such Riemann surfaces. The symbol [r, s, t] is called
the characteristic symbol of the Riemann surface X .

In [K] it is shown that

Theorem 2.1. The number of isolated points in Bg is 1 if g = 2 , [(g−2)/3]
if q = 2g + 1 is a prime > 7 , and 0 otherwise. The isolated point in B2 is the

hyperelliptic surface w2 = z5 − 1 . For g ≥ 5 the isolated Riemann surfaces are

precisely those X ′ for which Aut+ X ′ is isomorphic to Zq and such that in their

characteristic symbols [r, s, t] no two of r, s, t are equal, and if q ≡ 1 mod3 and

λ is a root of unity then [r, s, t] 6= [1, λ, λ2] .

Here for a real number x , [x] denotes the greatest integer ≤ x .
The following algorithm, with q = 2g + 1 prime, yields geometric models for

Riemann surfaces which correspond to isolated points in Bg ; see [K]. Its charac-
teristic symbol is chosen to be [1, s, t] without loss of generality.

Geometrical description. Let T be an hyperbolic triangle with angles π/q ,
π/q , π/q . We label the vertices with the capital letters N, U, V and the opposite
sides with n, u, v . We paste 2q copies of T around the vertices labelled N and
identifying u2i−1 with u2i and v2i with v2i+1 , and then U2i−1 with U2i and V2i

with V2i+1 . In this way we obtain an hyperbolic polygon P . The surface X with
characteristic symbol [1, s, t] is obtained from P by the identification of the side
n2i−1 with n2i+2s .

The polygon P admits as symmetry group a dihedral group Dq containing
the reflections on the diagonals of P and rotations of order q . The symmetries of
P are compatible with the identifications of the sides that produce X . One of the
rotations, R , of Dq transforms the side nx in the side nx+2 . The rotation R is
compatible with the sides identification because n2i−1+2 = n2(i+1)−1 is identified
with n2i+2s+2 = n2(i+1)+2s . One of the reflections, F , of Dq transforms the side
nx in the side nq−x . To prove that F is compatible with the side identifications
it is enough to remark that, if 0 < j ≤ q is such that j ≡ 1

2 (−2i − 2s + 1) mod q
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then nq−(2i−1) = n2j+2s is identified with nq−2i−2s = n2j−1 . Then the surface
X admits q symmetries (anticonformal involutions). In particular there are two
symmetries s1 and s2 that are conjugate in Aut(X) and that generate Dq as the
automorphism group of X .

The above proves the following

Lemma 2.2. An isolated point X in Bg admits two symmetries which

generate Dq as the automorphism group of X .

Note. There are two possible signatures of NEC groups, namely s(Λ1) =
(

0; +; [ ]; {(q, q, q)}
)

, s(Λ2) =
(

0; +; [q]; {(q)}
)

corresponding to groups that admit
the Fuchsian group Λ with signature (0; +; [q, q, q]; { }) as their canonical Fuchsian
subgroup. Only for the first signature we have that the epimorphisms θ: Λ → Zq

with kernel a surface group extend to an epimorphism θ1: Λ1 → Dq . Hence if X
represents an isolated point in Bg , then AutX = Dq and the orbifold X/ AutX
is a disc with three corner points of order q .

Let X be a Riemann surface representing an isolated point of Bg . By
Lemma 2.2 X has an automorphism group Dq then there is an NEC group ∆ and
an epimorphism θ: ∆ → Dq such that X = H/ Ker θ . Let s ∈ Dq be a symmetry
of X and θ−1{1, s} = Γs then Ker θ ⊂ Γs . Let Γ be the abstract Fuchsian group
such that Γ is isomorphic to Ker θ and let Γ∗ be the abstract group isomorphic
to Γs . Let t: Γ∗ → Γs be an isomorphism and i: Γ → Γ∗ be a monomorphism
such that t ◦ i(Γ) = Ker θ . Then i induces m: T(Γ∗) → T(Γ). Hence mT(Γ∗)
give us a submanifold in T(Γ) containing X .

Let v be a symmetry of Dq different from s . Then there is w ∈ Dq such
that v = wsw−1 . Let g ∈ ∆ such that θ(g) = w . Conjugation by g induces an
automorphism in Ker θ , cg , and

(2.1) α = (t ◦ i)
−1

◦ cg ◦ t ◦ i

is an automorphism of Γ. Let [α] be the element of the modular group represented
by α .

Lemma 2.3. [t ◦ i] ∈ m
(

T(Γ∗)
)

∩ [α]m
(

T(Γ∗)
)

.

Proof. By the definition of m we have [t ◦ i] = m[t] and by the definition of

the action of [α] we have: [α]m[t] = [α][t◦i] = [t◦i◦α] = [t◦i◦(t ◦ i)
−1

◦cg ◦t◦i] =
[cg ◦ t ◦ i] = [t ◦ i] .

Lemma 2.4. There exists ε > 0 such that, if Bε([t ◦ i]) is the ball of radius

ε around [t ◦ i] in T(Γ) , then

{[t ◦ i]} = m
(

T(Γ∗)
)

∩ [α]m
(

T(Γ∗)
)

∩ Bε([t ◦ i]).

Proof. Since X is an isolated point in Bg there is an ε > 0 such that
Aut+

(

H/r ∗ (Γ)
)

= {identity} for all r∗ such that r∗ ∈ Bε([t ◦ i]) − {[t ◦ i]} .
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Assume that there exists

[r∗] ∈ m
(

T(Γ∗)
)

∩ [α]m
(

T(Γ∗)
)

∩
(

Bε([t ◦ i]) − {[t ◦ i]}
)

.

Then [r∗] = m[r1] = [r1 ◦ i] = [α]m[r2] = [r2 ◦ i ◦ α] , where [r1] and [r2] ∈
m

(

T(Γ∗)
)

. Hence there is h ∈ G + such that r1 ◦ i = ch ◦ r2 ◦ i ◦ α , where ch is
defined by ch(x) = hxh−1 . Let r3 = ch ◦ r2 . Then

(2.2) r1 ◦ i = r3 ◦ i ◦ α, r1 ◦ i(Γ) ⊂ r1(Γ
∗)

and
r3 ◦ i(Γ) = r3 ◦ i ◦ α(Γ) ⊂ r3(Γ

∗).

If r1(Γ
∗) 6= r3(Γ

∗) then there are two symmetries a and b of Y = H/r1 ◦ i(Γ)
and then there is a conformal automorphism of Y , ab , different from the identity
in contradiction with the choice of ε . Thus r1(Γ

∗) = r3(Γ
∗) . Hence

(2.3) β = r3
−1 ◦ r1

is an automorphism of Γ∗ . Then by (2.2) and (2.3)

(2.4) β ◦ i = r3
−1 ◦ r1 ◦ i = r3

−1 ◦ r3 ◦ i ◦ α = i ◦ α.

Given an NEC group, Λ, we define

E(Λ) = {geig
−1 : gεΛ and ei is a connecting generator}.

We have E(Γs) ⊂ Ker θ and E
(

cg(Γs)
)

⊂ Ker θ . Since Γs and cg(Γs) pro-
duce different symmetries on X then

(2.5) E(Γs) ∩ E
(

cg(Γs)
)

= Φ.

On the other hand

(2.6) cg

(

E(Γs)
)

= E
(

cg(Γs)
)

.

We shall translate the situation to Γ using t ◦ i from (2.5) we have

(t ◦ i)
−1(

E(Γs)
)

∩ (t ◦ i)
−1(

E
(

cg(Γs)
))

= Φ,

and from (2.6)

(t ◦ i)
−1(

cg

(

E(Γs)
))

= (t ◦ i)
−1(

E
(

cg(Γs)
))

,
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so from the definition of α , (2.1), we obtain

α ◦ (t ◦ i)
−1(

E
(

Γs)
)

= (t ◦ i)
−1(

E
(

cg(Γs)
))

.

Also E(Γ∗) = t−1
(

E(Γs)
)

. Then

α ◦ i−1
(

E(Γ∗)
)

= (t ◦ i)
−1(

E
(

cg(Γs)
))

= α ◦ i−1
(

t−1E(Γs)
)

.

So

(2.7) α ◦ i−1
(

E(Γ∗)
)

∩ i−1
(

E(Γ∗)
)

= Φ.

Since β is an automorphism of Γ∗ the following equality holds: β
(

E(Γ∗)
)

=
E(Γ∗) . We have E(Γ∗) ⊂ i(Γ), and by (2.4)

E(Γ∗) = β ◦ i
(

i−1E(Γ∗)
)

= i ◦ α ◦ i−1
(

E(Γ∗)
)

.

Then α ◦ i−1
(

E(Γ∗)
)

= i−1
(

E(Γ∗)
)

that is a contradiction with (2.7).
In the above lemma choosing a symmetry different from s and v we can

replace the submanifold [α]m
(

T(Γ∗)
)

by [αj ]m
(

T(Γ∗)
)

with j ∈ {2, . . . , q − 1} .
Applying Lemma 2.4 to every pair of symmetries of Dq we have

Theorem 2.5. Let Γ be a Fuchsian surface group and [r] ∈ T(Γ) such

that H/r(Γ) represents an isolated point in the branch loci with automorphism

group Dq . Let [αj ]m
(

T(Γ∗)
)

, j ∈ {1, . . . , q} , be the submanifolds of T(Γ)
given by the groups uniformizing surfaces with a symmetry and such that [r] ∈
[αj ]m

(

T(Γ∗)
)

. Then there exists a neigborhood V of [r] such that

{[r]} = V ∩
(

∩[αj ]m
(

T(Γ∗)
))

.

Remark. Let S1 and S2 be two submanifolds of T(Γ) such that S1 and
S2 correspond to groups uniformizing Riemann surfaces with a symmetry. Since
dim S1 = dim S2 = 1

2 dimT(Γ), if S1 and S2 cut transversally in a point p then
such a point projects by π: T(Γ) → Mg in an isolated point of the branch loci.

3. On the non-existence of isolated points for non-orientable

surfaces and surfaces with boundary

We shall see in this section that, on the contrary of what happens with Rie-
mann surfaces, there are not isolated points in the branch locus B of Klein surfaces
which either are non-orientable or have nonempty boundary.

We first consider non-orientable surfaces Y without boundary. It is well
known that if G = AutY , then G = Aut+ Yc , where Yc denotes the complex
double of Y .
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Theorem 3.1. There are not isolated points in the branch locus Bg of

non-orientable Klein surfaces without boundary.

Proof. Assume that Y is a non-orientable surface without boundary of genus
g representing an isolated point in Bg . Using Theorem 2.1, we obtain that
Aut Y = Aut+ Yc = Zq , with q = 2g+ + 1 a prime, then q = 2g − 1. On the
other hand the quotient orbifold Y/ AutY must be either a disc with three corner
points of order q , or a disc with a corner point of order q and a cone point of
order q . Now, as Y is non-orientable and q is an odd integer, then the orbifold
Y/Zq is non-orientable and we are in a contradiction.

Let Γ be an NEC surface group with signature
(

h;±; [ ]; {( )k}
)

, the notation
means that there are k empty period cycles in Γ.

If G′ is a subgroup of Aut(H/Γ), then the G′ -action on H/Γ induces a
stratum of the branch locus of the surfaces with group Γ. The stratum has
dimension 0 if the quotient orbifold of H/Γ by G′ is the disc with three corner
points, or the disc with a corner point of order q and a cone point of order q . But
the quotient orbifold of a bordered Klein surface contains a boundary component
without corner points or a boundary component with at least two corner points
of order 2 (see [BM]). This proves the following

Theorem 3.2. There are no isolated points in the branch locus of Klein

surfaces with nonempty boundary.

The authors wish to thank the referee for several helpful comments and sug-
gestions.
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