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Abstract. The polarization P(A) of a closed or open set A ⊂ C is defined as follows:
If z, z̄ ∈ A then z, z̄ ∈ P(A) . If neither z, z̄ ∈ A then neither z, z̄ ∈ P(A) . If exactly one of
z = x + iy , z̄ belongs to A then x + i|y| ∈ P(A) and x − i|y| /∈ P(A) . We prove theorems that
describe the behaviour of harmonic measure, Green function, Robin function, Brownian motion and
extremal length under polarization. These theorems, combined with an approximation technique
due to Dubinin, lead to a new proof of symmetrization results of Baernstein.

1. Introduction

Polarization with respect to the real axis is a geometric transformation that
preserves the symmetric part of a set and moves the nonsymmetric part to the
upper half plane. To give the precise definition we need the following notation:

C+ is the upper half plane and C
−

is the lower half plane. If F is a closed
set in C , then F+ = closC+ ∩ F and F

−
= closC

−
∩ F . If O is an open set

in C , then O+ = C+ ∩ O and O
−

= C
−
∩ O . Here clos means closure in the

topology of the plane. The reflection of a set A in the real axis is denoted by Ā ,
i.e., Ā = {z̄ : z ∈ A} .

The polarization P(A) of a closed or open set A ⊂ C is defined as follows: If
z, z̄ ∈ A then z, z̄ ∈ P(A) . If neither z, z̄ ∈ A then neither z, z̄ ∈ P(A) . If exactly
one of z = x + iy , z̄ belongs to A then x + i|y| ∈ P(A) and x − i|y| /∈ P(A) .
Below there is an equivalent definition.

Definition 1.1. Let A be a closed or open set. The polarization P(A) of

A (with respect to R) is P(A) = (A ∪ Ā)+ ∪ (A ∩ Ā)
−

.

We define also the polarization Pl(A) of A with respect to any oriented line l .

Definition 1.2. Let l be an oriented line and let Tl: Ĉ → Ĉ be the Möbius
transformation that maps ∞ to ∞ and l to R preserving orientation. The
polarization Pl(A) of A with respect to l is P(A) = T−1

l P(TlA) .

Thus in the notation of Definitions 1.1 and 1.2, we have P = PR . Another
piece of notation: If F = {z} is a singleton, P(z) is the element of the singleton
P(F ) , i.e., if Im z ≥ 0 then P(z) = z and if Im z < 0 then P(z) = z̄ .
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Figure 1. A domain D and its polarization P(D) .

Remarks. (1) If F is a closed set then P(F ) is a closed set. If O is an open
set then P(O) is open set.

(2) P(D) need not be connected even if D is. It is not necessarily simply
connected even if D is.

(3) The area of P(O) is equal to the area of O .
(4) P(D) has always the property: P(D)

−
⊂ P(D)+ .

Polarization appeared in a 1952 paper by V. Wolontis [23], who proved results
on the behavior of certain extremal lengths under polarization. We will use the
following notation for extremal distances: Let D ⊂ C be a domain and let K1 , K2

be two compact subsets of clos D . Then λ(K1, K2, D) is the extremal distance
between K1 and K2 with respect to D . More precisely λ(K1, K2, D) is the
extremal length of the family of all piecewise rectifiable curves that lie in D\K1\K2

and run from K1 to K2 . See [16] for more information on extremal length.
If F1 and F2 are two closed disjoint sets, Wolontis proved that

(1.3) λ(F1, F2,C) ≤ λ
(
P(F1),P(F2),C

)
.
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Figure 2. An illustration for inequality (1.3).
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Wolontis used the important idea that symmetrization results can be proven
by successive applications of polarization results. Polarization was also used by
Baernstein and Taylor (see [5] and [4]) for the proof of rearrangement inequali-
ties. Dubinin used successive polarizations to prove theorems for the capacity of
condensers in n -space (see [9], [10] and references therein).

We will use the following notation for harmonic measure: Let Ω ⊂ Ĉ be an
open set and K be any set in Ĉ . ω(z, K, Ω) will denote the harmonic measure
at z of the set closK ∩ clos Ω with respect to the component of Ω \ closK that
contains z .

Øksendal [17] used Brownian motion to prove a primitive polarization theorem
for harmonic measure.

Theorem 1.4 (Øksendal). Let Ω be a domain in C , symmetric with respect

to R . Let K ⊂ Ω be compact and put K̃ =
(
P(K)

)
+
. Then

(1.5) ω(x, K, Ω) ≥ ω(x, K̃, Ω), x ∈ R ∩ Ω \ K.
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Figure 3. An illustration for inequality (1.5).

Øksendal used this theorem to prove projection estimates for harmonic mea-
sure. He proved, for example the Beurling–Nevanlinna projection theorem and
Hall’s lemma. Theorem 1.4 was rediscovered by Baernstein (see Lemmas 1 and 2
in [14]) whose proof is similar to the original proof of the Beurling–Nevanlinna
theorem. Baernstein showed that Theorem 1.4 implies the following result for the
Green function.

Theorem 1.6 (Baernstein). Let E be a compact set with positive capacity.

Let Ẽ = {x − i|y| : x + iy ∈ E} . If x ∈ R ∪ {∞} and u + iv ∈ C , then

g(x, u + iv, Ĉ \ E) ≤ g(x, u + i|v|, Ĉ \ Ẽ) .

In Sections 2 and 3 we state and prove a polarization theorem for harmonic
measure which generalizes Øksendal’s theorem. The subsequent sections contain
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polarization results for the Green and Robin functions, and for Brownian motion.
Some of these results are closely related to the results obtained independently by
A.Yu. Solynin in [21]. The polarization theorem for harmonic measure (Theo-
rem 2.2) is stated in [21] without proof and the theorem on the Green function
(Theorem 4.1) is proved in [21] with a different method. Now we present some of
our main polarization inequalities.

Let D be a domain regular for the Dirichlet problem. Let E ⊂ ∂D be a
closed set such that E ∩ D = ∅ . Then we have:

(i) For x ∈ R ∩ D ,

(1.7) ω(x, E, D) ≤ ω
(
x,P(E),P(D)

)
.

(ii) For z ∈ D ∩D ,

(1.8) ω(z, E, D) + ω(z̄, E, D) ≤ ω
(
z,P(E),P(D)

)
+ ω

(
z̄,P(E),P(D)

)
.

(iii) Let l be the vertical line passing through x ∈ R∩D , and let Φ: R → R

be an increasing convex function. Then

(1.9)

∫

l

Φ
(
ω(ζ, E, D)

)
|dζ| ≤

∫

l

Φ
(
ω
(
ζ,P(E),P(D)

))
|dζ|.
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Figure 4.

(iv) For the Green functions of D and P(D) , and for x, y ∈ R∩D , we have:

(1.10) g(x, y, D) ≤ g
(
x, y,P(D)

)
, x, y ∈ R ∩ D

(v) Let Bt denote Brownian motion in the plane and τD be the exit time
from D . Let P x be the probability measure corresponding to Brownian motion
starting at x ∈ R ∩ D . Then, for 0 ≤ τ1 < τ2 ≤ ∞ ,

(1.11) P x(BτD
∈ E, τ1 < τD < τ2) ≤ P x

(
BτP(D)

∈ P(E), τ1 < τP(D) < τ2

)
.
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2. Polarization and harmonic measure

In this section we state a theorem that describes the behaviour of harmonic
measure under polarization. Solynin [21] has discovered it independently.

In the sequel we will use the following notational convention for harmonic
measure: ω(z, E, Ω) is set to be 0 outside the component of Ω \ closE that
contains z .

Let D be a domain in C , regular for the Dirichlet problem. Let E ⊂ ∂D be
a closed set and assume that E satisfies the condition:

(2.1) E ∩ D = ∅.

Elementary set-theoretic considerations show that E satisfies (2.1) if and only if
it is the union of two sets E1 and E2 such that

(i) E1 ⊂ ∂D and
(ii) P(E2) ⊂ ∂P(D)+ .

For the equality statements of the theorem it is assumed, in addition, that D
is bounded by a finite number of curves or arcs and E consists of a finite number
of curves or arcs.

The theorem compares the harmonic measures ω
(
P(z),P(E),P(D)

)
and

ω(z, E, D) . Before stating it, we need some more notation. The polarization
P(D) of D will be denoted (sometimes) by G , i.e. G = P(D) . We give the
names (a), (b), (c) to the following conditions:

(a) E = P(E) , D = P(D) .
(b) E = P(E) , D = P(D) .
(c) D =D .

Theorem 2.2. With the above notation we have

(2.3) ω(x, E, D) ≤ ω
(
x,P(E),P(D)

)
, x ∈ R ∩ D.

Equality holds in (2.3) for some x ∈ R ∩ D if and only if (a) or (b) or (c) holds.

(2.4) ω(z̄, E, D) ≤ ω
(
z,P(E),P(D)

)
, z ∈ D

−
.

Equality holds in (2.4) for some z ∈ D
−

if and only if (b) holds.

(2.5) ω(z, E, D) ≤ ω
(
z,P(E),P(D)

)
, z ∈ D+.

Equality holds in (2.5) for some z ∈ D+ if and only if (a) holds.

(2.6) ω(z, E, D) + ω(z̄, E, D) ≤ ω
(
z,P(E),P(D)

)
+ ω

(
z̄,P(E),P(D)

)
, z ∈ D.

Equality holds in (2.6) for some z ∈ D if and only if (a) or (b) or (c) holds.
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Figure 5. An illustration for Theorem 2.2.

The proof of the theorem is deferred until the next section. Here we will
present some of its consequenses. Øksendal’s Theorem 1.4 follows from Theo-
rem 2.2 by setting D = Ω \K and E = ∂Ω. In the corollaries that follow, we use
the notation set before the statement of Theorem 2.2.

Corollary 2.7. For all x ∈ R and all increasing convex functions Φ: R → R

(2.8)

∫

Dx

Φ
(
ω(x + iy, E, D)

)
dy ≤

∫

Gx

Φ
(
ω
(
x + iy,P(E),P(D)

))
dy,

where Dx = {y : x + iy ∈ D} and Gx = {y : x + iy ∈ P(D)} .

Equality holds in (2.8) for some x ∈ R∩D and some nonconstant, increasing,

convex function Φ if and only if at least one of the conditions (a), (b), (c) holds.

The inequality (2.8) follows from (2.6) and the following fact about convexity:
Suppose a ≤ b , c ≤ d , a ≤ d and a + b ≤ c + d . Let Φ be a convex increasing
function. Then Φ(a) + Φ(b) ≤ Φ(c) + Φ(d) .

The equality statement, which is due to Solynin [21], follows from the equality
statement for the above convexity inequality: If Φ(a) + Φ(b) = Φ(c) + Φ(d) then
a + b = c + d .

By taking Φ(t) = tp in the above corollary and letting p → ∞ we obtain:

Corollary 2.9. With the above notation we have:

(2.10) max
z∈Dx

ω(z, E, D) ≤ max
z∈Gx

ω
(
z,P(E),P(D)

)
, x > 0,

where Dx = {z ∈ D : Re z = x} and Gx = {z ∈ P(D) : Re z = x} .

By applying a sequence of polarizations (a technique due to Dubinin [10], see
also [5], [4]), we see that Corollary 2.7 implies:
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Corollary 2.11. Let Ω be a domain with Ω ⊂ D and let α = ∂Ω ∩ ∂D .

Denote by Ω∗ and α∗ the circular symmetrizations of Ω and α respectively with

respect to the positive semiaxis. Set

(2.12) u(z) =

{
ω(z, α, Ω), if z ∈ Ω,

0, if z ∈ D \ Ω

and

(2.13) v(z) =

{
ω(z, α∗, Ω∗), if z ∈ Ω∗,

0, if z ∈ D \ Ω∗.

Then for all r ∈ (0, 1) and all increasing convex functions Φ: R → R

(2.14)

∫ 2π

0

Φ
(
u(reiθ)

)
dθ ≤

∫ 2π

0

Φ
(
v(reiθ)

)
dθ.

Equality holds in (2.14) for some r ∈ Ω∗ and some nonconstant, increasing and

convex function Φ if and only if Ω = eiφΩ∗ and α = eiφα∗ for some φ ∈ R .

This is the main symmetrization result for harmonic measure. It was proven
by Baernstein [2] who used the star function method. The equality statement
improves a result due to Essén and Shea [13].

3. Proof of the polarization theorem for harmonic measure

The proof uses a method of Øksendal [17] and involves successive applications
of the strong Markov property of harmonic measure: Let Ω1 and Ω2 be two

domains in C . Assume that Ω1 ⊂ Ω2 and let F ⊂ ∂Ω2 be a closed set. Let

σ = ∂Ω1 \ ∂Ω2 . Then for z ∈ Ω1 ,

(3.1) ω(z, F, Ω2) = ω(z, F, Ω1) +

∫

σ

ω(z, ds, Ω1)ω(s, F, Ω2).

The equation (3.1) is a consequence of the probabilistic interpretation of harmonic
measure as hitting probability of Brownian motion (see [18]). One can also prove
it directly using the potential-theoretic definition of harmonic measure (see [15,
p. 114]).

We explain the notation ω(z, ds, Ω1) that appears in (3.1): ω(z, · , Ω1) is a
measure for fixed z ∈ Ω1 . Call this measure µΩ1

z . In integrals the usual notation
is dµΩ1

z (s) where s is the variable of integration. Instead of this notation we will
use the notation ω(z, ds, Ω1) , i.e. dµΩ1

z (s) = ω(z, ds, Ω1) .
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We start with the proof of (2.3). Let Ω = D∩D = P(D)∩P(D) . We observe
that

D = Ω ∪ (D
−
\ Ω) ∪ (D+ \ Ω) (disjoint union) and

G = Ω ∪ (D
−
\ Ω) ∪ (D+ \ Ω) (disjoint union).

Let λ = ∂Ω ∩ D+ , ̺ = R ∩ Ω (= R ∩ D = R ∩ G) and σ = ∂Ω ∩ D
−

. Note
that if λ = ∅ , then D+ ⊂ D

−
and hence D =G . Also, if σ = ∅ , then D

−
⊂ D+

and hence D = G . If both λ = ∅ and σ = ∅ , then D =D . In this case (2.3) holds
with equality. It is also easy to see that if at least one of the conditions (a), (b)
holds, then (2.3) holds with equality. From now on we assume that either λ 6= ∅
or σ 6= ∅ .

The set λ lies in D+ and σ lies in D
−

. Note also that λ ⊂ G+ and σ̄ ⊂ G+ .
We will denote the points of λ, ̺, σ by l, r, s , respectively.

We first prove (2.3) under the following additional assumptions:

(3.2) clos λ ∩R = ∅ and closσ ∩R = ∅.

and

(3.3) D is bounded

λ

σ

D

R

E

P(E)

λ σ̄

R

P(D)

Figure 6. The sets λ , σ , and σ̄ in D and P(D) .

Fix x ∈ R ∩ D . An application of the strong Markov property shows that

(3.4) ω(x, E, D) = ω(x, E, Ω)+

∫

λ

ω(x, dl, Ω)ω(l, E,D)+

∫

σ

ω(x, ds, Ω)ω(s, E, D).

Again the strong Markov property yields

ω(l, E, D) = ω(l, E, D+) +

∫

̺

ω(l, dr, D+)ω(r, E, D) and(3.5)

ω(s, E, D) = ω(s, E, D
−
) +

∫

̺

ω(s, dr, D
−
)ω(r, E, D).(3.6)
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We substitute (3.5) and (3.6) in (3.4) and obtain

(3.7)

ω(x, E, D) = ω(x, E, Ω) +

∫

λ

ω(x, dl, Ω)ω(l, E, D+)

+

∫

λ

∫

̺

ω(x, dl, Ω)ω(l, dr, D+)ω(r, E, D)

+

∫

σ

ω(x, ds, Ω)ω(s, E, D
−
)

+

∫

σ

∫

̺

ω(x, ds, Ω)ω(s, dr, D
−
)ω(r, E, D).

A similar triple application of the strong Markov property applied to the
harmonic measure ω(x,P(E), G) gives

(3.8)

ω
(
x,P(E), G

)
= ω

(
x,P(E), Ω

)
+

∫

λ

ω(x, dl, Ω)ω
(
l,P(E), G+

)

+

∫

λ

∫

̺

ω(x, dl, Ω)ω(l, dr, G+)ω
(
r,P(E), G

)

+

∫

σ̄

ω(x, ds, Ω)ω
(
s,P(E), G+

)

+

∫

σ̄

∫

̺

ω(x, ds, Ω)ω(s, dr, G+)ω
(
r,P(E), G

)
.

Next we write (3.7) with x replaced by r and r, s, l replaced by r1, s1, l1 . We
thus obtain a formula for ω(r, E, D) . We substitute this formula into (3.7).

Performing this argument n times we see that ω(x, E, D) can be written as a
sum whose first term is ω(x, E, Ω) and the other terms are certain integrals. The
integrands are products of harmonic measures. These harmonic measures have
one of the following eight forms:
(1) ω(r, E, Ω) (2) ω(l, E, D+) (3) ω(s, E, D

−
) (4) ω(l, dr, D+)

(5)ω(s, dr, D
−
) (6) ω(r, dl, Ds) (7) ω(r, ds, Ω) (8) ω(r, E, D) .

It is important to note that a term of the form (8) appears only in 2n integrals
I1, I2, . . . , I2n . The integrand of Ij is a product of 2n+1 factors: n factors of the
forms (4) or (5), n factors of the forms (6) or (7) and one factor of the form (8).

Because of the assumptions (3.2) and (3.3), there exists a positive constant
δ = δ(D) < 1 such that

ω(l, ̺, G+) ≤ δ,(3.9)

ω(l, ̺, D+) ≤ δ,(3.10)

ω(s̄, ̺, G+) ≤ δ,(3.11)

ω(s, ̺, D
−
) ≤ δ.(3.12)
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We also have, by symmetry,

ω(r, λ, Ω) ≤ 1
2 ,(3.13)

ω(r, σ, Ω) ≤ 1
2
.(3.14)

The inequalities (3.9)–(3.14) imply that Ij ≤ δn/2n , j = 1, 2, . . . , 2n and
therefore

(3.15)

2n∑

j=1

Ij ≤ δn → 0, as n → ∞.

Similarly we can obtain a formula for ω
(
x,P(E), G

)
: It can be written as a

sum whose first term is ω
(
x,P(E), Ω

)
and the other terms are certain integrals.

The integrands now are products of harmonic measures of the following eight
forms:
(1)∗ ω(r,P(E), Ω) (2)∗ ω(l,P(E), G+) (3)∗ ω(s̄,P(E), G+)
(4)∗ ω(l, dr, G+) (5)∗ ω(s̄, dr, G+) (6)∗ ω(r, dl, Ω)
(7)∗ ω(r, ds̄, Ω) (8)∗ ω(r,P(E), G) .

Again we remark that a term of the form (8)∗ appears only in 2n integrals
I∗

1 , I∗

2 , . . . , I∗

2n such that

(3.16)
2n∑

j=1

I∗

j → 0, as n → ∞.

It is easy to see that by symmetry and the domain monotonicity of harmonic
measure each term of the form (i)∗ is at least as large as the corresponding term
of the form (i), i = 1, 2, 3, 4, 5, 6, 7. For the measures of the form (4) and (4)∗ ,
ω(l, dr, D+) ≤ ω(l, dr, G+) means that ω(l, I, D+) ≤ ω(l, I, G+) for all l ∈ λ and
all Borel subsets I ⊂ ̺ . Similarly for the measures of the forms (5)–(7) and (5)∗–
(7)∗ . For example, consider harmonic measures of the forms (3) and (3)∗ . We
have for all:

(3.17) s ∈ σ, ω(s, E, D
−
) ≤ ω

(
s̄,P(E), G+

)
.

This holds because D
−
⊂ G+ and E

−
⊂ P(E)+ .

It remains to observe that

(3.18) ω(x, E, Ω) = ω
(
x,P(E), Ω

)

This finishes the proof of (2.3) with the assumptions (3.2) and (3.3). We show
now how we can remove assumption (3.2).
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We continue to assume that D is bounded. Let a = inf ̺ and b = sup ̺ . For
n ∈ Z+ , let

On =

{
z : a < Re z < b, −

1

n
< Im z <

1

n

}
\ E \ R

and
Dn = D ∪ On.

Then Dn satisfies (3.2) and hence, by the first part of the proof,

(3.19) ω(x, E, Dn) ≤ ω
(
x,P(E),P(Dn)

)
, x ∈ ̺.

Since Dn is a decreasing sequence converging to D , the sequence of harmonic
functions hn(z) = ω(z, E, Dn) is a decreasing sequence and converges to a function
h harmonic in D .

Also ω(z, E, Dn) ≥ ω(z, E, D) , for all n ∈ Z+ . Hence

(3.20) ω(z, E, D) ≤ h(z), z ∈ D.

Claim 3.12. The sequence h(z) = ω(z, E, D) , z ∈ D .

Proof. Let ζ ∈ ∂D \ E . We must prove that

(3.22) h(z) → 0, as D ∋ z → ζ.

Choose k ∈ Z+ large enough so that ζ ∈ ∂Dk . Then

(3.23) 0 ≤ lim sup
D∋z→ζ

h(z) ≤ lim
z→ζ

hk(z) = 0

and so (3.22) is proven. The claim follows from (3.20) and (3.22).
Similarly we prove that ω

(
z,P(E),P(Dn)

)
converges to ω

(
z,P(E),P(D)

)

as n tends to ∞ . Thus (3.19) implies (2.3).
To remove assumption (3.3), we consider the increasing sequence of bounded

open sets Dm = D ∩ {|z| < m} , m ∈ Z+ which converges to D and we proceed
as above using simple convergence arguments.

So (2.3) has been proved.
The inequality (2.4) follows immediately after applying the maximum princi-

ple to the function ω(z̄, E, D) − ω
(
z,P(E),P(D)

)
, z ∈ D

−
. (2.5) and (2.6) are

proven similarly.
We proceed with the proof of the equality statement for (2.3). Assume that

there exists x ∈ ̺ such that

(3.24) ω(x, E, D) = ω
(
x,P(E),P(D)

)
.

Claim 3.25. (i) If E 6= P(E) , then D =G .

(ii) If E 6= P(E) , then D = G .
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Proof. Assume that D 6= G . So λ 6= ∅ . (3.24) and the strong maximum
principle applied to (2.6) imply that ω(z, E, D) = ω

(
z,P(E),P(D)

)
for all z ∈ Ω.

Hence

(3.26) ω(l, E, D) = ω
(
l,P(E),P(D)

)
, l ∈ λ.

The assumption E 6= P(E) implies that A := E \P(E) 6= ∅ . Note that A ⊂ ∂D
−

and Ā ⊂ ∂P(D)+ . By the strong Markov property,

ω(l, A, D) =

∫

̺

ω(l, dr, D+) ω(r, A, D)(3.27)

ω
(
l, Ā,P(D)

)
= ω(l, Ā, G+) +

∫

̺

ω(l, dr, G+) ω(r, Ā, G).(3.28)

(3.27) and (3.28) imply

(3.29) ω(l, A, D) < ω
(
l, Ā,P(D)

)
.

Therefore

(3.30) ω(l, E, D) < ω
(
l,P(E),P(D)

)
,

which contradicts (3.26). So D = G and (i) is proven. A similar argument
proves (ii).

Claim 3.31. (i) If E 6= P(E) , and D 6=D , then E = P(E) .
(ii) If E 6= P(E) , and D 6=D , then E = P(E) .

Proof. Assume E 6= P(E) . By Claim 3.25 D =G . Since D 6=D , σ 6= ∅ . If
E 6= P(E) we obtain a contradiction as in Claim 3.25. This proves (i). The proof
of (ii) is similar.

Claim 3.32. If E =E , then either D = G or D =G .

Proof. Assume that E =E and D 6=G and D 6= G . Then λ 6= ∅ and σ 6= ∅ .
The maximum principle and (2.6) give

ω(r, E, D) = ω(r, E, G),(3.33)

ω(l, E, D) = ω(l, E, G).(3.34)

Now by the strong Markov property,

ω(l, E, D) = ω(l, E+, D) +

∫

̺

ω(l, dr, D+) ω(r, E, D),(3.35)

ω(l, E, G) = ω(l, E+, G) +

∫

̺

ω(l, dr, G+) ω(r, E, G).(3.36)
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Since σ 6= ∅ , D+ is strictly contained in G+ . So by (3.35), (3.36), and (3.33)
we have ω(l, E, D) < ω(l, E, G) , which contradicts (3.34) and the claim is proven.

Now Claims 3.25, 3.31 and 3.32 imply the equality statement for (2.3).
If equality holds in (2.4) for some z ∈ D

−
, then equality holds for all z ∈ D

−
.

Therefore equality holds in (2.3) for all x ∈ ̺ . Hence at least one of the conditions
(a), (b), (c) holds. The cases (a) and (c) can be easily discarded (unless D = D
and E =E , in which case (a) and (c) coincide with (b)). The remaining equality
statements are proven similarly.

4. Polarization and Green function

In this section we describe the behavior of the Green function under polariza-
tion and present some consequences of this behavior. The main theorem on this
subject (Theorem 4.1) has been proved independently by Solynin [21]. All the
domains we consider in this section are assumed to possess a Green function. We
note also that for the equality statements it is assumed (but not stated explicitly)
that the domain is bounded by a finite number of Jordan curves. With this as-
sumption we avoid some trivial cases of equality that involve sets of capacity 0.
Set P(∞) = ∞ .

Theorem 4.1. Let D be a domain in Ĉ .

(i) For all z , w in D ,

(4.2) g(z, w, D) ≤ g
(
P(z),P(w),P(D)

)
.

Equality holds in (4.2) for some z ∈ D and some w 6= z if and only if either

z = P(z) , w = P(w) and D = P(D) or z = P(z) , w = P(w) and D = P(D) .
(ii) For all w ∈ D and for all z ∈ C \ {w} ,

(4.3) g(z, w, D) + g(z̄, w, D) ≤ g
(
z, w,P(D)

)
+ g

(
z̄, w,P(D)

)
.

Equality holds in (4.3) for some w ∈ D and some z ∈ C\{w} if and only if either

z = P(z) , w = P(w) and D = P(D) or z = P(z) , w = P(w) and D = P(D) .

Proof. Step 1. Assume first that z = x ∈ R and w = y ∈ R . By an inversion
we may assume that y = ∞ . So we have to prove that

(4.4) g(x,∞, D) ≤ g
(
x,∞,P(D)

)
.

But (see [22, p. 14–16])

g(x,∞, D) = lim
n→∞

un(x) logn,(4.5)

g
(
x,∞,P(D)

)
= lim

n→∞

vn(x) logn,(4.6)
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where

un(x) = ω
(
x, ∂D(0, n), D ∩ D(0, n)

)
,(4.7)

vn(x) = ω
(
x, ∂D(0, n),P(D)∩ D(0, n)

)
;(4.8)

n is assumed to be a large enough positive integer so that C \ D ⊂ D(0, n) and
C \ P(D) ⊂ D(0, n) . Now Theorem 2.2 implies

(4.9) un(x) ≤ vn(x).

Thus (4.5), (4.6), (4.9) give (4.4).

Step 2. Assume that z = x ∈ R and w ∈ D
−

. So we have to prove that

(4.10) g(x, w, D) ≤ g
(
x, w̄,P(D)

)
.

Let u(w) = g(x, w, D)− g
(
x, w̄,P(D)

)
, w ∈ D

−
, x is fixed. u is harmonic in D

−

and u ≤ 0 on ∂D
−

. So (4.10) holds. Note that we have used the result of step 1.

Step 3. Now assume that z, w ∈ D
−

. So we have to prove

(4.11) g(z, w, D) ≤ g
(
z̄, w̄,P(D)

)
.

For fixed z we define

(4.12) v(w) = g(z, w, D)− g
(
z̄, w̄,P(D)

)
.

Step 2 implies v ≤ 0 on ∂D
−

and thus (4.11) follows from the maximum principle.
The remaining cases z ∈ D

−
, w ∈ D+ and z ∈ D+ , w ∈ D+ are treated

similarly.

Step 4. We prove here a special case of the equality statement. We use the
notation Ω, λ , σ taken from the proof of Theorem 2.2.

Assume that g(x,∞, D) = g
(
x,∞,P(D)

)
for some x ∈ R ∩ D . We must

prove that D = P(D) or D = P(D) . Assume that D 6= P(D) . So λ 6= ∅ .
The function

h1(z) = g(z,∞, D) + g(z̄,∞, D)− g
(
z,∞,P(D)

)
− g

(
z̄,∞,P(D)

)

is harmonic and nonpositive in Ω and h1(x) = 0. So the maximum principle
implies that h(z) = 0, for all z ∈ Ω. Hence

(4.13) g(l,∞, D) = g
(
l,∞,P(D)

)
, for all l ∈ λ.

The maximum principle implies that

(4.14) g(z,∞, D) = g
(
z,∞,P(D)

)
, for all z ∈ D+.

If σ 6= ∅ , (4.14) leads to a contradiction. So σ = ∅ and hence D = P(D) . The
other equality statements are proven by similar arguments.
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Corollary 4.15. Let D be a domain in C . For w ∈ D define

(4.16) uw(z) =

{
g(w, z, D), if z ∈ D,

0, if z ∈ C \ D,

and

(4.17) vw(z) =

{
g
(
P(w), z,P(D)

)
, if z ∈ P(D),

0, if z ∈ C \ D.

If w ∈ D , x ∈ R and Φ: R → R is a convex, increasing function then

(4.18)

∫

R

Φ(uw(x + it)) dt ≤

∫

R

Φ
(
vw(x + it)

)
dt.

Equality holds in (4.18) for some w ∈ D , some x ∈ R ∩ D \ {w} and some

nonconstant, convex, increasing function Φ if and only if either w = P(w) and

D = P(D) or w = P(w) and D = P(D) .

This follows from (4.3) and its equality statement.

Corollary 4.19. Let D be a domain in Ĉ . If z ∈ D ∩ C , let R(z, D) be

the conformal radius of D at z . Then R(z, D) ≤ R
(
P(z),P(D)

)
.

Corollary 4.19 is obtained at once from Theorem 4.1 and the definition of
conformal radius (see [10]). An essentially equivalent formulation is the following:

Corollary 4.20. Let E be a compact set in the plane. Then cap E ≥
capP(E) .

Corollaries 4.19 and 4.20 have been proven by different methods (see [23],
[10]).

The following corollary is the basic symmetrization result for a Green function.
It follows from Corollary 4.15.

Corollary 4.21. Let D ⊂ C be a domain and D∗ be its circular symmetriza-

tion with respect to the positive semiaxis. Define the functions

(4.22) u(z) =

{
g(z, zo, D), if z ∈ D \ {zo},
0, if z ∈ C \ D

and

(4.23) v(z) =

{
g(z, |zo|, D

∗), if z ∈ D∗ \ {|zo|},
0, if z ∈ C \ D∗

where zo is a point in D . If r > 0 and Φ: R → R is a convex increasing function,

we have

(4.24)

∫ 2π

0

Φ
(
u(reiθ)

)
dθ ≤

∫ 2π

0

Φ
(
v(reiθ)

)
dθ.

Equality holds in (4.24) for some r ∈ D∗ and some nonconstant, convex, increas-

ing function Φ: R → R if and only if D = eiφD∗ for some φ ∈ R .
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This result was proven by Baernstein [2] who used the star function method.
The equality statement, which is due to Solynin [21], improves a result due to
Essén and Shea [13].

5. Polarization and Robin function

We start with some definitions.

Definition 5.1. Let D be a domain in the plane bounded by a finite number
of analytic Jordan curves, and let F be a closed set consisting of a finite number
of arcs or curves on ∂D . The Robin function of F at z ∈ D with pole at zo ∈ D
is defined by the properties:

(i) N is harmonic in D and continuous in closD .
(ii) N(z) → 0, as D ∋ z → ζ ∈ F .
(iii) (∂N/∂n)(ζ) = 0, for ζ ∈ ∂D \ F . (∂/∂n denotes the inner normal

derivative).
(iv) N(z) + log |z − zo| is a harmonic function of z in a neighborhood of zo .

For the Robin function we will use the notation N(z, zo, F, D) . The existence
of the Robin function can be shown by the Perron method (according to Oht-
suka [16, p. 241]). Duren and Schiffer [11] gave a proof based on the variational
method. The uniqueness of N is a consequence of Hopf’s maximum principle
(see [19, p. 70]).

Definition 5.2. Let γ(zo, F, D) = limz→zo

(
N(z, zo, F, D) + log |z − zo|

)
and

R(zo, F, D) = e−γ(zo,F,D) . R(zo, F, D) is the Robin capacity of F at zo with
respect to D .

Robin capacity is invariant under certain normalized conformal maps. Using
this conformal invariance and suitable conformal maps we can drop the assumption
about analyticity of the boundary of D . However, for simplicity, in the sequel we
will retain this assumption.

We will need the following proposition. Its proof is very similar to the proof
of the corresponding result for the Green function (see p. 14–16 of [22]).

Proposition 5.3. Let D be a domain that contains ∞ and is bounded by

a finite number of analytic Jordan curves. Let F be a set on ∂D consisting of

a finite number of arcs or curves. If R > 0 is such that ∂D ⊂ D(0, R) , let uR

be the function with the properties ∆uR = 0 in D ∩ D(0, R) , uR = 0 on F ,

(∂uR/∂n) = 0 on ∂D \ F and uR = 1 on ∂D(0, R) . Then

(5.4) N(z,∞, F, D) = lim
R→∞

(log R)uR(z), z ∈ D \ {∞}.

The convergence is locally uniform.

Now we can prove a polarization result. The interior of a Jordan curve γ is
denoted by IN γ .
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Proposition 5.5. Let γ1, γ2, . . . , γN ; σ1, σ2, . . . , σM , (N, M ∈ Z+) be dis-

joint analytic curves in D with disjoint interiors. Let K =
⋃N

i=1 clos(IN γi) , E =⋃M
j=1 clos(INσj) . Assume that K is symmetric, i.e. K = K . Let D = D\(K∪E) ,

D∗ = P(D) = D \
(
K ∪P(E)

)
. Let u be such that ∆u = 0 in D , u = 1 on ∂D ,

u = 0 on σj , j = 1, 2, . . . , M , and ∂u/∂n = 0 on γi , i = 1, 2, . . . , N . Let u∗ be

such that ∆u∗ = 0 in D∗ , u∗ = 1 on ∂D , u∗ = 0 on P(σj) , j = 1, 2, . . . , M ,

and ∂u∗/∂n = 0 on γi , i = 1, 2, . . . , N . Then

(5.6) u(x) ≤ u∗(x), x ∈ (−1, 1) ∩ D.

Proof. We consider the Schottky double R of D with respect to
⋃N

i=1 γi

(see [22, p. 32]). R is a Riemann surface “above” D . Its boundary consists of two

copies of ∂D ∪
⋃M

j=1 σj . Similarly we consider the Schottky double R∗ of P(D) .
We extend u and u∗ on R and R∗ respectively by defining them as follows:
Let z1, z2 ∈ R be the two points above z ∈ D . Then u(z1) = u(z2) = u(z)
and similarly for u∗ . Then (see [22, p. 32]) u(z) = ω(z, ∂D, R) and u∗(z) =
ω(z, ∂D, R∗) .

Now we apply the method of proof of Theorem 2.2 (successive applications
of the Markov property) and conclude that u(x) ≤ u∗(x) for all x ∈ (−1, 1) ∩ D .
Note that the strong Markov property holds for harmonic measures on Riemann
surfaces by the same proof as in the planar case.

Proposition 5.7. Let D ⊂ C be a domain bounded by a finite number of

analytic Jordan curves γ1, γ2, . . . , γN ; σ1, σ2, . . . , σM (N, M ∈ Z+ ). The exterior

boundary of D (which coincides with one of the above curves) is assumed to be

symmetric with respect to R . Let K =
⋃N

i=1 γi and F =
⋃M

j=1 σj . Assume that

K = K . Then, for z, w ∈ D , the following inequalities hold:

N(z, w, F, D) ≤ N
(
P(z),P(w),P(F ),P(D)

)
,

N(z, w, F, D) + N(z̄, w̄, F, D) ≤ N
(
z, w,P(F ),P(D)

)
+ N

(
z̄, w̄,P(F ),P(D)

)
.

(We define the Robin function to be 0 outside D .)

Proof. As in the corresponding result for the Green function, the main in-
equality to be proved is

(5.8) N(x, y, F, D) ≤ N
(
x, y,P(F ),P(D)

)
, x, y ∈ R ∩ D.

By applying an inversion we may assume that ∞ ∈ D and y = ∞ . Then (5.8)
follows immediately from Propositions 5.3 and 5.5. The proof proceeds as the proof
of Theorem 4. Instead of the usual maximum principle we use Hopf’s maximum
principle (see [19, p. 70]).
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Corollary 5.9. Let D, γi, σj, F be as in Proposition 5.7 . Then for the Robin

capacity we have

(i) For all z ∈ P(D)+ ,

(5.10) R(z, F, D) ≥ R
(
P(z),P(F ),P(D)

)
.

(ii) For all z ∈ D
−
∪P(D)+ ,

(5.11) R(z, F, D) + R(z̄, F, D) ≥ R
(
z,P(F ),P(D)

)
+ R

(
z̄,P(F ),P(D)

)
.

This corollary comes at once from Proposition 5.7 and Definition 5.2.

6. Polarization and Brownian motion

The method of proof of Theorem 2.2 can be applied in the study of the
behaviour under polarization of some functions related to Brownian motion. For
the definition and main properties of Brownian motion we refer to [18], [12].

Let W be the Wiener space, the collection of all continuous functions (paths)
w from [0,∞) to C . By Bt , t > 0, we denote a Brownian motion in the plane,
i.e. Bt(w) = w(t) , w ∈ W . The corresponding probability measures are denoted
by P z , where z = B0 . For a domain D ⊂ C , τD is the exit time from D , i.e.
τD(w) = inf{t > 0, Bt(w) /∈ D} , w ∈ W .

Let now D be a domain regular for the Dirichlet problem. For t > 0, z ∈ D ,
and for an open set A ⊂ D , let

(6.1) Qt
D(z, A) = P z(Bt ∈ A, t < τD).

Thus Qt
D(z, A) is the probability that a Brownian motion Bs starting at z does

not exit D for s ≤ t and Bt ∈ A .
We will also consider the corresponding density function (transition probabil-

ity) Qt
D(z, w) , z, w ∈ D , t > 0, for which we have

(6.2) Qt
D(z, A) =

∫

A

Qt
D(z, x + iy) dx dy.

Qt
D(z, w) is related to the Green function of D via the formula

(6.3) g(z, w, D) =

∫
∞

0

Qt
D(z, w) dt.

For fixed A , Qt
D(z, A) as a function of t > 0 and z ∈ D , satisfies the heat

equation 2ut = ∆u with the initial-boundary conditions u(t, ζ) = 0, ζ ∈ ∂D and
u(0, z) = χA(z) , z ∈ D . Qt

D(z, w) is the heat kernel of D .
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Theorem 6.4. With the above notation we have

Qt
D(x, A) ≤ Qt

P(D)

(
x,P(A)

)
, x ∈ R ∩ D, t > 0,(6.5)

Qt
D(x, z) ≤ Qt

P(D)

(
x,P(z)

)
, x ∈ R ∩ D, t > 0, z ∈ D.(6.6)

Proof. The inequality (6.6) for z = y ∈ R ∩ D follows from (6.5) by setting
A = D(y, ε) and letting ε → 0. For general z ∈ D , (6.6) follows from the parabolic
maximum principle, see [19].

The proof of (6.5) is similar to the proof of Theorem 2.2 and we only present
its main step.

Recall the notation Ω, G , σ , λ , ̺ from Sections 2 and 3. We also write
A∗ := P(A) . The points of σ , λ , and ̺ will be denoted by s , l , and r respectively.

By the strong Markov property

(6.7)

Qt
D(x, A) = Qt

Ω(x, A) +

∫
∞

0

∫

λ

P x(BτΩ
∈ dl, τΩ ∈ dt1)Q

t−t1
D (l, A)

+

∫
∞

0

∫

σ

P x(BτΩ
∈ dl, τΩ ∈ dt1)Q

t−t1
D (s, A).

We apply the Markov property to Qt−t1
D (l, A) and to Qt−t1

D (s, A) , and we substi-
tute in (6.7) to obtain

Qt
D(x, A) = Qt

Ω(x, A) +

∫
∞

0

∫

λ

P x(BτΩ
∈ dl, τΩ ∈ t1) Qt−t1

D+
(l, A)

+

∫
∞

0

∫
∞

0

∫

λ

∫

̺

A(dl, dt1)P
l(BτD+

∈ dr, τD+
∈ dt2)Q

t−t1−t2
D (r, A)

+

∫
∞

0

∫

σ

P x(BτΩ
∈ ds, τΩ ∈ dt1)Q

t−t1
D−

(s, A)

+

∫
∞

0

∫
∞

0

∫

σ

∫

̺

A(ds, dt1)P
s(BτD

−

∈ dr, τD−
∈ dt2)Q

t−t1−t2
D (r, A),

where here and below A(dl, dt1) = P x(BτΩ
∈ dl, τΩ ∈ dt1) and A(ds, dt1) =

P x(BτΩ
∈ ds, τΩ ∈ dt1) .

Similarly, for G and A∗ we have

Qt
G(x, A∗) = Qt

Ω(x, A∗) +

∫
∞

0

∫

λ

P x(BτΩ
∈ dl, τΩ ∈ t1)Q

t−t1
G+

(l, A∗)

+

∫
∞

0

∫
∞

0

∫

λ

∫

̺

A(dl, dt1)P
l(BτG+

∈ dr, τG+
∈ dt2)Q

t−t1−t2
G (r, A∗)

+

∫
∞

0

∫

σ̄

P x(BτΩ
∈ ds, τΩ ∈ dt1) Qt−t1

G+
(s, A∗)

+

∫
∞

0

∫
∞

0

∫

σ̄

∫

̺

A(ds, dt1)P
s(BτG+

∈ dr, τG+
∈ dt2)Q

t−t1−t2
G (r, A∗).
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We check now that the following “domain monotonicity” inequalities hold for
all intervals I ⊂ ̺ , all times t0 and all time intervals To .

(a) P l(BτD+
∈ I, τD+

∈ To) ≤ P l(BτG+
∈ I, τG+

∈ To) .

(b) P s(BτD
−

∈ I, τD−
∈ To) ≤ P s̄(BτG+

∈ I, τG+
∈ To) .

(c) Qto

D+
(l, A) ≤ Qto

G+
(l, A∗) .

(d) Qto

D−

(s, A) ≤ Qto

G+
(s̄, A∗) .

For example, (a) holds because {w ∈ W : BτD+
∈ I, τD−

∈ To} ⊂ {w ∈

W : BτG+
∈ I, τG+

∈ To} . The proof of (b) is similar. (c) holds because of the

inclusion {w : Bto
∈ A, to < τD+

} ⊂ {w : Bto
∈ A∗, to < τG+

} and (d) is proven
similarly. We omit the rest of the proof. It proceeds as in Section 3.

Because of identity (6.3), the polarization inequalities of Theorem 6.4 imply
the corresponding inequalities for Green function (and essentially all the results of
Section 4). Also, by successive polarizations, we can prove known symmetrization
results for heat kernels (see [1] and [4]).

We show now that the results on harmonic measure obtained in Section 2 can
also be generalized. We consider “time dependent harmonic measures” defined as
follows:

Let D and E be as in Section 2. For z ∈ D and 0 ≤ τ1 < τ2 ≤ +∞ , let

(6.8) ωτ2
τ1

(z, E, D) = P z(BτD
∈ E, τ1 < τD < τ2).

Thus ωτ2
τ1

(z, E, D) is the probability that a Brownian motion starting at z exits D
through E , in the time interval (τ1, τ2) . For τ1 = 0 and τ2 = +∞ , ωτ2

τ1
(z, E, D)

is the usual harmonic measure ω(z, E, D) .

Theorem 6.9. With the above notation we have

(6.10) ωτ2
τ1

(x, E, D) ≤ ωτ2
τ1

(
x,P(E),P(D)

)
, x ∈ R ∩ D.

Proof. We again present only the main step of the proof. By the strong
Markov property:

(6.11)

ωτ2
τ1

(x, E, D) = ωτ2
τ1

(x, E, Ω) +

∫
∞

0

∫

λ

A(dl, dt1)ω
τ2−t1
τ1−t1

(l, E, D)

+

∫
∞

0

∫

σ

A(ds, dt1)ω
τ2−t1
τ1−t1 (s, E, D).

Applying again the strong Markov property to ωτ2−t1
τ1−t1

(l, E, D) as well as to
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ωτ2−t1
τ1−t1

(s, E, D) , and substituting in (6.11) we obtain

ωτ2
τ1

(x, E, D) = ωτ2
τ1

(x, E, Ω) +

∫
∞

0

∫

λ

A(dl, dt1)ω
τ2−t1
τ1−t1

(l, E, D+)

+

∫
∞

0

∫
∞

0

∫

λ

∫

̺

A(dl, dt1) P l(BτD+
∈ dr, τD+

∈ dt2) ωτ2−t1−t2
τ1−t1−t2

(r, E, D)

+

∫
∞

0

∫

σ

A(ds, dt1)ω
τ2−t1
τ1−t1

(s, E, D
−
)

+

∫
∞

0

∫
∞

0

∫

σ

∫

̺

A(ds, dt1) P s(BτD
−

∈ dr, τD ∈ dt2) ωτ2−t1−t2
τ1−t1−t2

(r, E, D).

We write an analogous formula for ωτ2
τ1

(
z,P(E),P(D)

)
and we check easily

that the following “domain monotonicity” inequalities hold for all times h1 < h2 ,
all intervals I ⊂ ̺ and all time intervals T :

(a) ωh2

h1
(l, E, D+) ≤ ωh2

h1

(
l,P(E), G+

)
.

(b) ωh2

h1
(s, E, D

−
) ≤ ωh2

h1

(
s̄,P(E), G+

)
.

(c) P l(BτD+
∈ I, τD+

∈ T ) ≤ P l(BτG+
∈ I, τG+

∈ T ) .

(d) P s(BτD
−

∈ I, τD−
∈ T ) ≤ P s̄(BτG+

∈ I, τG+
∈ T ) .

The proof proceeds as in Section 3.
From the many possible consequences of Theorems 6.4 and 6.9 we mention

only two:
Let D and A be as in Theorem 6.4. Let E(x, A, D) be the expected length of

time that a Brownian motion starting at x ∈ R∩D stays in A before it exits D .
(“Green measure” is another name of E(x, A, D)). This quantity is related to
Qt

D(x, A) via the identity:

(6.12) E(x, A, D) =

∫
∞

0

Qt
D(x, A) dt.

Thus Theorem 6.4 implies:

Corollary 6.13. The expected length of time E(x, A, D) ≤ E
(
x,P(A),P(D)

)
.

In particular E(x, D, D) ≤ E
(
x,P(D),P(D)

)
.

Theorem 6.9 implies (successive polarizations again) the following sym-
metrization result:

Corollary 6.14. Let K be a compact set in D and K∗ be the circular

symmetrization of K with respect to the negative semi-axis. Then for x ∈ (0, 1)
and 0 ≤ τ1 < τ2 ≤ ∞ ,

(6.15) ωτ2
τ1

(x, K∗,D) ≤ ωτ2
τ1

(x, K,D).

Remark. The results of Section 5 on the Robin function can be interpreted
as results on reflected Brownian motion and can be accordingly generalized using
the methods of this section.
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7. Further applications of polarization

The proposition that follows is the harmonic measure analog of a result of
Solynin [20] for the conformal radius of a domain:

Proposition 7.1. Let D be a domain in the right half-plane, symmetric

with respect to the real axis. Let E ⊂ ∂D be a closed interval on the imaginary

axis, symmetric with respect to the real axis. Assume that every vertical line

lx = {x + iy : y ∈ R} intersects D in a single vertical interval Dx . For x ∈ R+ ,

let hx(y) = ω(x+ iy, E, D) . Then for all x ∈ R∩D , hx(y) is a strictly decreasing

function of y ∈ [0, |Dx|/2) , except for two cases:

(i) When D is the right half plane and E is the imaginary axis.

(ii) When D is a vertical strip and E is the imaginary axis. In these two

cases hx is a constant function of y ∈ R .

Proof. Let x ∈ R ∩ D and −y2 < −y1 < 0. A polarization with respect to
the line l = {z : Im z = −(y1 + y2)/2} together with (2.4) shows that

(7.2) ω(x − iy1, E, D) ≥ ω(x − iy2, E, D).

The equality statement for (2.4) implies that

(7.3) ω(x − iy1, E, D) > ω(x − iy2, E, D)

unless D = Pl(D) and E is symmetric with respect to l . If this is the case then it
is easy to prove that E is the imaginary axis and D is either the right half plane
or a vertical strip.

Proposition 7.4. Let 0 < s ≤ t ≤ 1 and 0 ≤ φ ≤ θ ≤ 2π . Define

K1 = {reiθ : s ≤ r ≤ t} , K2 = {reiφ : s ≤ r ≤ t} , K∗

1 = [−t,−s] , K∗

2 = [s, t] .
Then

(7.5) ω(0, K1 ∪ K2,D) ≤ ω(0, K∗

1 ∪ K∗

2 ,D).

This is a special case of the main result in [3].
Proof. We may assume that θ = π and φ ∈ [0, π) . Consider the line l =

{reiφ/2 : r ∈ R} oriented from eiφ/2 to −eiφ/2 . Then

ω(0, K∗

1 ∪ K∗

2 ,D) = 1 − ω(0, ∂D,D \ K∗

1 \ K∗

2 )

≤ 1 − ω
(
0, ∂D,P(D \ K∗

1 \ K∗

2 )
)

= 1 − ω(0, ∂D,D \ K1 \ K2) = ω(0, K1 ∪ K2,D).

Next we prove a polarization result for certain extremal distances.
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Theorem 7.6. Let Ω be a domain lying in the strip S = {z : 0 < Re z < 1} .

Assume that ∂Ω is the union of smooth curves or arcs. Let E0 be the union of a

finite number of closed vertical segments on ∂Ω ∩ {z : Re z = 0} and E1 be the

union of a finite number of closed vertical segments on ∂Ω∩ {z : Re z = 1} . Then

(7.7) λ(E0, E1, Ω) ≥ λ
(
P(E0),P(E1),P(Ω)

)

Proof. Let V be the family of all Lipschitz functions v on Ω with v = 0 on
E0 and v = 1 on E1 . Let V ∗ be the family of all Lipschitz functions v∗ on P(Ω)
with v∗ = 0 on P(E0) and v∗ = 1 on P(E1) . Then (see [6, p. 368])

λ = λ(E0, E1, Ω) = min
v∈V

∫

Ω

|∇v|2,(7.8)

λ∗ = λ
(
P(E0),P(E1),P(Ω)

)
= min

v∗∈V ∗

∫

P(Ω)

|∇v∗|2,(7.9)

Let u ∈ V and set u = 0 outside Ω. Define the function

(7.10) u1(z) =

{
min{u(z), u(z̄)}, if z ∈ C

−
,

max{u(z), u(z̄)}, if z ∈ C+.

Then u1 ∈ V ∗ and therefore (see [10])

(7.11) λ∗ ≤

∫

P(Ω)

|∇u1|
2 =

∫

Ω

|∇u|2.

Taking minimum over all u ∈ V we obtain (7.7).
The method of the above proof is due to Dubinin [10]. Successive applications

of Theorem 7.6 lead to a symmetrization result for extremal distances.

Corollary 7.12. Let E0 , E1 , Ω be as in the previous theorem. Then

(7.13) λ(E0, E1, Ω) ≥ λ(E∗

0 , E∗

1 , Ω∗),

where ∗ denotes Steiner symmetrization with respect to the real axis.

Remarks. (1) Solynin [20] defined a geometric transformation in the plane
called continuous symmetrization and proved theorems on the behaviour of ca-
pacity and conformal radius under continuous symmetrization. The main tool in
his proofs is the fact that successive polarizations with respect to appropriate ori-
ented lines approximate continuous symmetrization. Later Brock [7] gave a new
definition of continuous symmetrization and proved Dirichlet integral inequalities
in [8]. Using successive polarizations and the results of the previous sections one
can prove theorems that describe the behaviour of harmonic measure and other
conformal invariants under continuous symmetrization.

(2) Higher dimension analogs of our results hold with the same proofs.
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