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Abstract. We study the action of pseudo-Anosov homeomorphisms f : R → R on the char-
acter varieties of SL(2,C) -representations of the fundamental groups π1(R) of closed orientable
hyperbolic surfaces R . We prove that the representation π1(R) →֒ SL(2,C) corresponding to the
holonomy representation of the hyperbolic structure on the mapping torus of f is a hyperbolic
fixed point for the action of f on the character variety X(π1(R)) .

1. Introduction

Suppose that R is a closed oriented hyperbolic surface and f : R → R an
orientation-preserving pseudo-Anosov homeomorphism inducing an automorphism
φ of the fundamental group π1(R) . According to Thurston’s hyperbolization
theorem the mapping torus Mf of f admits a hyperbolic structure (see [O]). The
fundamental group π1(Mf ) is the semidirect product G = π1(R) ⋊ Z , where a
generator t of Z acts on π1(R) by the conjugation x 7→ t−1xt , this action is the
same as the automorphism φ . We use the hyperbolic structure on Mf to realize
the group G as a discrete group of isometries of the hyperbolic 3-space H3 .
Let X

(
π1(R)

)
= Hom

(
π1(R), SL(2,C)

)
// SL(2,C) be the character variety. The

isomorphism φ: π1(R) → π1(R) induces a holomorphic automorphism

Φ: X
(
π1(R)

)
→ X

(
π1(R)

)
, Φ : [ρ] 7→ [ρ ◦ φ]

where [ρ] denotes the SL(2,C)-equivalence class of a representation ρ: π1(R) →
SL(2,C) . The equivalence class of the identity embedding ι: π1(R) →֒ G ⊂
SL(2,C) is a fixed point of Φ.

The main goal of this paper is to prove the following theorem that was con-
jectured by Curt McMullen in [Mc]:

Theorem 1.1. The point [ι] is a hyperbolic fixed point of Φ , i.e. the deriva-

tive

dΦ: T[ι]X
(
π1(R)

)
−→ T[ι]X

(
π1(R)

)

has no eigenvalues λ such that |λ| = 1 .
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Remark 1.2. McMullen proved in [Mc] that there are at least two eigenvalues
of dΦ which do not belong to the unit circle.

Unlike the approach of McMullen, our proof is mostly cohomological, we study
the action of φ on the cohomology group H1

(
π1(R), sl(2,C)

)
of π1(R) , where

sl(2,C) is the Lie algebra of SL(2,C) and π1(R) acts on sl(2,C) via the adjoint
representation ad◦ ι . We prove the following theorem which implies Theorem 1.1:

Theorem 1.3. The action φ∗: H1
(
π1(R), sl(2,C)

)
→ H1

(
π1(R), sl(2,C)

)

has no eigenvalues λ such that |λ| = 1 .

Note however that not every fixed point of Φ is hyperbolic. For instance,
we can choose φ that acts trivially on H1(R,Z) , thus the trivial representation of
π1(R) to SL(2,C) is not a hyperbolic fixed point of the corresponding mapping Φ.
More generally, for each m ≥ 1 there are hyperbolic 3-manifolds M fibered over
circles so that the character variety X

(
π1(M)

)
contains a smooth complex m-

dimensional submanifold Y m . Let π1(R) denote a normal surface subgroup in
π1(M) and Φ: X

(
π1(R)

)
→ X

(
π1(R)

)
the automorphism corresponding to the

fibration of M over S1 with the fiber R . Thus, for each [ρ] ∈ Y m the point
[ρ|π1(R)] is a fixed point of Φ and the derivative of Φ at [ρ|π1(R)] has at least
m-dimensional fixed subspace.

As a warm-up to the proof of Theorem 1.3 we prove that φ∗ has no roots
of unity as eigenvalues. Indeed, if λ is an eigenvalue of φ∗ such that λn = 1,
then (φn)∗ has a nonzero invariant vector in H1(π1(R), sl

(
2,C)

)
. Note that for

every n ≥ 1 the group Gn := π1(R) ⋊ 〈tn〉 acts on the hyperbolic 3-space as a
uniform lattice. Now the Serre–Hochschild exact sequence (see [Br, Corollary 6.4])
implies that H1

(
Gn, sl(2,C)

)
6= 0 since it is isomorphic to the space of (φn)∗ -

invariants on H1
(
π1(R), sl(2,C)

)
; this contradicts the Calabi–Weil infinitesimal

rigidity theorem [Ra].
Below is an outline of our proof in the general case: Suppose that we have a

cocycle σ ∈ Z1
(
π1(R), sl(2,C)

)
such that φ#(σ) = λσ , λ ∈ C∗ . Then there is a

smooth vector-field ξ on H3 and its lift ξ̃ to the group SL(2,C) such that:

(a) ad(γ)ξ − ξ = σγ for all γ ∈ π1(R) .

(b) ad(t)ξ̃ = λ−1ξ .

If |λ| = 1 it follows that ξ is a quasiconformal vector-field on H3 in the sense of
Ahlfors. Then we construct a tangential extension ξ∞ of ξ to the ideal boundary
S2 of H3 so that ξ∞ is a quasiconformal vector-field on S2 ∼= C∪{∞} which still
satisfies the property (a) with respect to the action of π1(R) on S2 . Then µ = ∂̄ξ∞
is a π1(R)-invariant Beltrami differential, hence Sullivan’s rigidity theorem [Su]
implies that µ = 0 almost everywhere.1 Therefore ξ∞ is actually a Moebius

1 Note that we have to use Sullivan’s theorem since it is the only rigidity theorem which deals

with discrete groups of infinite covolume such as π1(R) ⊂ SL(2,C) .
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vector-field and the property (a) implies that the cocycle σ is a coboundary. This
proves that the only solution τ of the equation

φ∗(τ) = λτ, |λ| = 1, τ ∈ H1
(
π1(R), sl(2,C)

)

is the trivial cohomology class which concludes the proof.

The reader will notice that our arguments in the proof of Theorem 1.3 provide
an alternative proof of the Calabi–Weil infinitesimal rigidity theorem à la Mostow.
Namely, suppose that Γ ⊂ Isom(Hn) is a uniform lattice (n ≥ 3). Then the
Calabi–Weil infinitesimal rigidity theorem states that H1(Γ, ad) = 0. The usual
way to prove this is to take a harmonic representative α of a class [α] ∈ H1(Γ, ad)
and then verify that α = 0 via Bochner’s technique. Instead we take a quasi-
conformal vector field ξ on Hn representing [α] , extend ξ (tangentially) to the
sphere at infinity and then check (using for instance Sullivan’s rigidity theorem)
that this extension is actually a Moebius vector field. This proves that α is a
coboundary.

The main technical difficulty in our proof is to establish existence of a “con-
tinuous extension” of quasiconformal vector fields from the open ball in Rn to its
boundary. We prove that under some extra condition2 there is a tangential con-
tinuous extension. This extension will suffice for our purposes. The nontrivial ana-
lytical ingredient of our construction of the tangential extension is Semenov’s sta-

bility theorem (see Theorem 3.5), which is a part of the general stability theory for
the spatial quasiconformal mappings. This theorem proves that k -quasiconformal
vector fields in the unit open ball in Rn , n ≥ 3, are bounded. We discuss this and
some basic facts about quasiconformal vector fields in Section 3. In Section 4 we
establish existence of tangential extensions of quasiconformal vector fields. Theo-
rem 1.3 is proven in Section 5. In Section 2 we show how to deduce Theorem 1.1
from Theorem 1.3.

The proof of Theorem 1.3 given here is not entirely satisfactory: it does not
tell how eigenvalues of φ∗ are related to combinatorial invariants of the pseudo-
Anosov homeomorphism f : R → R (like its Perron–Frobenius matrix, see [FLP]).
Another interesting question is to describe stable and unstable manifolds of the
fixed point [ι] of the mapping Φ. Note that Φ preserves the natural symplectic
structure on X

(
π1(R)

)
(see [Go]). Thus φ∗ has 3g−3 eigenvalues whose absolute

value is less than 1, and the same number of eigenvalues outside the unit disc
(where g is the genus of R). In particular, the (complex) dimension of stable and
unstable manifolds Es , Eu of Φ at [ι] is 3g − 3. McMullen in [Mc] proved the
following theorem about Es and Eu :

Theorem 1.4. Take a pair of singly degenerate Kleinian groups F+, F− ⊂
SL(2,C) , whose ending laminations L+ , L− are those of the discrete doubly

2 The vector field must be automorphic under the action of a discrete group of Moebius

transformations whose limit set is the boundary of the ball, see Definition 4.4.
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degenerate group π1(R) ⊂ G ⊂ SL(2,C) . Then the Teichmuller spaces T (F+) ,
T (F−) are open subsets in Es and Eu .

However it is unclear how Es , Eu behave outside of the domains T (F+) ,
T (F−) .

Acknowledgements. This research was partially supported by the NSF grant
DMS-96-26633 at University of Utah. I am grateful to Curt McMullen for asking
an interesting question and to the referee for several suggestions.

2. Local dynamics on the representation variety

Most of the material of this section is fairly well known, we present it here
for the sake of completeness. Let π1(R) , φ be as in the introduction. Let
ad(g)ξ = g−1ξg denote the adjoint action of the group SL(2,C) on its Lie al-
gebra sl(2,C) . We consider the action of the automorphism φ on the variety
Hom

(
π1(R), SL(2,C)

)
given by:

φ : ρ 7→ ρ ◦ φ, ρ ∈ Hom
(
π1(R), SL(2,C)

)
.

This action of φ projects to a holomorphic automorphism Φ of the character

variety X
(
π1(R)

)
= Hom

(
π1(R), SL(2,C)

)
// SL(2,C) .

Remark 2.1. The character variety is the quotient of Hom
(
π1(R), SL(2,C)

)

in the sense of the geometric invariants theory and in general is different from
the “naive” set-theoretic quotient Hom

(
π1(R), SL(2,C)

)
/ SL(2,C) . However if

we restrict to the open subvariety Hom
(
π1(R), SL(2,C)

)
−

consisting of Zariski

dense representations then the projection X
(
π1(R)

)
−

of Hom
(
π1(R), SL(2,C)

)
−

to X
(
π1(R)

)
is naturally isomorphic to the set-theoretic quotient Hom

(
π1(R) ,

SL(2,C)
)
−

/ SL(2,C) , see [JM, Theorem 1.1]. Moreover X
(
π1(R)

)
−

is a smooth
complex manifold of the dimension 6g − 6, see [W], [Go].

Suppose that [ρ0] ∈ X
(
π1(R)

)
is a fixed point for Φ and the image of ρ0 is

Zariski dense in SL(2,C) . Then there is an element t ∈ SL(2,C) such that

tρ0

(
φ(γ)

)
t−1 = ρ0(γ), for all γ ∈ π1(R).

We consider the induced action T0(Φ) of Φ on the tangent space T[ρ0] to X
(
π1(R)

)

at [ρ0] . Our goal is to identify this action with the natural action φ∗ of φ on the
first cohomology group

H1
(
π1(R), sl(2,C)

)
= Z1

(
π1(R), sl(2,C)

)
/B1

(
π1(R), sl(2,C)

)
.

Recall that the action φ∗ is defined by

φ#(c)γ = ad(t−1)cφ(γ), φ# : Z1
(
π1(R), sl(2,C)

)
−→ Z1

(
π1(R), sl(2,C)

)

φ∗[c] = [φ#(c)], [c] ∈ H1
(
π1(R), sl(2,C)

)

where c: γ 7→ cγ ∈ sl(2,C) are cocycles in Z1
(
π1(R), sl(2,C)

)
.
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Remark 2.2. Here and in what follows we use the notation cγ for the value
of the cocycle c on the element γ ∈ π1(R) . Note that cγ belongs to sl(2,C)
and is a vector field on SL(2,C) and H3 . Thus given g ∈ SL(2,C) or x ∈ H3

the evaluations cγ(g) and cγ(x) are tangent vectors in Tg

(
SL(2,C)

)
and TxH

3

respectively.

It was first noticed by Andre Weil in [W] (see also [Go]) that the (Zariski)
tangent space T[ρ0] is naturally isomorphic to H1

(
π1(R), sl(2,C)

)
.

Lemma 2.3. Under the natural isomorphism between T[ρ0] and H1
(
π1(R) ,

sl(2,C)
)

we have: T0(Φ) = φ∗ .

Proof. Recall (see [Go]) that curves of representations ρε through the point
ρ0 can be described as

ρε(g) = exp
(
εcγ + O(ε2)

)
ρ0(γ), ε → 0

where c belongs to Z1
(
π1(R), sl(2,C)

)
. The isomorphism

Tρ0
Hom

(
π1(R), SL(2,C)

) ∼= Z1
(
π1(R), sl(2,C)

)

is given by:
d

dε
ρε

∣∣∣
ε=0

7→ c.

Thus

ρε

(
φ(γ)

)
≈ exp

(
ε cφ(γ)

)
ρ0

(
φ(γ)

)
= t−1 exp

(
ε ad(t−1)cφ(γ)

)
ρ0(γ)t.

The last has the same projection to X
(
π1(R)

)
as exp

(
εad(t−1)cφ(γ)

)
ρ0(γ) , which

has the tangent vector φ#(c) . Thus

T0(Φ)(c) − φ#(c) ∈ B1
(
π1(R), sl(2,C)

)

which concludes the proof.

Corollary 2.4. Theorem 1.3 is equivalent to Theorem 1.1 .

3. Quasiconformal vector fields and the S -operator

For the proof of Theorem 1.3 we will need definitions and properties of qua-

siconformal vector fields that were introduced by Lars Ahlfors in [Ah1] under
the name of quasiconformal deformations. Our discussion here will follow [Ah1]
and [Ah2].
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Let U denote the upper half-space Rn
+

= {(x1, . . . , xn) : xn > 0} , we will
identify it with the hyperbolic n -space Hn with the hyperbolic metric |dx|/xn .
Let Mobn denote the group of Moebius transformations of Rn and Mobn(U)
denote the stabilizer of U in Mobn . The group Mobn(U) acts as the group of
isometries Isom(Hn) of Hn . We shall use the notations mobn and isom(Hn) for
the Lie algebras of the groups Mobn and Isom(Hn) . We will realize mobn and
isom(Hn) as subalgebras in the space of all vector fields on Rn and U .

If X is a smooth manifold and A: X → X is a diffeomorphism of X then
we shall denote by A∗: ξ 7→ A∗(ξ) the action of A on vector fields on X . In
particular, the action of Moebius transformations A on vector fields ξ is given by
the formula:

A∗

(
ξ(x)

)
= (DAx)−1ξ(Ax)

where DAx is the Jacobian matrix of A at x . Then A∗(ξ) = ad(A)(ξ) for all
ξ ∈ mobn . Similarly, if we identify mobn with the Lie algebra of left-invariant
vector fields on Mobn then A∗(ξ) = ad(A)(ξ) . Elements ξ of mobn have the form
of “second degree polynomials”:

ξ(~x) = ~u + (Q + aI)~x + |~x|2~b − 2〈~x,~b 〉~x.

Here 〈 · , · 〉 is the scalar product in Rn , ~u,~b are vectors in Rn , Q = −QT , a ∈ R

and I is the identity matrix. If ξ ∈ isom(Hn) , then:

〈~u,~en〉 = 〈~b, ~en〉 = 0, Q~en = ~0.

We define the norm ‖A‖ for n×n -matrices as ‖A‖ =
√

Tr(AAT ) . Define the
supremum-norm ‖h‖∞ for h: Ω ⊂ Rn → Rn by ‖h‖∞ = supx∈Rn |f(x)| using
the Euclidean metric on Rn (the issue here is that we have to consider hyperbolic
metrics on domains in Rn as well). We shall denote by Bx(r) the metric ball
with the radius r and center x in Rn , let B(1) = B0(1) and S(1) = ∂B(1). We
shall identify S(1) with the sphere Sn−1 .

Consider a domain Ω in Rn (n ≥ 2) and a continuous vector field f : Ω → Rn

on Ω. Suppose that f has locally integrable distributional partial derivatives.
Define the matrix S = Sn[f ](x) by the formula:

S =
1

2
(Df + DfT ) − 1

n
Tr(Df).

The operator S[f ] is called the Ahlfors S -operator, it was introduced by Lars
Ahlfors in [Ah1]. If n = 2 then the S -operator becomes the ∂̄ -operator:

S[f ] =

[
Re(∂f/∂z̄) Im(∂f/∂z̄)
Im(∂f/∂z̄) −Re(∂f/∂z̄)

]

under the standard matrix realization of C .
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Definition 3.1. A vector-field f above is called a k -quasiconformal vector-

field if ‖S[f ]‖ ∈ L∞(Ω) and ‖S[f ]‖∞ ≤ k
√

n .

Quasiconformal vector-fields are infinitesimal analogues of quasiconformal
mappings in Rn . More precisely, suppose that ht , t ∈ [0, 1] , is a smooth family
of quasiconformal homeomorphisms such that h0 = id. Then (d/dt)ht|t=0 = f is
a quasiconformal vector field. If Mt = M(ht) is the Beltrami differential of ht

then (d/dt)Mt|t=0 = S[f ] , see [Ah1], [Ah2] for more details. Similarly to qua-
siconformal mappings quasiconformal vector fields are differentiable a.e. in their
domains.

Assume that n = 2, f(z) transforms as a vector-field under Moebius map-
pings α . Then µ = S[f ] = ∂̄(f) transforms as a Beltrami differential under α :

α∗: µ(z) 7→ µ(γz)γ′(z)/γ′(z).

More generally, if n ≥ 2 then

(1) A∗S[f ] := S[A∗(f)] = (DA)−1(S[f ] ◦ A)DA

(see [Ah1]). This implies:

(2) ‖S[A∗(f)]‖ = ‖S[f ] ◦ A‖.

Therefore Moebius transformations send k -quasiconformal vector-fields to k -qua-
siconformal vector-fields. This allows us to define quasiconformal vector fields on
the extended Euclidean space Rn = Rn ∪ {∞} .

Note that the matrix S[f ] is symmetric and traceless. Suppose that S(z) =
S[f ](z) 6= 0, let ϕz be the corresponding quadratic form. Then S(z) determines
a nontrivial splitting of Rn (which we identify with the tangent space at z ):

(3) Rn = PS,z ⊕ NS,z

where the restriction of ϕz to Pz is a positive-definite quadratic form and the
restriction of ϕz to Nz is a non-positive quadratic form. Thus the formula (1)
implies

Lemma 3.2. Let Ω ⊂ Rn be a domain where S 6= 0 almost everywhere.

Suppose that A: Ω → Ω is a Moebius transformation and A∗S = S . Then a.e.

defined splitting PS,z ⊕ NS,z of the tangent bundle TΩ is invariant under A .

The following lemma is the usual Weyl lemma if n = 2, for n ≥ 3 it was
proven by Ahlfors in [Ah2]:

Lemma 3.3. If f is a quasiconformal vector field on a connected domain

Ω ⊂ Rn and S[f ] = 0 a.e. in Ω , then f is a conformal vector field. If n ≥ 3 or

Ω = Rn this implies that f is a Moebius vector field , i.e. f ∈ mobn |Ω .
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J. Sarvas proved in [Sar] that k -quasiconformal vector-fields have the follow-
ing “convergence property” similar to one for quasiconformal mappings:

Lemma 3.4 (J. Sarvas, [Sar]). Suppose that fj is a sequence of k -quasi-

conformal vector fields in a domain Ω ⊂ Rn such that ‖fj‖ ≤ C for all j . Then

{fj} contains a subsequence which is convergent uniformly on compacts in Ω to

a k -quasiconformal vector field on Ω .

The following theorem was proven by V. Semenov in [Se]:

Theorem 3.5 (Semenov’s stability theorem, [Se, Lemma 1]). Suppose that

n ≥ 3 . Then there exists a universal constant cn depending only on the dimension

n of Rn so that the following holds:
Let f be a k -quasiconformal vector field on the open unit ball B(1) ⊂ Rn .

Then there exists λ ∈ mobn such that ‖f − λ‖∞ ≤ cnk .

In particular, every quasiconformal vector field in B(1) is bounded (this ob-
viously fails if n = 2).

In what follows we will need to establish a relation between the operators Sn

and Sn−1 in Rn and Rn−1 . Let n ≥ 2 and ξ(x) = (ξ1, . . . , ξn) be a differentiable
vector field in a domain Ω ⊂ Rn , take the hyperplane L = {xn = 0} which

intersects Ω along a domain Ω′ 6= ∅ . Define a vector field ξ̂ on the domain Ω′ by

ξ̂(x′) = (ξ1, . . . , ξn−1), x′ = (x1, . . . , xn−1).

Lemma 3.6. For every vector field ξ we have: ‖Sn[ξ]‖ ≥ ‖Sn−1[ξ̂]‖ .

Proof. Let diag(Dξ) denote the diagonal matrix whose diagonal entries are
the diagonal entries of Dξ . Then

‖Sn[ξ]‖2 =
∥∥∥

1

2
(Dξ + DξT ) − diag(Dξ)

∥∥∥
2

+
∥∥∥diag(Dξ) − 1

n
Tr

(
diag(Dξ)

)∥∥∥
2

.

Let qn := ‖ diag(Dξ) − (1/n) Tr
(
diag(Dξ)

)
‖2 . It is obvious that

‖ 1
2(Dξ + DξT ) − diag(Dξ)‖2 ≥ ‖ 1

2 (Dξ̂ + Dξ̂T ) − diag(Dξ̂)‖2.

Thus what we need to prove is: qn ≥ qn−1 . We introduce the notations: zi =
∂ξi/∂xi , τn = z1 + · · ·+ zn , then τn−1 = τn − zn . Clearly

qn =

n∑

j=1

z2
j − 1

n
τ2
n

qn−1 =
n−1∑

j=1

z2
j − 1

n − 1
τ2
n−1

and
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qn − qn−1 = z2
n − 1

n
τ2
n +

1

n − 1
τ2
n−1 =

1

n − 1

(
nz2

n +
1

n
τ2
n − 2τnzn

)
.

The determinant of the matrix of the quadratic form Q(zn, τn) = nz2
n +(1/n)τ2

n −
2τnzn is zero and diagonal entries are positive, thus qn − qn−1 = Q(zn, τn) ≥ 0.

4. Tangential extension of quasiconformal vector fields

It will be crucial for us to construct continuous extensions of quasiconformal
vector fields from the open unit ball B(1) to its boundary S(1). The extension
that we will construct is not a vector field on Rn but rather a tangent vector field
on the sphere S(1) ∼= Sn−1 . The only extension results for quasiconformal vector
fields that I know are theorems of L. Ahlfors [A3] and J. Sarvas [Sar] below:

Theorem 4.1 (L. Ahlfors, [A3]). Suppose that f is a quasiconformal vector

field on the open unit ball B(1) ⊂ Rn , such that:
(a) |f(x)| is uniformly bounded in B(1) ,
(b) lim|x|→1〈f(x), x〉 = 0 , i.e. f is asymptotically tangential.

Then f admits a continuous extension to the unit sphere S(1) and, by reflection

in S(1) , an extension to a quasiconformal vector field on Rn .

Theorem 4.2 (J. Sarvas, [Sar]). Isolated singularities of quasiconformal

vector fields in Rn (n ≥ 3) are removable.

Remark 4.3. To understand the difficulty note that for any holomorphic
function f(z) defined in the upper half-plane U := {Im(z) > 0} ⊂ C the vector
field f(z)∂/∂z is 0-quasiconformal in U , but usually it cannot be continuously
extended to the boundary.

As far as I can see, Ahlfors’ theorem is not strong enough to suffice for our
purposes. Namely, quasiconformal vector fields that we consider are not apriori
asymptotically tangential. On the other hand, if ξ is a quasiconformal vector field
on B(1), then its projection Pp(ξ) (defined below) is not in general a quasicon-
formal vector field on B(1).

We will prove existence of a continuous tangential extension under the follow-
ing technical assumption:

Definition 4.4. We say that a continuous vector field f in B(1) is automor-

phic if the following holds:
There exists a discrete group F of Moebius transformations of B(1) whose

limit set equals S(1) and a 1-cocycle σ: F → isom(Hn) so that

A∗f − f = σA

for all A ∈ F .
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To describe the extension we will need several preliminary constructions. Pick
a point p ∈ S(1) and consider the family Up of horospheres Up in Hn = B(1)
centered at p . Let νx,p denote the unit (with respect to the Euclidean metric)
normal vector to the sphere Up at the point x ∈ Up . We assume that νx,p is
directed outside Up . Let ξ be a vector field on B(1). We define another vector
field Pp(ξ) in B(1) by the formula

Pp(ξ)(x) = f(x) − 〈f(x), νx,p〉νx,p

where 〈 · , · 〉 is the standard scalar product in Rn . Clearly Pp(f)(x) is tangent
to the sphere Up at the point x and is obtained via the orthogonal projections of
f(x) to Tx(Up) .

Proposition 4.5. Suppose that f is a smooth automorphic k -quasicon-

formal vector field on the open unit ball B(1) in Rn , n ≥ 3 . Then for any

p ∈ S(1) the field Pp(f) admits a continuous extension to [B(1) ∪ S(1)] − {p}
whose restriction to the unit sphere S(1) ∼= Sn−1 is a vector field fp,∞ which is

tangent to S(1) and is k -quasiconformal on Sn−1 − {p} ∼= Rn .

Proof. Let F denote the discrete group and σ the cocycle so that f is
automorphic with respect to F and σ .

Step 1. We first prove that the field f has well-defined limits (with respect to
the conical topology) on a dense countable subset in S(1), which consists of fixed
points of loxodromic elements of the group F .

Lemma 4.6. Let L ⊂ S(1) be the collection of fixed points of loxodromic

elements of the group F . Then the vector field f admits a continuous (with

respect to the conical topology) extension to L .

Proof. It is enough to consider the upper half-space model U = Rn
+

of the
hyperbolic n -space Hn , assume that the origin O is a fixed point of a loxodromic
element A: ~x 7→ λW~x of the group F . We assume that 0 < λ < 1, the orthogonal
matrix W belongs to O(n − 1) (the stabilizer of ∂U in SO(n)).

Pick a sequence of points zk ∈ U that is convergent to the origin O in
the conical topology, i.e. there is r > 0 so that zk belong to the hyperbolic r -
neighborhood of the geodesic {(0, 0, . . . , 0, xn), xn > 0} ⊂ Hn . Let K denote the
metric ball in Hn with the center at ~en and hyperbolic radius r + exp(λ) . Then
each zk belongs to the 〈A〉 -orbit of K :

A−k(zk) = yk ∈ K, for some k ∈ Z.

Let σ = σA ∈ isom(Hn) be the value of the cocycle σ at A , then

(Ak
∗f)(y) =

k−1∑

j=0

(Aj
∗σ)(y) + f(y)
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for each y ∈ K . This means:

f(Aky) = λkW kf(y) + λkW k
k−1∑

j=0

(Aj
∗σ)(y).

Since 0 < λ < 1 it is clear that limk→∞ λkUkf(y) = 0 uniformly for y ∈ K . Note
that

|(Aj
∗σ)(y)| = λ−j |σ(Ajy)|.

To estimate |σ(Ajy)| we let

σ(x) = ~v + (T + sI)~x + (|x|2~b − 2〈~x,~b〉~x) = σ(−1)(x) + σ(0)(x) + σ(1)(x).

Then
σ(0)(A

j~y) = (T + sI)Aj~y = Aj(Tj + sI)~y = λjW j(Tj + sI)~y

where Tj is a sequence of skew-symmetric matrices which have uniformly bounded
norm (Tj = A−jTAj ). Thus

|(T + sI)Aj~y| ≤ Const ·λj

and
∣∣∣∣λ

kW k
k−1∑

j=0

Aj
∗σ(0)(y)

∣∣∣∣ =

∣∣∣∣λ
kW k

k−1∑

j=0

λ−j(T + sI)Aj~y

∣∣∣∣ ≤ Const ·k · λk

which tends to zero as k → ∞ . The estimate for |σ(1)(A
jy)| is:

|σ(1)(A
jy)| ≤ 3λ2j |~b| · |~y|2.

Thus ∣∣∣∣λ
kW k

k−1∑

j=0

λ−jσ(1)[A
j~y]

∣∣∣∣ ≤ 3|~b| · |~y|2λk λ2k − 1

λ2 − 1

which again tends to zero as k → ∞ uniformly for y ∈ K . We conclude that

lim
k→∞

f(Aky) = lim
k→∞

n−1∑

j=0

λkW kAj
∗σ(−1)(y)

= lim
k→∞

k−1∑

j=0

λk−jW k−j~v = −~v +

∞∑

j=0

λjW j~v = [1 − A]−1~v − ~v.

Therefore
lim

k→∞
f(Aky) = [1 − A]−1~v − ~v = ([1 − A]−1 − 1)σ(0)

uniformly for y ∈ K . Hence, for the sequence zk convergent to O in the conical
topology we get:

lim
k→∞

f(zk) = lim
k→∞

f(Akyk) = ([1 − A]−1 − 1)σ(0)

where A−kzk = yk ∈ K .
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Step 2. Now we change the coordinates by an isometry of Hn = U so that
the point p becomes the point ∞ ∈ Rn . Then f : U → Rn is a k -quasiconformal
deformation whose sup-norm is bounded in U ∩ B(R) , 0 < R < ∞ .

We will prove that Pp(f) has a continuous extension fp,∞ to cl(U)∩B(R/2),
so that fp,∞|B(R/2)∩{xn=0} is a k -quasiconformal vector field in Rn−1 .

For each 0 < t < 1 we consider the restriction ft of Pp(f) to the unit
(n − 1)-disc BCt

(1) ⊂ {xn = t} with the center at Ct = (0, . . . , 0, t) . We regard
ft as a vector field on Bn−1(R/2) ⊂ Rn−1 by “forgetting” the last coordinate xn .
Lemma 3.6 implies that ft is a k -quasiconformal vector field.

Note that sup-norms of the k -quasiconformal vector fields ft are uniformly
bounded (Theorem 3.5). Hence, according to Lemma 3.4, up to a subsequence
tj , ft are convergent to a k -quasiconformal vector field fp,∞ on B(R/2)∩Rn−1 .
The limit fp,∞ is supposed to be the boundary value of the extension of Pp(f)
to the hyperplane {xn = 0} . The problem is that for different sequences tj → 0
we may get distinct limits. However we know that different limits must coincide
on a dense set of points (Step 1). Thus the vector field Ppf admits a continuous
extension to B(R/2) ∩ {xn = 0} , which is k -quasiconformal in Rn−1 .

Note however that fp,∞ is not defined at the point p = ∞ . Thus we have
to consider extensions corresponding to another family of horospheres. Let q ∈
Sn−1 − {p} . From Theorem 4.5 we know that both vector fields Pp(f) , Pq(f)
admit continuous extensions fp,∞ , fq,∞ to the sphere Sn−1 .

Proposition 4.7. For every pair of points p, g ∈ Sn−1 we have: fp,∞ = fq,∞

on Sn−1 − {p, q} .

Proof. We go back to the unit ball model of the hyperbolic space. Pick a pair
of horospheres Up ∈ Up , Uq ∈ Uq , let ρ denote the minimum of their Euclidean
radii. Take a point x ∈ Up ∩ Uq . Then obviously

lim
ρ→1

|νx,p − νx,q| = 0

where | · | denotes the Euclidean norm.

lim
ρ→1

|Pp(f)(x)− Pq(f)(x)| ≤ lim
ρ→1

Const |νx,p − νx,q| = 0.

Thus for each automorphic vector field f there is a k -quasiconformal vector
field f∞ tangent to Sn−1 which coincides with each fp,∞ on Sn−1−{p} . Therefore
we have proved

Theorem 4.8. Suppose that f is a smooth automorphic k -quasiconformal

vector field on the open unit ball B(1) in Rn , n ≥ 3 . Then f admits a continuous

tangential extension f∞ to S(1) . The vector field f∞ is again a k -quasiconformal

vector field on the sphere S(1) = Sn−1 .
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Proposition 4.9. Let f be a quasiconformal vector field on B = B(1) which

is automorphic with respect to a group F ⊂ Mobn and a cocycle σ : A∗f−f = σA

for all A ∈ F . Assume that F is torsion-free. Then

A∗f∞ − f∞ = σA|Sn−1 for all A ∈ F.

Proof. Let A ∈ F −{1} , then A has a fixed point p ∈ Sn−1 . Thus the family
of horospheres Up is invariant under A . Therefore

A∗Pp(f) = Pp(A∗f).

Since Pp(f) has continuous extension f∞ to Sn−1 we conclude that

A∗f∞ − f∞ = (σA)∞ = σA|Sn−1 .

Remark 4.10. It is easy to check that the above proposition is also valid for
groups with torsion.

5. Proof of the main theorem

In what follows we will identify the hyperbolic 3-space with the quotient
space SU(2)\ SL(2,C) ; let P : SL(2,C) → H3 denote the projection. Let Vec

be the space of C∞ -vector fields on SL(2,C) which are invariant under the left
SU(2)-action. Clearly we have the well-defined projection P∗: Vec → H0(TH3)
to the space of vector-fields on the hyperbolic 3-space. This projection commutes
with the (right) action of the group SL(2,C) on vector-fields. Note that Vec is
invariant under the multiplication by complex numbers (since the left action of
SU(2) on T

(
SL(2,C)

)
is C -linear). We shall identify the Lie algebra sl(2,C) of

SL(2,C) with the algebra of left-invariant vector-fields on SL(2,C) .

The following simple lemma is critical for proving quasiconformality of the
vector field ξ that we will construct in Theorem 5.2(c). Note that Lemma 5.1
clearly fails without the assumption |λ| = 1.

Lemma 5.1. Let ξ̃ ∈ Vec , U ⊂ H3 is a metric ball, Ũ = P−1(U) . Then

there exists a constant C = C(ξ, U) such that:

‖S[P∗(λ · ξ̃|
Ũ

)]‖ ≤ C

for all λ ∈ C such that |λ| = 1 .

Proof. The family of vector fields λ · ξ̃|
Ũ

, |λ| = 1, is compact (with respect

to the C1 -topology of uniform convergence). Thus the assertion follows from
continuity of the S -operator.
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We consider the action of the group G = π1(R) ⋊ 〈t〉 on the hyperbolic 3-
space as in the introduction. This action extends to the (right) action of G on
SL(2,C) . Our main goal is to prove the following

Theorem 5.2. Suppose that σ ∈ Z1
(
π1(R), sl(2,C)

)
is such that φ#(σ) =

λσ , λ ∈ C∗ . Then there is a smooth vector-field ξ on H3 and its lift ξ̃ ∈ Vec to

the group SL(2,C) such that:

(a) ad(γ)ξ − ξ = σ(γ) for all γ ∈ π1(R) .

(b) ad(t)ξ̃ = λ−1ξ̃ .

(c) The vector field ξ is quasiconformal.

Proof. To construct the vector field ξ we will need a partition of unity η̃ on
the space SL(2,C) corresponding to the subgroup π1(R) and invariant under the
action of t :

Lemma 5.3. There exists a positive bounded C∞ -function η̃ on SL(2,C)
which satisfies the following properties:

(1) η̃ is invariant under the right action of t and the left action of SU(2) .

(2)
∑

γ∈π1(R) η̃(gγ) = 1 for all g ∈ SL(2,C) .

Proof. Our proof follows [Kr, Chapter V, Lemma 3.1]. Take a finite covering
{Dj} of the manifold SU(2)\ SL(2,C)/G by open metric balls Dj which satisfy
the condition:

The radii of the balls Dj are smaller than the injectivity radius of H3/G .

Let m denote the multiplicity of the covering {Dj} (i.e. the maximal number
of balls which have nonempty intersection). The group G acts on the lift of this
covering to H3 with trivial stabilizers. Let {η̄j} denote the partition of unity
on H3/G corresponding to the covering {Dj} . For each Dj choose a connected
component Vj of its lift to H3 and let ηj be the lift of η̄j to Vj . Extend the
function ηj to H3 by:

ηj(x) =
{

ηj(t
nx) if x ∈ t−n(Vj),

0 otherwise.

Finally let

η(x) =
∑

j

ηj(x).

It is clear that η is invariant under the action of t ,
∑

γ∈π1(R) η
(
γ(x)

)
= 1 for all

x and 0 ≤ η ≤ 1. Then we lift the function η to η̃ = η ◦ P : SL(2,C) → R .

Suppose that σ ∈ Z1
(
π1(R), sl(2,C)

)
is such that φ#(σ) = λσ , λ ∈ C∗ (at

this stage we do not need the assumption |λ| = 1).
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Lemma 5.4. Under the assumptions above there exists a vector field ξ̃ ∈ Vec

which satisfies the following properties:

(i) t∗ξ̃ = λ−1ξ̃;
(ii) α∗ξ̃ − ξ̃ = σα , for all α ∈ π1(R) .

Proof. Our proof again follows [Kr, Chapter V, Theorem 3.2] (see [KM] for
more general constructions). Let

ξ̃(g) = −
∑

γ∈π1(R)

η̃(gγ) · σγ(g).

(Here σγ(g) is a tangent vector to SL(2,C) at g , see Remark 2.2.) Note that for
every g ∈ SL(2,C) not more than m terms of this series are different from zero
(where m is the multiplicity of the covering {Dj}). Hence the infinite series which

we use to define ξ̃ is convergent to a smooth vector field on SL(2,C) . To show
that ξ̃ is invariant under the (left) SU(2)-action we note that the elements σγ of
the Lie algebra are left-invariant under SL(2,C) and the function η̃ on SL(2,C)
is invariant under the left action of SU(2).

Now we verify (i). We have:

ξ̃(g) = −
∑

φ(γ)∈π1(R)

η̃
(
gφ(γ)

)
· σφ(γ)(g),

t−1
∗ ξ̃(g) = −

∑

γ∈π1(R)

η̃(gγ) · t−1
∗ σφ(γ)(g)

since η̃ is t -invariant.

−
∑

γ∈π1(R)

η̃(gγ) · t−1
∗ σφ(γ)(g) = −

∑

γ∈π1(R)

η̃(gγ) · (φ#σ)γ(g).

The latter equals

−λ
∑

γ∈π1(R)

η̃(gγ) · σγ(g) = λξ̃(g)

which proves (i). The second assertion of Lemma 5.4 again follows from the direct
computation:

(α∗ξ̃)(g) = −
∑

γ∈π1(R)

η̃(gαγ)(α∗σγ)(g) =

and hence, by the cocycle condition σγ◦α − σα = α∗σγ ,

=
∑

γ∈π1(R)

η̃(gαγ)σα(g) −
∑

γ∈π1(R)

η̃(gαγ)σγ◦α(g) = σα(g) + ξ̃(g).

Thus ξ := P∗(ξ̃) is a smooth vector-field on H3 , where ξ̃ is the vector field
constructed in the previous lemma.
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Lemma 5.5. The field ξ satisfies the following properties:

(i) α∗ξ − ξ = σα for all α ∈ π1(R) .
(ii) ‖S[ξ(x)]‖ ≤ Const for all x ∈ H3 .

Proof. The first assertion follows from the statement (ii) of Lemma 5.4. Let
us prove the second assertion. Recall that the quotient H3/G is compact, pick
a compact K ⊂ H3 which is a fundamental domain for the action of G . Let
C1 = max ‖S[ξ](x)‖ , x ∈ K . The equality γ∗ξ − ξ = σγ ∈ sl(2,C) implies:

S[γ∗ξ] = S[ξ]

for all γ ∈ π1(R) . Hence it follows from the equality (2) in Section 3 that

‖S[ξ]‖ = ‖S[ξ] ◦ γ‖

and ‖S[ξ]‖ is bounded by C1 along the π1(R)-orbit of K . Similarly,

‖S[ξ](tnx)‖ = ‖S[P∗(λ
−nξ̃)](x)‖, n ∈ Z,

thus Lemma 5.1 implies that ‖S[ξ](tnx)‖ ≤ C2 = C(ξ, K) for all n ∈ Z . Therefore
‖S[ξ(x)]‖ ≤ Const = max(C1, C2) for all x ∈ H3 .

This concludes the proof of Theorem 5.2.

Now we can start proving Theorem 1.3. We assume that φ∗ has an eigenvalue
λ such that |λ| = 1, let τ ∈ H1

(
π1(R), sl(2,C)

)
−{0} be an eigenvector: φ∗(τ) =

λτ . As we proved in the introduction, λ 6= 1.

Lemma 5.6. Under the conditions above there exists a cocycle σ ∈ Z1
(
π1(R) ,

sl(2,C)
)

such that τ = [σ] and φ#(σ) = λσ .

Proof. Choose bases in H1
(
π1(R), sl(2,C)

)
and B1

(
π1(R), sl(2,C)

)
; the au-

tomorphism φ∗: H1
(
π1(R), sl(2,C)

)
→ H1

(
π1(R), sl(2,C)

)
is represented by a

matrix D . Hence, φ#: Z1
(
π1(R), sl(2,C)

)
→ Z1

(
π1(R), sl(2,C)

)
is represented

by a matrix: [
A B
0 D

]
.

Note that A is the matrix of the action of φ# on the complex 3-dimensional space
B1

(
π1(R), sl(2,C)

)
. The element t ∈ SL(2,C) is loxodromic, the eigenvalues of

its adjoint representation are: 1, µ2 , µ−2 , where |µ| 6= 1, hence none of these
numbers equals λ . The spectrum of the action of φ on B1

(
π1(R), sl(2,C)

)
is

the same as the spectrum of the adjoint representation of t−1 (since the subgroup
π1(R) ⊂ SL(2,C) is Zariski dense). Now existence of the eigenvector σ follows
from the linear algebra.
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We apply Theorem 5.2 to the cocycle σ (given by Lemma 5.6) and construct
a quasiconformal vector field ξ on H3 such that

ad(γ)ξ − ξ = σγ for all γ ∈ π1(R).

Hence by Theorem 4.8 the vector field ξ admits a tangential extension ζ = ξ∞ to
S2 = ∂B , which is a quasiconformal tangent vector field on S2 such that

(4) γ∗ζ − ζ = σγ for all γ ∈ π1(R)

(see Proposition 4.9). Recall that S[χ] = 0 for any conformal vector field χ . Thus,
by applying the operator S to both sides of the equation (4), we get:

γ∗S[ζ] − S[ζ] = 0 for all γ ∈ π1(R).

The matrix-valued function S[ζ] is measurable and belongs to L∞(C) . Let LS

be the subset of C where S[ζ] 6= 0. This subset is measurable, π1(R)-invariant
and the field S[ζ] determines a nontrivial π1(R)-invariant measurable splitting of
the tangent bundle TLS (see Lemma 3.2). Now we can apply

Theorem 5.7 (Sullivan’s rigidity theorem, [Su], see also [O]). Suppose that

F ⊂ PSL(2,C) is a discrete finitely-generated group whose limit set is C and

L ⊂ C is an F -invariant measurable subset of nonzero measure. Then there are

no F -invariant measurable line-fields defined on L .

We let F = π1(R) , then Sullivan’s theorem implies that the set LS has
zero measure. This means that S[ζ] = 0 almost everywhere and, according to
Lemma 3.3, ζ is a Moebius vector field : ζ ∈ mob2 = sl(2,C) . We conclude that
the cocycle σ is a coboundary:

δζ(γ) = ad(γ)ζ − ζ = σγ

which contradicts our assumption that the class [σ] = τ ∈ H1
(
π1(R), sl(2,C)

)
is

nontrivial. This proves Theorem 1.3.
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