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Abstract. Many classical univalence criteria depending on the Schwarzian derivative are
special cases of a result, proved in [18], involving both conformal mappings and conformal metrics.
The classical theorems for analytic functions on the disk emerge by choosing appropriate conformal
metrics and computing a generalized Schwarzian. The results in this paper address questions of
extending functions which satisfy the general univalence criterion; continuous extensions to the
closure of the disk, and homeomorphic and quasiconformal extensions to the sphere. The main
tool is the convexity of an associated function along geodesics of the metric. The other important
aspect of this study is an extremal function associated with a given criterion, along with its
associated extremal geodesics. An extremal function for a criterion is one whose image is not a
Jordan domain. An extremal geodesic joins points on the boundary which map to the same point
in the image. We show that, for the general criterion, the image of an extremal geodesic under an
extremal function is a euclidean circle.

1. Introduction

In this paper we study some geometric aspects of univalence criteria depending
on the Schwarzian derivative in a fairly general setting. The Schwarzian derivative
of an analytic function f is defined by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Let D denote the unit disk in the complex plane. We consider analytic or
meromorphic functions defined on D and metrics on D of nonpositive curvature
that are conformal to the euclidean metric. Our main concerns are with extending
maps satisfying the general univalence criterion in Theorem 1, below, to D and
to Ĉ = C∪{∞} , and also with geometric properties of extremal functions for the
criterion. We make systematic use of convexity coming from comparison theorems
for differential equations and inequalities.
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Univalence criteria. In the paper [17] that started the whole subject, Ne-
hari proved that either of the conditions,

(1.1) |Sf(z)| ≤ 2

(1 − |z|2)2

or

(1.2) |Sf(z)| ≤ 1
2
π2,

is sufficient for f to be univalent in D . The constants 1
2π

2 in (1.2) and 2 in the
numerator of (1.1) are each sharp.

Let g be a metric (tensor) on D and let g0 = |dz|2 denote the euclidean met-
ric. For a smooth, real-valued function ψ on D we define a symmetric, traceless
2-tensor

Bg(ψ) = Hessg ψ − dψ ⊗ dψ − 1
2{∆gψ − ‖ gradg ψ‖g2}g,

where, as we have indicated by the subscripts, the metric dependent quantities
Hessian, gradient, Laplacian, and norm are computed with respect to g . (We use
single bars, and no subscript, to denote the usual euclidean norm.) If f : (D, g) →
(C, g0) is a conformal, local diffeomorphism with f∗g0 = e2ψg , its Schwarzian

tensor, [19], [18], is defined by

Sgf = Bg(ψ).

When g is the euclidean metric Sgf can be written as the matrix

Sgf =

(
ReSf − ImSf
− ImSf −ReSf

)
.

For the arguments in this paper it will not be necessary to know all the aspects
of this generalization of the Schwarzian. The familiar properties in the classical
case are still present for the Schwarzian tensor, most importantly that

(1.3) Sg(M ◦ f) = Sgf

if M is a Möbius transformation. This is a special case of the chain rule

(1.4) S (f ◦ h) = h∗S (f) + S h,

which includes the classical formula

S(f ◦ h) =
(
(Sf) ◦ h

)
(h′)2 + Sh.
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The important thing to keep in mind is that the Schwarzian tensor is computed
with respect to a background metric g , and it changes when g changes. When
there is conformal change in g the Schwarzian tensor changes in a simple way,
governed, in fact, by (1.4).

Here, as in the classical setting also, there are two very useful consequences of
the Möbius invariance (1.3). First, so long as bounds on Sgf are unaffected, which
will be the case in the situations we consider, it is possible in the course of a proof
to normalize f in various ways by composing it with a Möbius transformation
of the range. Second, one can also define the Schwarzian tensor for meromorphic
functions by shifting the range of the function by a Möbius transformation in order
to miss the point at infinity. We have some further comments on this, below.

In [18] the authors obtained a general univalence criterion in terms of Sgf
that involves both the curvature of the metric and a diameter term. Let K(g)
denote the Gaussian curvature of the metric g . In the two-dimensional case the
result can be stated as:

Theorem 1. Let f be analytic or meromorphic in (D, g) and locally uni-

valent. Suppose that any two points in D can be joined by a geodesic of length

< δ , for some 0 < δ ≤ ∞ . If

(1.5) ‖Sgf‖g ≤
2π2

δ2
− 1

2
K(g)

then f is univalent.

In [18] the formulation of this theorem is in terms of a conformal, local diffeo-
morphism of an n -dimensional Riemannian manifold, n ≥ 2, into the n -sphere
with its standard metric. In many ways having the sphere as the target is the
most natural set-up. Adopting it in the two-dimensional case would allow us to
dispense with the distinction between analytic and meromorphic functions, for in-
stance. To make the tie-in with more classical results clearer, especially in defining
extensions of the mapping, we decided to stick with the complex plane with its
euclidean metric as the target. In any event, it makes no substantial difference
in any of our results for the following reason. If f is a conformal, local diffeo-
morphism into either C with the euclidean metric or S2 with its standard metric
(Ĉ with the spherical metric), then, although the conformal factors are different
under the pullback f∗ , the Schwarzian tensor Sgf is the same in both cases. For
this fact, see [19].

Many known criteria for univalence follow from Theorem 1 simply by choosing
different conformal background metrics g . For example, as was pointed out in [18],
if g is the euclidean metric, with K = 0 and δ = 2, then (1.5) reduces to (1.2),
while if g is |dz|2/(1 − |z|2)2 , the Poincaré metric, with K = −4 and δ = ∞ ,
then one obtains the condition (1.1).
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Similarly, one can obtain the very general criterion of Epstein, [14]:

(1.6)

∣∣∣∣Sf(z) − 2(τzz − τ2
z )(z) +

4z̄τz(z)

1 − |z|2
∣∣∣∣ ≤

2
(
1 + (1 − |z|2)2τzz̄(z)

)

(1 − |z|2)2 .

In this case the metric to take in Theorem 1 is e2τ |dz|2/(1 − |z|2)2 , where τ is a
real-valued function satisfying some mild extra conditions. See [6] for the approach
to Epstein’s theorem using Theorem 1, and [4] for an extension of (1.6) allowing
for complex parameters.

Metrics on D and associated functions. Unless noted otherwise, in the
remainder of this paper we will always assume that

K(g) ≤ 0,

and so we will not state this as a separate assumption in any of our results.
Geometrically, the main consequence of this is that geodesics cannot cross more
than once in D .

If the metric g on the disk is complete we must take δ = ∞ in Theorem 1.
Then (1.5) becomes ‖Sgf‖g ≤ −1

2K(g) , which we will write as

(1.7) ‖Sgf‖g ≤ 1
2 |K(g)|.

In some instances, hypotheses, theorems, or proofs are different according to
whether δ < ∞ or δ = ∞ . For short we refer to the latter as ‘the complete
case’. (One can have δ = ∞ but g not complete. We do not consider this case.)

We consider metrics on D of the form

(1.8) g = e2σ|dz|2 = e2σg0.

We let lg denote the length function (of a curve) and dg the distance (between
points).

We recall that the curvature is given in terms of σ by

(1.9) K(g) = −e−2σ∆g0σ.

Using (1.4), (1.9), and ‖ · ‖g = eσ| · | , the basic inequality on the Schwarzian,
‖Sgf‖g ≤ 2(π/δ)2 − 1

2
K(g) , in Theorem 1 can be written in euclidean terms as

(1.10) |Sf − 2(σzz − σ2
z)| ≤

2π2

δ2
e2σ + 2σzz̄.

Let f be a conformal, local diffeomorphism of (D, g) into (C, g0) . Denoting

(1.11) ϕ = log |f ′|,
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we have

(1.12) f∗g0 = e2(ϕ−σ)g,

and hence

(1.13) Sgf = Bg(ϕ− σ).

Definition. We define

(1.14) uf = e(σ−ϕ)/2.

We refer to uf as the associated function.

If we use the euclidean metric in both the domain and the range of f then
uf = |f ′|−1/2 . When the context is clear we write u for uf .

We will use the function uf throughout this paper. The basis of much of
our analysis is the fact that there is a lower bound for the Hessian of uf when f
satisfies (1.5). This is Theorem 2 in Section 2. One then obtains bounds for uf by
means of comparison theorems for differential equations. In the complete case the
result is that uf is a convex function on D with respect to the metric g . In fact,
the convexity of uf becomes a characteristic property of functions satisfying (1.7)
if one allows for composing f with a Möbius transformation of its range. This is
Corollary 2 in Section 2.

If f is meromorphic in the disk then uf is zero at a pole. At a pole uf is
not differentiable, so convexity, as a property of the Hessian, means convex away
from the poles.

Boundary behavior and extremal functions. To study boundary behav-
ior we need some special, global properties of the metric g = e2σ|dz|2 on D . Here
we make contact with the subject of ‘visibility manifolds’, an area of differential
geometry that has been studied extensively. Of the literature on the subject we
mention only the lectures of Eberlein [12] for a general survey of the early work,
and a paper of Epstein [13] which is more directly related to the present paper.

The first property has to do with extending geodesics to the boundary, and
with reaching every boundary point in this way. We state the property first as
it often appears in the literature, but we must then say more to distinguish the
complete and the non-complete cases.

Definition. The metric g on D has the unique limit point property (ULP)
if:

(a) Let z0 ∈ D . If γ(t) , 0 ≤ t < T ≤ ∞ , is a maximally extended geodesic
starting at z0 then limt→T γ(t) exists (in the euclidean sense). We denote it
by γ(T ) ∈ ∂D .

(b) The limit point is a continuous function of the initial direction at z0 .
(c) Let ζ ∈ ∂D . Then there is a geodesic starting at z0 whose limit point on ∂D

is ζ .
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We say a little more about part (c) in this condition. The assumption of
nonpositive curvature implies that the limit point is a monotonic function of the
initial direction at the base point. Part (b) requires that it is continuous. It is
conceivable that, for some metrics, all geodesics from a base point might tend
to the same limit point on the boundary, so the mapping from initial directions
to points on ∂D would reduce to a constant. We want to avoid this degenerate
situation and be certain that every boundary point is ‘visible’, so we include that
fact in the statement of (ULP).

(ULP) is a natural condition on complete metrics and is frequently formulated
this way, if not with this appellation. For our work on boundary behavior in the
non-complete case we have to strengthen it slightly. Again take any base point
z0 ∈ D and consider geodesics from z0 extended maximally to their unique limit
points on the boundary. In general, the length of such a geodesic as a function of
the initial direction at z0 is lower semicontinuous, and for our arguments we need
to know that it is continuous. We let (ULP*) mean (ULP) plus the continuity
of the length function. This is the assumption we will often adopt in the non-
complete case. In the complete case the length function is the constant function
+∞ and the particular problems we encounter in the non-complete case do not
come up; (ULP) will suffice as is.

The second global property we need is

Definition. The metric g on D has the boundary points joined property
(BPJ) if any two points on ∂D can be joined by a geodesic which lies in D except
for its endpoints.

The conditions above must be hypotheses in many of our results, but none
of them, alone or together, is asking too much of a metric. Nevertheless, we need
to know when they hold. In Section 6, we establish several conditions on the
conformal factor σ implying the (ULP) et al conditions.

The fundamental result on univalence criteria and boundary behavior is Theo-
rem 3 in Section 3, stating that when (ULP) or (ULP*) holds, a function satisfying
(1.5) has a spherically continuous extension to D. This had been proved for func-
tions satisfying Nehari’s criterion (1.1) by Gehring and Pommerenke in [16].

We now make the following definition.

Definition. Suppose the metric g satisfies (ULP), or (ULP*), and (BPJ).
An analytic function f in (D, g) satisfying (1.5) is an extremal function for (1.5)
if the extension of f to D is not injective on ∂D . A geodesic γ in D an extremal

geodesic if it joins two points on ∂D where an extremal function f fails to be
injective.

In Section 4 we study extremal functions and extremal geodesics in some
detail. We show that equality holds in (1.5) along an extremal geodesic, and we
prove an ‘image circle theorem’, stating that the image of an extremal geodesic is
a euclidean circle. This surprising geometric phenomenon was first discovered by
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Epstein [15] for his univalence criterion (1.6); it is essentially included in the case
δ = ∞ of our result. His methods were much different and do not apply to the
case δ <∞ .

Homeomorphic and quasiconformal extension. There are strong forms
of the univalence criteria (1.1), (1.6) and (1.7) having to do with quasiconformal
extensions. Thus if the right hand side of the inequalities is multiplied by t , for
0 ≤ t < 1, then the function f has a (1 + t)/(1 − t)-quasiconformal extension

to Ĉ . See [3], [14], and [5]. In this case one says that the image Ω = f(D) is a
quasidisk.

In general, if f satisfies (1.7) then the image will not be a quasidisk, though
it may be a Jordan domain. In Section 5 we address the question of constructing
homeomorphic extensions to Ĉ of functions satisfying (1.7) under the assumption
that the image is Jordan. We are able to find several characteristic properties for
a function to satisfy (1.7), and also for f(D) to be a Jordan domain. The result
on homeomorphic extensions, together with the analysis of extremal functions
and geodesics, can be viewed as a description of the possible degeneration that
a quasiconformal extension can undergo as t → 1. We can do this only in the
complete case, and it is an interesting question to construct homeomorphic and
quasiconformal extensions for functions satisfying a stronger form of (1.5) when
δ <∞ . For example, it follows from the work of Gehring and Pommerenke in [16]
that the stronger form |Sf | ≤ t( 1

2π
2) of (1.2) implies that f has a quasiconformal

extension. In [9] we are able to give an explicit formula for the extension in this
case, but we cannot yet do so in general.

Example. Finally, in Section 7 we apply our work to one particular example
of a univalence criterion similar to one considered by Ahlfors [2]. A more detailed
study of this example is presented in [10].

Acknowledgements. We are very happy to thank C. Epstein for his interest
in the present paper, and even more for the inspiration provided by his earlier
papers on the Schwarzian and univalence criteria. Though our arguments are
quite different from his, several of the results here, particularly the extensions and
the image circle theorem for extremal geodesics, were suggested by his work. We
also thank C. Cortázar, M. Elgueta, and R. Mazzeo for stimulating conversations.
Finally, we are grateful to the referee for a very thorough and constructive reading
of this paper.

2. Bounds on the Hessian, convexity, and critical points

We begin with a computation relating the basic upper bound (1.5) on the
Schwarzian to a lower bound for the Hessian of the associated function uf defined
in (1.14). We use this result for much of our analysis.

Theorem 2. If ‖Sgf‖g ≤ (2π2/δ2)− 1
2
K(g) then Hessg uf+(π2/δ2)ufg ≥ 0 .
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Proof. This actually follows from some of the computations in [18], but we
give a direct verification here. Write u for uf , and let v = u2 = eσ−ϕ . Then
(see [19] or [18]),

(2.1) Hessg v + vSgf = 1
2
(∆gv)g.

We also have that

∆gv = v∆g(log v) +
1

v
‖ gradg v‖2

g.

Using ∆g = e−2σ∆g0 and K(g) = −e−2σ∆g0σ we obtain

∆gv = ve−2σ∆g0(σ − ϕ) +
1

v
‖ gradg v‖2

g = −vK(g) +
1

v
‖ gradg v‖2

g.

Hence in (2.1),

(2.2)

Hessg v = v

(
−1

2
K(g)g − Sgf

)
+

1

2v
‖ gradg v‖g

2
g

≥ −2π2

δ2
vg +

1

2v
‖ gradg v‖g

2
g.

On the other hand, since v = u2 ,

Hessg v = 2uHessg u+ 2du⊗ du and
1

2v
‖ gradg v‖g2 = 2‖ gradg u‖g2.

It follows that

uHessg u+ du⊗ du ≥ −π
2

δ2
u2g + ‖ gradg u‖g2

g,

so

Hessg u+
π2

δ2
ug ≥ 0,

as desired.

If γ(t) is a unit-speed geodesic for g and U(t) = uf
(
γ(t)

)
, then along γ the

inequality for the Hessian becomes

U ′′ +
π2

δ2
U ≥ 0.

Equality holds along γ only if equality holds in (1.5) along γ .
Next, a real-valued function w on D is convex with respect to g if the Hessian

of w , computed with respect to g , is positive semi-definite. This is equivalent to
requiring that (w ◦ γ)′′(t) ≥ 0 for every geodesic γ = γ(t) in D , where t is an
arclength parameter for g . When g is complete Theorem 2 is thus a convexity
result. We use this often enough to merit a separate statement. (Recall that if
f is meromorphic then uf is zero at the pole. The computation in Theorem 2
applies away from the pole.)
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Corollary 1. If g is complete and ‖Sgf‖g ≤ 1
2 |K(g)| then uf is g -convex.

From Corollary 1 we deduce a characterization of functions satisfying (1.7).
Because the characterization involves shifting the range by an arbitrary Möbius
transformation, the hypothesis is that f is meromorphic; see also [11].

Corollary 2. Let g be complete and f a meromorphic function in (D, g) .
The following are equivalent:

(a) ‖Sgf‖g ≤ 1
2 |K(g)|;

(b) uM◦f is convex for all Möbius transformations M ;
(c) for every z0 ∈ D there exists a Möbius transformation M such that uM◦f

has a positive local minimum at z0 .

Proof. (a) ⇒ (b): Since Sg(M ◦ f) = Sgf for any Möbius transformation
M it suffices to show that uf is convex, and this is precisely Corollary 1.

(b) ⇒ (c): Let z0 ∈ D . Since uM◦f is convex, it suffices to choose M so that
uM◦f has a critical point at z0 , and z0 is not a pole of f . But it is easy to see
that an arbitrary Möbius transformation M has enough parameters to produce
such a critical point.

(c) ⇒ (a): Let z0 ∈ D and suppose that u = uM◦f has a positive local
minimum at z0 . Then z0 is not a pole of M ◦ f , and, with v = u2 , from (2.2)

(Hessg v)(z0) = v
(
−1

2K(g)g − Sg(M ◦ f)
)
(z0),

which must be ≥ 0. It follows that ‖Sg(M ◦ f)‖g ≤ −1
2
K(g) = 1

2
|K(g)| at z0 .

Since Sg(M ◦ f) = Sgf , and since z0 was arbitrary, the bound must hold every-
where.

Though Theorem 2 and Corollary 1 are local, under the assumption of com-
pleteness Corollary 1 has a useful global consequence based on the fact that a
critical point of a smooth convex function is always a global minimum.

Corollary 3. Let g be complete and f a meromorphic function in (D, g) .
If uf has a critical point at which uf is positive, then f is analytic. If the critical

point is unique then f is bounded.

Proof. For the first part, once again, at a pole of f the function uf must
vanish. This would then give a global minimum of uf distinct from the one at the
supposed critical point.

For the second part, let z0 ∈ D be the unique critical point of u = uf ,
u(z0) > 0. Then u(z0) is the absolute minimum of u in D .

We use geodesic polar coordinates r , θ on D based at z0 . Because the
critical point is unique, given an r0 > 0 there exists a c > 0 such that the radial
derivative ur is ≥ c at points z of g -distance ≥ r0 from z0 . Let γ = γ(t) be a
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geodesic with γ(0) = z0 , and write U(t) = u
(
γ(t)

)
. Then U ′(t) ≥ c for t ≥ r0 ,

and since U(t) is convex

(2.3) U(t) ≥ b+ ct,

for some constant b independent of θ . Hence

(2.4) eϕ(γ(t))e−σ(γ(t)) = U−2(t) ≤ 1

(b+ ct)2
,

and so for all T > r0 ,
∫

γ|[r0,T ]

|f ′(z)| |dz| =

∫ T

r0

eϕ(γ(t))e−σ(γ(t)) dt

≤
∫ T

r0

1

(b+ ct)2
dt ≤

∫ ∞

r0

1

(b+ ct)2
dt <∞.

Since g is complete, γ(T ) → ∂D as T → ∞ , and we conclude that f(D) is
bounded.

Both the statement of this corollary and its proof will be used in later argu-
ments.

Remark. Corollary 3 is a distortion theorem in disguise. We can always
assume that the critical point of uf is at the origin by changing f to M ◦ f by a
Möbius transformation M , and we can normalize further so that uf (0) = 1. Even
if the critical point is not unique the convexity of uf implies that e(σ−ϕ)/2 = uf ≥
uf (0) = 1, or

|f ′| = eϕ ≤ eσ.

When g is the Poincaré metric with eσ(z) = 1/(1 − |z|2) this becomes

|f ′(z)| ≤ 1

1 − |z|2 ,

which is the sharp upper bound for functions f(z) = z + a3z
3 + · · · satisfying

Nehari’s condition |Sf(z)| ≤ 2/(1− |z|2)2 , [7]. When the critical point is unique,
(2.3) implies that for R0 ≤ |z| < 1 one has

(2.5) |f ′(z)| ≤ eσ(z)

(
b+ cdg(0, z)

)2 ,

where now the constants R0 , b and c depend on f . Here dg denotes the distance
in the g -metric. In some cases one can deduce estimates for the modulus of
continuity from (2.5).

We will make further use of convexity and critical points in Section 5. Anal-
ogous results on distortion for the non-complete case have eluded us; see how-
ever [10].
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3. Extension to D

In this section we use the differential inequality provided by Theorem 2 to
prove that a function satisfying the general univalence criterion (1.5) has a con-
tinuous extension to D. Here, for the first time, we we must assume the unique
limit point property (ULP).

Theorem 3. Suppose f is a meromorphic function in (D, g) satisfying (1.5) ,
and that g satisfies (ULP) if it is complete and (ULP*) if it is not complete. Then

f admits a (spherically) continuous extension to D.

Proof. Let Ω = f(D) . We will show that small arcs on S1 , corresponding
to intervals of initial directions of geodesics from a base point, parametrize small
arcs on ∂Ω. This implies that ∂Ω is locally connected at each point, which is a
necessary and sufficient condition for f to have a continuous extension to D. To
obtain the requisite estimates we have to modify f by Möbius transformations of
the range, and this is why the theorem is stated in terms of meromorphic rather
than analytic functions.

The proof is slightly different in the two cases δ < ∞ and δ = ∞ . We
consider first δ < ∞ ; thus (ULP*) is in force. Let ζ0 ∈ ∂D and let γ0 be a
geodesic in D ending at ζ0 . Let z0 ∈ γ0 be a point of distance < 1

8δ from ζ0 , and
let θ0 be the direction of γ0 at z0 . Choose a small enough neighborhood V of
initial directions about θ0 with corresponding geodesics covering an arc I ⊂ ∂D
of limit points so that the distances between z0 and all such limit points is ≤ 1

4
δ .

Let θ ∈ V and let γ(t) , 0 ≤ t ≤ Tθ , be the corresponding geodesic starting
at z0 and ending at a point on I ⊂ ∂D . Replace f by M ◦ f , where the Möbius
transformation M is chosen so that the associated function uM◦f satisfies

graduM◦f (z0) = 0 and uM◦f (z0) = 1.

We want to apply Theorem 2 to uM◦f along the geodesics γ . We continue to
write f for M ◦ f and uf for uM◦f since Sg(M ◦ f) = Sgf . The function
U(t) = uf

(
γ(t)

)
satisfies

U ′′ ≥ −π
2

δ2
U, U(0) = 1, U ′(0) = 0.

From this,

U(t) ≥ cos

(
π

δ
t

)
,

and so

U(t) ≥ cos

(
π

δ

δ

4

)
=

1√
2
.
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Note that since uf is non-zero in the sector swept out by the geodesics γ , f is
analytic there. Referring to (1.11) and (1.14), |f ′| = eϕ ≤ 2eσ , along γ , and

(3.1)

∫

γ

|f ′| |dz| ≤ 2lg(γ) ≤ 1
2
δ.

This implies that
lim
t→Tθ

f
(
γ(t)

)

exists. We denote the limit by f
(
γ(Tθ)

)
; it lies on ∂Ω.

We prove next that f
(
γ(Tθ)

)
∈ ∂Ω depends continuously on the initial direc-

tion θ of the geodesic. Let γ1 , 0 ≤ t ≤ Tθ1 , and γ2 , 0 ≤ t ≤ Tθ2 , be two geodesic
rays starting at z0 with θ1, θ2 ∈ V . We need to estimate the distance between
f
(
γ1(Tθ1)

)
and f

(
γ2(Tθ2)

)
. Let 0 < τ < min{Tθ1 , Tθ2} . Then

∣∣f
(
γ1(Tθ1)

)
− f

(
γ2(Tθ2)

)∣∣ ≤
∣∣f

(
γ1(Tθ1)

)
− f

(
γ1(τ)

)∣∣ +
∣∣f

(
γ1(τ)

)
− f

(
γ2(τ)

)∣∣

+
∣∣f

(
γ2(Tθ2)

)
− f

(
γ2(τ)

)∣∣.

The terms
∣∣f

(
γi(Tθi

)
)
− f

(
γi(τ)

)∣∣ are dominated by the tails of the integrals in
(3.1) which are uniformly bounded by 1

2δ . Now using the continuity of the length
function in the hypothesis (ULP*), there is a τ0 so that both these terms are
small for τ0 ≤ τ < min{Tθ1 , Tθ2} if |θ1 − θ2| is small. The remaining term can
be controlled using the continuity of f and the fact that |γ1(τ) − γ2(τ)| is small
if |θ1 − θ2| is small. These estimates prove that the endpoints f

(
γ(Tθ)

)
∈ ∂Ω, γ

varying, depend continuously on the initial directions θ = γ′(0).
It remains to show that any point in ∂Ω is the image f

(
γ(Tθ)

)
as in the

construction above. Let ω ∈ ∂Ω and let {wn} be a sequence of points in Ω which
converges to ω . Choose a subsequence, labeled the same way, of zn = f−1(wn)
converging to a point ζ ∈ ∂D . Let z0 ∈ D be a point of distance < 1

8δ from ζ .
Let g1 be the metric on Ω obtained by pulling back the metric g on D

by f−1 . Thus f : (D, g) → (Ω, g1) is an isometry. Let let Γn(t) be the g1 -geodesic
joining f(z0) = w0 to wn with Γn(0) = w0 . Another subsequence, again labeled
in the same way, of the initial directions Γ′

n(0) converges to a direction which
determines a geodesic Γ. Let γ = f−1(Γ), γ = γ(t) , θ = γ′(0), 0 ≤ t ≤ Tθ . Let
γn = f−1(Γn) and let tn = lg(γn) = lg1(Γn) . Write

∣∣f
(
γ(Tθ)

)
− wn

∣∣ =
∣∣f

(
γ(Tθ)

)
− f

(
γn(tn)

)∣∣

≤
∣∣f

(
γ(Tθ)

)
− f

(
γ(τ)

)∣∣ +
∣∣f

(
γ(τ)

)
− f

(
γn(τ)

)∣∣

+
∣∣f

(
γn(τ)

)
− f

(
γn(tn)

)∣∣.

As γ′n(0) → γ′(0) = θ , we conclude for n sufficiently large that
∣∣f

(
γ(Tθ)

)
−wn

∣∣ can

be made arbitrarily small by choosing τ close enough to Tθ . Hence ω = f
(
γ(Tθ)

)
.

This completes the proof in the case δ <∞ .
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We indicate now how the argument should be modified in the complete case
δ = ∞ . Choose a base point z0 , which is fixed for the entire argument. Let w0 =
f(z0) . The g1 -geodesic rays from w0 can be extended indefinitely, and we need
to know that they have a limit. Any such ray is the image under f of a geodesic
γ = γ(t) , γ(0) = z0 . Changing f by an appropriate Möbius transformation of the
range, and maintaining the same notation convention as above, we may assume
that U ′(0) ≥ c > 0. Then, as in the proof of Corollary 3, we have U(t) ≥ b+ ct ,
t ≥ 0, and

(3.2)

∫

γ

|f ′| |dz| <∞.

Thus limt→∞ f
(
γ(t)

)
exists, and we denote if by f

(
γ(∞)

)
∈ ∂Ω.

For the continuity of f
(
γ(∞)

)
depending on the initial directions at z0 we

argue as follows. Take a geodesic γ1(t) from z0 . This time we modify f by a
Möbius transformation to change the gradient of uf at z0 so that U ′(0) ≥ c > 0
for all rays from z0 that form an angle of less than 1

4π with γ′1(0). This makes the
integrals in (3.2) uniformly bounded over all such rays, and f uniformly bounded
in the sector covered by the rays. From here the proof of continuity, and that all
of ∂Ω is hit by the f

(
γ(∞)

)
, is almost identical to the above. Only (ULP) is

necessary.

4. Extremal functions

Suppose the metric g satisfies (ULP), or (ULP*), and (BPJ). Recall that
f is an extremal function for (1.5) if f(D) is not a Jordan domain, and that a
corresponding extremal geodesic joins two points on ∂D where f is not injective.

The principal result on extremal functionas and extremal geodesics is the
following.

Theorem 4. Let g have the properties (ULP), (or (ULP*)) and (BPJ).
Then

(i) Equality holds in (1.5) for an extremal function along an extermal geodesic.

(ii) The image f(γ) of an extremal geodesic under the extremal function f is a

euclidean circle.

Part (i) of this theorem is another reason for the term extremal function. Its
converse, however, is not true. Take Nehari’s criterion |Sf(z)| ≤ 2/(1 − |z|2)2 .
The interval (−1, 1) is an extremal geodesic for the function

L(z) =
1

2
log

1 + z

1 − z
.

But we also have |Sf(z)| = 2/(1 − |z|2)2 along (−1, 1) for the function

f(z) =
1√
2

(1 + z)
√

2 − (1 − z)
√

2

(1 + z)
√

2 + (1 − z)
√

2
, Sf(z) =

−2

(1 − z2)2
,
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and f(D) is a Jordan domain, in fact a quasidisk. Hence, in our sense, f is not
an extremal function for Nehari’s criterion.

Let f be an extremal function for (1.5), with f(ζ1) = f(ζ2) , and let γ be an
extremal geodesic joining ζ1 and ζ2 . Theorem 4 does not assume any normaliza-
tions on f , but the proof, which depends on properties of the associated function,
needs some. Normalize f via M ◦ f , where M is a Möbius transformation, so
that

(4.1) f(ζ1) = f(ζ2) = ∞.

Let γ(t) , be a g -unit speed parametrization of γ in the direction from ζ2
to ζ1 . We consider the associated function uf restricted to an extremal geodesic γ .
As earlier we let

U(t) = uf
(
γ(t)

)
.

For the complete case we have the following preliminary result.

Lemma 1. If δ = ∞ then U(t) is constant.

Proof. Recall from Corollary 1 that U(t) is a convex function of t . If U(t)
were not constant it would be bounded from below by some nonconstant affine
function b + ct , as in the proof of Corollary 3. But then this would make one of
the integrals ∫

γ+

|f ′(z)| |dz|,
∫

γ−

|f ′(z)| |dz|

finite, where γ+ = γ|[0,∞) and γ− = γ|(−∞,0] . This contradicts f(ζ1) = f(ζ2) =
∞ .

Later we will show more precisely that the constant value of U is the absolute
minimum of uf on D .

For the case δ <∞ there are two basic lemmas. We maintain the nomaliza-
tion (4.1).

Lemma 2. Suppose δ < ∞ . Then an extremal geodesic has length δ and

its midpoint is the unique critical point of U(t) .

Proof. We show first that U(t) must have a critical point. If not then U is
monotone, say increasing. Consequently U(t) ≥ U(t0) = a for t ≥ t0 , and thus

|f ′(z)| ≤ 1

a2
eσ(z)

for z ∈ γ after γ(t0) . This gives that

∫ ζ1

γ(t0)

|f ′| |dz| ≤ δ

a2
<∞,
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and therefore that f(ζ1) is finite, contradicting the normalization of f .
Let z0 = γ(0) be a critical point for U(t) . Since U ′′ ≥ −(π/δ)2U , it follows

that

(4.2) U(t) ≥ U(0) cos
(π
δ
t
)

for |t| < 1
2
δ . If either dg(z0, ζ1) or dg(z0, ζ2) is < 1

2
δ then U would be bounded

below by a positive constant on either the part of γ from z0 to ζ1 or from ζ2
to z0 . As before, this leads to a contradiction with the normalization of f .

Since in any case dg(z0, ζ1) + dg(z0, ζ2) ≤ δ , we conclude that dg(z0, ζ1) =
dg(z0, ζ2) = 1

2δ . This also shows that the critical point is unique.

Lemma 3. If δ <∞ and z0 = γ(0) is the midpoint then

(4.3) U(t) = U(0) cos
(π
δ
t
)
, −δ

2
≤ t ≤ δ

2
.

Proof. As in (4.2), we have

U(t) ≥ U(0) cos
(π
δ
t
)
, −δ

2
≤ t ≤ δ

2
,

hence U(t) > 0. We also know that U is monotone for −1
2
δ < t < 0 and for

0 < t < 1
2δ . We claim it is increasing on the negative interval and decreasing

on the positive. Suppose not, say that U is increasing for 0 ≤ t ≤ 1
2
δ . Then

U(t) ≥ U(0) = a for 0 < t < 1
2δ , which implies as before that f(ζ1) is finite, a

contradiction.
Since U > 0, we conclude that both limits limt→±δ/2 U(t) exist. But these

limits must be zero, for otherwise U would be bounded from below by a positive
constant on some half of γ . Hence U( 1

2
δ) = U(−1

2
δ) = 0 and again the Sturm

comparison theorem implies (4.3).

Part (i) of Theorem 4 now follows from these lemmas. For in either of the
cases δ <∞ or δ = ∞ the function U satisfies

U ′′ +
π2

δ2
U = 0

along the extremal geodesic, and this implies that equality holds in (1.5) there.
Since Sg(M ◦f) = Sgf for a Möbius transformation M , the same is true for any
extremal function with this extremal geodesic, normalized or not.

We turn to the geometry of extremal geodesics. Let f be an extremal function
for (1.5) with an extremal geodesic γ joining ζ1, ζ2 ∈ ∂D where f(ζ1) = f(ζ2) .
Normalize f as in (4.1). To prove part (ii) of Theorem 4 we then want to show
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that f(γ) is a straight line, and we do this by showing that its euclidean curvature
is zero.

First we need a general formula. If ξ: [a, b] → C is a curve with ξ′ 6= 0 then
the Schwarzian Sξ is defined by the same formula as for analytic functions. When
ξ(s) is a (euclidean) arclength parametrization then ξ′(s) = eiθ(s) and

ξ′′

ξ′
= iθ′ = ik,

where k is the curvature. Thus

(4.4) Sξ = ik′ + 1
2k

2,

a well known formula, see for example [1, p. 21].
Next, when δ < ∞ let z0 be the g -midpoint of γ , as in Lemma 3, and

normalize f further so that

(4.5) uf (z0) = 1.

It follows from Lemma 3 and the definition of uf that, along γ ,

(4.6) |f ′(z)| = eσ(z) cos−2
(π
δ
dg(z, z0)

)
,

where dg is the distance in the metric g . Though this formula is for the case
δ <∞ , (4.6) includes the complete case. That is, if δ = ∞ then

(4.7) |f ′| = eσ

along γ , where, using the result of Lemma 1, we further normalized f to have uf
identically 1 along γ .

Let ξ1 = ξ1(s) be a euclidean arclength parametrization of γ . We introduce
the following real-valued function, modeled on f along γ . Define f0(s) by

(4.8) f ′
0(s) = eσ(ξ1(s)) cos−2

(π
δ
dg(ξ1(s), z0)

)
, f0(0) = 0.

We need the fact that the Schwarzians of f0(s) and of ξ1(s) are related
through

(4.9) Sf0 − 2(σzz − σ2
z)(ξ

′
1)

2 = 2
π2

δ2
e2σ + 2σzz̄ + Sξ1,

where in this equation and elsewhere in the proof σ and its z -derivatives are
evaluated at ξ1(s) .



General univalence criteria in the disk 117

To derive this, we first have

f ′′
0

f ′
0

= 2 Re{σzξ′1} + 2
π

δ
eσ tan

(π
δ
dg

)
,

where we have used that the derivative of dg
(
ξ1(s), z0

)
is 1 when differentiating

along γ with respect to g -arclength, and hence is eσ when differentiating with re-
spect to the euclidean arclength s . Since γ is a g -geodesic its euclidean curvature
is k1 = −2 Im{σzξ′1} , thus

f ′′
0

f ′
0

= 2σzξ
′
1 + ik1 + 2

π

δ
eσ tan

(π
δ
dg

)
.

Differentiate again and use |ξ′1| = 1 and ξ′′1 = −k1ξ
′
1 . With a little effort this

leads directly to (4.9).
Next, using (1.10), the euclidean form of (1.5), we appeal to part (i) of The-

orem 4 and observe that for an extremal f there is a function ε(z) along γ with
|ε| = 1 such that

(4.10) Sf − 2(σzz − σ2
z) =

(
2π2

δ2
e2σ + 2σzz̄

)
ε,

along γ .

Now let ξ2 = ξ2(t) be a euclidean arclength parametrization of the image
curve f(γ) . Then by construction f

(
ξ1(s)

)
= ξ2

(
f0(s)

)
. Taking Schwarzians of

both sides we obtain

(Sf)(ξ′1)
2 + Sξ1 = (Sξ2)(f

′
0)

2 + Sf0,

which together with (4.10) and (4.9) gives

(4.11) 2

(
π2

δ2
e2σ + σzz̄

)
(ξ′1)

2ε = 2
π2

δ2
e2σ + 2σzz̄ + (Sξ2)(f

′
0)

2.

The left hand side of (4.11) has absolute value 2(π/δ)2e2σ + 2σzz̄ , while the right
hand side will have the same absolute value if and only if Sξ2 = 0. Recalling that
Sξ2 = ik′2 + 1

2k
2
2 , where k2 is the euclidean curvature of ξ2 = f(γ) , this implies

that f(γ) must be part of a straight line. But then it must be the entire straight
line because both endpoints are at infinity.

This completes the proof of part (ii) of Theorem 4 when f is normalized, and
hence in general.
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Before continuing, we note that an extremal function f normalized as above,
which maps an extremal geodesic γ to a straight line, is completely determined
along γ . We know |f ′| along γ by (4.6) or (4.7), and if f(γ) is a line we also
know the argument. So, for instance, if the image is the real axis then for z ∈ γ
we have, up to a constant,

f(z) =
δ

π
tan

(π
δ
dg(z, z0)

)

when δ <∞ , and

f(z) = dg(z, z0),

when δ = ∞ . Here z0 is the midpoint of γ in the first case and any fixed point
on γ in the second.

We now deduce further properties of the associated function uf along an
extremal geodesic in the complete case.

Corollary 4. Suppose g is complete and let f be an extremal function.

Under the normalizations (4.1) the associated function satisfies graduf = 0 along

an extremal geodesic γ , and assumes its absolute minimum in D along γ .

Proof. Since f(γ) is a straight line, we may rotate f if necessary and assume
that f(γ) is the real axis. Let ξ = ξ(s) be a euclidean arclength parametrization
for γ . Since f(γ) is real, along γ we have arg f ′ = − arg ξ′ . Thus

(4.12) f ′ξ′ = eσ.

From this,

(4.13) ξ′
f ′′

f ′ +
ξ′′

ξ′
= 2 Re{σzz′1},

and using the equation for curvature, ξ′′/ξ′ = ik = −2 Im{σzξ′} , we get

(4.14)
f ′′

f ′ = 2σz.

It is easy to see that this last equation is equivalent to graduf = 0 along γ .
The function uf is constant on γ by Lemma 1, and this value is the absolute

minimum of uf in D by convexity.

In Theorem 6 in the next section we will need to prove that a geodesic is
extremal. Thus as a complement to the preceding results, we need the following
elementary and general fact.
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Lemma 4. Let f satisfy (1.5) . Suppose γ is a geodesic segment in D along

which uf attains its absolute minimum. Then f(γ) is a straight line segment

in f(D) .

Proof. We are not assuming that the metric is complete, and in fact this is
the one case where we do not need that the curvature is nonpositive.

Let Ω = f(D) and let g1 be the pullback of g under f−1 . Thus f : (D, g) →
(Ω, g1) is an isometry. The metric g1 is also conformal to the euclidean metric.
For purposes fully explained in the next section, we write it as g1 = ̺2

f |dw|2 , so

that ̺f ◦ f = u2
f . Now, by hypothesis, ̺f attains its absolute minimum along

the g1 -geodesic Γ = f(γ) in Ω. It is easy to see from this that the differential
equation satisfied by Γ reduces to d2Γ/ds2 = 0.

5. Reflections and extensions in the complete case

In this section we consider the problem of homeomorphic and quasiconformal
extensions to Ĉ of functions satisfying

(5.1) ‖Sgf‖g ≤ 1
2 |K(g)|

when g = e2σ|dz|2 is complete. Suppose also that the metric satisfies (ULP)
and (BPJ). Then such an f has a continuous extension to D, and if there is an
extremal function there is also a corresponding extremal geodesic.

Let Ω = f(D) . As on earlier occasions, we define a metric on Ω by g1 =
(f−1)∗g , and we write g1 = ̺2

f |dw|2 . Then f : (D, e2σ|dz|2) → (Ω, ̺2
f |dw|2) is an

isometry, and ̺f ◦ f = u2
f .

We define a mapping Λ = Λf of Ω by

(5.2) Λ(w) = w +
1

∂w log ̺f (w)
.

Under certain circumstances Λf will be a reflection across ∂Ω, and will allow us
to define an extension Ef of f .

We shall need a property of Λf known as conformal naturality.

Lemma 5. If M is a Möbius transformation then ΛM◦f = M ◦ Λf .

The equation in the lemma means that

(5.3) ΛM◦f
(
M

(
f(z)

))
= M

(
Λf

(
f(z)

))

for any point z ∈ D .
Proof. The identity (5.3) is easy to check for a similarity, so we go through

the calculation only for an inversion. With h = 1/f , we have h′ = −f ′/f2 and
from this,

(h−1)∗g = τ2|dz|2 with τ = |f |2eσ−ϕ = |f |2̺f ,
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or log τ = log ̺f + 2 log |f | . With w = f(z) and ζ = 1/w we now compute that
∂ζ log τ = −w2∂w log ̺f − w . Then

ζ+
1

∂ζ log τ
=

1 + w−1(−w − w2∂w log ̺f )

−w − w2∂w log ̺f
=

∂w log ̺f
1 + w∂w log ̺f

=
1

w + (∂w log ̺f )−1
,

which is the desired identity.

The combination of the following two lemmas gives conditions for Λf to be
a reflection across ∂Ω.

Lemma 6. If u = uf has a unique critical point in D then

(5.4) |∂w log ̺f | → ∞ as w → ∂Ω.

Proof. We compute that

|∂w log ̺f | =
1

̺f
|∂w̺f | = u−2e−ϕ2u|∂zu| = 2ue−σ|∂zu| = ue−σ | gradg0 u|.

Using the general relations gradg = e−2σ gradg0 and ‖ · ‖g = eσ| · | , we thus find
that

(5.5) |∂w log ̺f | = u‖ gradg u‖g.

Suppose z0 is the unique critical point of u in D . Then as in the proof of
Corollary 3, ‖ gradg u‖g ≥ c > 0 outside some compact set containing z0 . It
follows from (5.5) and from (2.4) that |∂w log ̺| becomes unbounded near ∂Ω, as
desired.

Lemma 7. Suppose ‖Sgf‖g ≤ 1
2
|K(g)| , and that g is complete. Let Ω =

f(D) . Suppose for every Möbius transformation M that uM◦f has at most one

critical point in D . Then Λf takes values in Ĉ \ Ω.

Proof. Suppose to the contrary that there exists a w1 ∈ Ω such that Λf (w1) ∈
Ω. Choose a Möbius transformation M such that uM◦f has a critical point at
z1 = f−1(w1) . By assumption, z1 is therefore the unique critical point of uM◦f ,
and again by Corollary 3, (M ◦ f)(D) = M(Ω) is bounded. But Λf (w1) =

Λf
(
f(z1)

)
∈ Ω, hence M

(
Λf

(
f(z1)

))
∈M(Ω). On the other hand, by (5.3),

M
(
Λf

(
f(z1)

))
= ΛM◦f

(
M

(
f(z1)

))
= ∞,

the last equality because z1 is a critical point for uM◦f . This contradicts the
boundedness of M(Ω).
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We now define an extension of f by the formula

(5.6) Ef (z) =

{
f(z) for |z| ≤ 1,
Λ

(
f(1/z̄)

)
for |z| > 1.

Theorem 5. Let g satisfy (ULP) and (BPJ). Suppose ‖Sgf‖g ≤ 1
2 |K(g)| ,

and that g is complete. The following are equivalent:

(a) Ef is a homeomorphism of Ĉ;

(b) Λf is injective with values in Ĉ \ Ω;
(c) for each Möbius transformation M , uM◦f has at most one critical point in D .

Proof. (a) ⇒ (b): This is an immediate consequence of the definition of Ef .
(b) ⇒ (c): Because of the conformal naturality of the extension, the hypoth-

esis in (b) is invariant under Möbius changes M ◦ f . Observe that a critical point
of u in D corresponds under f to a critical point of ̺f in Ω, which is in turn
mapped by Λf to the point at infinity. Hence uf can have at most one critical
point.

(c) ⇒ (a): This implication is the core of the theorem, and by now most
of the work is done. First, f(D) must be a Jordan domain, for if not then f
is an extremal function and there is an extremal geodesic, say joining ζ1, ζ2 ∈
∂D . We may assume that f is normalized so that f(ζ1) = f(ζ2) = ∞ . Then
graduf = 0 along γ by Corollary 4. Next, by Lemma 6, Ef is continuous on
|z| = 1, and its (spherical) continuity elsewhere is clear. Finally, in order to show
that Ef is globally injective it suffices to show that this is so for Λf , as Λf
takes values outside Ω. Suppose Λf (w1) = Λf (w2) . Via a Möbius transformation
we may assume that this common value is the point at infinity. In that case, the
corresponding function u must have critical points at f−1(w1) and f−1(w2) , hence
f−1(w1) = f−1(w2) . Therefore w1 = w2 . This proves that Ef is a continuous,

injective map of Ĉ onto itself, and hence is a homeomorphism.

We studied homeomorphic extensions in an earlier paper1 [8] for the Ahlfors–
Weill extension [3], which is precisely Ef when g is the Poincaré metric.

From the theorem we obtain a result on quasiconformal extension, requiring
however that the curvature be strictly negative.

Corollary 5. Let g satisfy (ULP) and (BPJ). If K(g) < 0 and if

(5.7) ‖Sgf‖g ≤ 1
2 t|K(g)|

for some 0 ≤ t < 1 , then f has a (1 + t)/(1 − t) -quasiconformal extension to Ĉ .

1 In [8] we wrote Ef for the reflection and F for the extension. We apologize
for the inconsistent notation.
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Proof. We claim first that Ef is a homeomorphic extension of f . Suppose by
way of contradiction that there is some Möbius transformation M so that uM◦f
has at least two critical points in D . Then by convexity uM◦f attains its absolute
minimum all along the geodesic segment between the two points. As in the last
section this implies that ‖Sgf‖g = 1

2 |K(g)| along that segment, a contradiction.
Next, one computes as in [5] that the Beltrami coefficient µ of Λf has mag-

nitude

(5.8) |µ ◦ f | =
2

|K(g)|‖Sgf‖g.

This is ≤ t < 1 and the conclusion follows.

Remark. In terms of the classical Schwarzian, Corollary 5 is essentially the
strong form of Epstein’s univalence criterion (1.6) as given in [14]. The version
here in terms of the Schwarzian tensor appears in [5] and [6]. The form (5.2) of
the reflection Λ and (5.6) of the quasicionformal extension Ef are also Epstein’s.
His construction in [14], involving an ingenious use of reflections in surfaces in
hyperbolic space, is much different from the one given here. (The conformal natu-
rality in Lemma 5 can also be deduced from Epstein’s construction.) An extension
operator of this form was also proposed by Ahlfors in [2], though not in this much
generality and without reference to a reflection in the image. We consider Ahlfors’s
criterion in Section 7.

The topological fact that Ef is a global homeomorphism once it is a local ho-
meomorphism was used on several occasions by Ahlfors. In his work, the fact that
Ef is a local homeomorphism depends on showing that the Jacobian is positive,
and this follows from knowing that the Beltrami coefficient in (5.8) is ≤ t < 1.
This reasoning cannot be applied in the limiting case t = 1.

The ideal situation would be that Ef is a homeomorphic extension of f if
and only if f(D) is a Jordan domain, but this is not the case. It is true when the
metric g is real analytic, but can be false for C∞ metrics.

Theorem 6. Let g = e2σ|dz|2 be a complete metric on D satisfying (ULP)
and (BPJ). Suppose ‖Sgf‖g ≤ 1

2 |K(g)| .
(i) If g is real analytic then f(D) = Ω is a Jordan domain if and only if Ef is

a homeomorphism.

(ii) There exists a C∞ metric g and a conformal mapping of D onto a Jordan

domain for which Ef is not a homeomorphism.

Proof. The necessity in (i) is clear. We shall prove that if Ef is not a
homeomorphism then f(D) is not a Jordan domain, and for this we appeal to
the equivalent condition (c) in Theorem 5. That is, assume for some Möbius
transformation M , that u = uM◦f has at least two critical points in D , say
at z1, z2 . Without loss of generality we may suppose this happens for f itself. By
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convexity, u then attains its absolute minimum u0 at z1 and z2 and also along
the geodesic segment joining them. Since the quantities are real analytic, u = u0

along the entire geodesic γ through z1 and z2 . This is the situation in Lemma 4,
and it follows that f(ζ1) = f(ζ2) = ∞ , where ζ1 and ζ2 are the asymptotic
endpoints of γ on ∂D . We wish to show that ζ1 6= ζ2 , hence Ω is not a Jordan
domain. (Hence f is an extremal function and γ is an extremal geodesic.)

Suppose to the contrary that that ζ1 = ζ2 = ζ . Take any point z0 ∈ γ ,
and let γ1 be the geodesic through z0 normal to γ at z0 . Then γ1 followed
in one direction must end at the same asymptotic boundary point ζ , because
geodesics cannot cross more than once. Let U(t) = U

(
γ1(t)

)
with γ1(0) = z0

and limt→∞ U(t) = ζ . Then U(t) is convex and U ′(0) = 0. If U(t) is not
identically equal to u0 for t ≥ 0, then U(t) is bounded below by some non-
constant affine function, and this implies that |f(ζ)| <∞ , contrary to the above.
Hence U(t) ≡ u0 for t ≥ 0. Since z0 ∈ γ was arbitrary we conclude that u = u0

on the component of D \ γ containing γ1 , and so u = u0 in D by analyticity.
Now

|f ′| = u−2eσ = u−2
0 eσ,

and hence the metric g1 = ̺2|dw|2 on Ω is a constant multiple of the euclidean
metric, since ̺◦f = u2

f = u2
0 . But now f : (D, g) → (Ω, g1) is an isometry, and thus

g1 is complete. This can only happen if Ω = C , an absurdity. This contradiction
proves that ζ1 6= ζ2 , and hence that Ω is not a Jordan domain. We conclude that
u has at most one critical point, proving the first part of the theorem.

For the proof of (ii) we construct an example of a function f satisfying (1.7)
such that Ef fails to be a homeomorphism despite f(D) being a Jordan domain.
In fact, by choosing the metric g on D properly we can accomplish this with
f(z) = z . Write g = e2σ|dz|2 as usual. Because ϕ = log |f ′| = 0 for f(z) = z ,
the inequality ‖Sgf‖g ≤ 1

2
|K(g)| appears as

(5.9) |σzz − σ2
z | ≤ σzz̄,

in terms of σ alone. We want to choose σ satisfying this condition in such a way
that uf has more than one critical point. According to Theorem 5, Ef cannot
then be a homeomorphism.

Let ν be defined by the equation σ = log(1/1 − ν) . Then (5.9) is easily
shown to be equivalent to

(5.10) |νzz| ≤ νzz̄ +
|νz|2
1 − ν

.

This inequality is in turn implied by |νzz| ≤ νzz̄ , which is itself equivalent to the
euclidean convexity of ν . In summary, in order for (5.9) to hold it suffices to take
σ = − log(1 − ν) for any convex function ν which is less than 1 in the disk.
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We now take ν:D → [0, 1] to be radially symmetric C∞ function where,
regarding ν as a function from [0, 1] to itself, ν = 0 on a small interval [0, ε] ,
0 < ε < 1, ν′′ ≥ 0 on [0, 1] , ν(1) = 1 and ν′(1) < ∞ . Because of this last
condition ∫ 1

0

dr

1 − ν(r)
= ∞,

making the corresponding metric e2σ|dz|2 complete. The resulting function uf
will have all z with |z| < ε as critical points. This completes the construction,
and with it the proof of the theorem.

Finally, observe what happens with the reflection Λf when there is an ex-
tremal function f and an extremal geodesic γ . Suppose that γ has endpoints
ζ1, ζ2 ∈ ∂D , and normalize f so that f(ζ1) = f(ζ2) = ∞ . Let γ∗ be the reflec-
tion of γ in |z| = 1. Corollary 4 states that graduf vanishes along γ , and so from
the definition of Λf , and the relation ̺f ◦ f = u2

f , we see that that Λf is iden-
tically ∞ along γ∗ . That is, Λf collapses the reflection of an extremal geodesic
to a point. By conformal naturality, (5.3), this holds regardless of whether f is
normalized.

6. Visible boundary

We recall the unique limit point property (ULP), (ULP*) and the boundary
point joining property (BPJ) from Section 1. In this section we give several suffi-
cient conditions in terms of the conformal factor σ for the metric g = e2σ|dz|2 to
have these properties. We continue to assume that the curvature is ≤ 0. We let
r and θ denote the usual polar coordinates on D .

Theorem 7. (i) Suppose that g = e2σg0 satisfies

σr > 0, |σθ| ≤ C(1 − r)−ασr,

for some constants C ≥ 0 and α ∈ [0, 1) . Then g satisfies ULP.
(ii) Suppose that σr(z) → ∞ as |z| → 1 and for some annulus r0 ≤ |z| < 1

and a constant M <∞ that |σθ(reiθ)| ≤M . Then (ULP*) and (BPJ) hold.

Proof. (i). We observe first that that a euclidean disk |z| ≤ r is convex in
the metric g , for the condtion σr > 0 implies that |z| = r has positive geodesic
curvature. As a consequence, |z| cannot have a local maximum in D along a
maximally extended geodesic. Thus, if properly traced, |z| must be increasing
along a tail of the geodesic.

In order to prove (ULP) we shall use polar coordinates to analyze the geodesic
equation. With the metric in the form e2σ(dr2 + r2dθ2) the Christoffel symbols
are

Γrrr = σr,

Γθrr = − 1

r2
σθ,

Γrrθ = σθ,

Γθrθ =
1

r
+ σr,

Γrθθ = −r − r2σr,

Γθθθ = σθ.
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Let γ(t) =
(
r(t), θ(t)

)
be a unit speed geodesic. Then ṙ2 + r2θ̇2 = e−2σ and the

geodesic equations become

r̈ + σr ṙ
2 + 2σθ ṙθ̇ − (r + r2σr)θ̇

2 = 0,

θ̈ − 1

r2
σθ ṙ

2 + 2
(1

r
+ σr

)
ṙθ̇ + σθ θ̇

2 = 0.

We write this as the following first order system in the variables r , θ , ξ , and η :

ṙ = e−2σξ,

θ̇ =
1

r2
e−2ση,

ξ̇ = σr + e2σrθ̇2,

η̇ = σθ.

Fix a base point z0 6= 0. Let γ be a geodesic starting at z0 , and suppose the
initial conditions are r(0) = r0 = |z0| > 0, θ(0) = θ0 , ξ(0) = ξ0 and η(0) = η0 ,
with ξ0 > 0, i.e., the geodesic is initially moving toward the boundary. Since
ξ̇ > 0 we have ξ(t) > 0 for all t , hence r(t) is strictly increasing. It is therefore
possible to consider θ as a function of r along the curve.

We want to estimate |dθ/dr| . Since |dθ/dr| = |θ̇/ṙ| = |η/r2ξ| , we need to
bound |η/ξ| . For this,

|η̇| = |σθ| ≤ C(1 − r)−ασr ≤ C(1 − r)−αξ̇,

hence

|η(t) − η0| ≤ C

∫ t

0

(
1 − r(s)

)−α
ξ̇(s) ds ≤ C

(
1 − r(t)

)−α
∫ t

0

ξ̇(s) ds,

because r(s) is increasing. Thus

|η(t) − η0| ≤ C
(
1 − r(t)

)−α(
ξ(t) − ξ0

)
≤ C

(
1 − r(t)

)−α
ξ(t),

or
|η(t)| ≤ C

(
1 − r(t)

)−α
ξ(t) + |η0|,

so ∣∣∣∣
η(t)

ξ(t)

∣∣∣∣ ≤ C
(
1 − r(t)

)−α
+

|η0|
ξ(t)

.

Since
|η0|
ξ(t)

≤ |η0|
ξ0

,
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it follows, for some constant C1 depending on r0 and |η0|/ξ0 , that

∣∣∣∣
η(t)

ξ(t)

∣∣∣∣ ≤ C1

(
1 − r(t)

)−α
.

With this, ∣∣∣∣
dθ

dr

∣∣∣∣ =

∣∣∣∣
η

r2ξ

∣∣∣∣ ≤
C1

r2
(1 − r)−α ≤ C2(1 − r)−α.

Now,

|θ(r) − θ(r0)| ≤
∫ r

r0

∣∣∣∣
dθ

dr

∣∣∣∣ dr,

and by the estimate above the integral converges as r → 1. Therefore θ(r) has a
limit as r → 1, and γ has a unique limit point on ∂D .

We next want to show that the end point of γ on ∂D varies continuously
with the initial direction. The estimate we need for this is, essentially, a bound
on the euclidean diameter of the tail of a geodesic. Take 0 ≤ t1 < t2 , with
r0 ≤ r1 = |γ(t1)| < |γ(t2)| = r2 . Then

|γ(t2) − γ(t1)| ≤
∫ r2

r1

√
1 + r2

(dθ
dr

)2

dr ≤
∫ r2

r1

√
1 + C2

2r
2(1 − r)−2α dr

≤ C3

∫ 1

r1

(1 − r)−α dr ≤ C0(1 − r1)
1−α.

The constant C0 depends on α and on the initial data at the base point z0 . In
particular, the euclidean diameter of the tail of γ tends to zero.

Let γ0 be a geodesic starting at z0 with initial direction θ0 and ending at a
point ζ0 on ∂D . We show continuity at θ0 .

Let ε > 0. Let r1 be such that C0(1 − r1)
1−α < 1

3ε , with C0 as in the
estimate above. Choose r2 so that 0 < r2 − r1 <

1
3
ε . There exists a t1 ≥ 0 such

that

|ζ0 − γ0(t)| < 1
3ε, and |γ0(t)| ≥ r1, if t ≥ t1.

Let γ(t) be another geodesic starting at z0 with initial direction θ . By
continuity of the solution of the geodesic equation in the parameters, there exists
a λ > 0 such that |θ − θ0| < λ implies for 0 ≤ t ≤ t1 that,

|γ(t)− γ0(t)| < r2 − r1 <
1
3ε.

Hence

|γ(t1)| > |γ0(t1)| − (r2 − r1) ≥ r1.
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If λ is small enough the constant, say C′
0 , entering into the estimate on the tail

of γ , will also satisfy C′
0(1− r1)1−α < 1

3
ε , and thus γ has a small tail after γ(t1) .

So, for t ≥ t1 ,

|ζ0 − γ(t)| ≤ |ζ0 − γ0(t1)| + |γ0(t1) − γ(t1)| + |γ(t1) − γ(t)| < ε.

Thus the endpoint ζ ∈ ∂D of γ has |ζ − ζ0| < ε .

Finally, the estimate on the tails also implies that every point on ∂D is the
limit point of a geodesic. Let ζ0 be a point on ∂D that can be reached by a
geodesic from z0 . We show that we can reach some other point on ∂D , and this
implies that all points on the boundary are visible. Let z1 ∈ D be very close to,
say, −ζ0 . Choose a disk |z| ≤ r containing both z0 and z1 . Since this disk is
convex in the metric g , the geodesic from z0 stays in the disk. If |z1| is sufficiently
close to 1 then the tail of γ from z1 to the boundary will be small, making it
impossible for its endpoint to be ζ0 . This completes the proof of part (i) of the
theorem.

(ii). We first prove (ULP*), for which we need only consider the case when
the diameter of the disk is finite. The euclidean curvature of a geodesic is given by
the normal derivative ∂σ/∂n . Since σr → ∞ while σθ is bounded, it follows that
the tangent vector to a geodesic tends to the radial direction as the geodesic tends
to the boundary. Then it is easy to see that the ratio of the euclidean lengths of
tails of geodesics with close initial conditions is uniformly bounded. Now, because
|σθ| ≤ M , a euclidean rotation is a quasi-isometry for the metric g near the
boundary. Thus the lengths of such tails must tend uniformly to zero, and one
deduces the continuity of the length function in (ULP*) directly.

To prove that any two points on ∂D can be joined by a geodesic in D ,
whether or not g is complete, we first establish a property of the total curvature
near the boundary. Namely:

If U is a relatively open subset of D containing a polar rectangle R =
{reiθ: r1 ≤ r ≤ 1, α ≤ θ ≤ β} , then

(6.1)

∫

U

K(g) dAg = −∞.

For this, let R′ = {reiθ: r1 ≤ r ≤ r2 < 1,α ≤ θ ≤ β} ⊂ R . Then

∫

R′

K(g) dAg = −
∫∫

R′

∆σ dx dy = −
∫

∂R′

∂σ

∂n
|dz|.

For the line integral, the contributions along the radial sides of R′ are uniformly
bounded by virtue of the assumption |σθ(reiθ)| ≤ M . The arc of the inner circle
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is fixed, while along the outer arc, ∂σ/∂n = σr → ∞ as r2 → 1. We conclude
that ∫

R

K(g) dAg → −∞ as r2 → 1

hence ∫

U

K(g) dAg = −∞,

which proves (6.1).
We sketch how the unique limit point property and (6.1) come into play in

proving that any two points on ∂D can be joined by a geodesic. This is a standard
part of the more general theory of visibility manifolds, and it is included here for
the convenience of the reader. Let z0 ∈ D be fixed. We consider all geodesics
starting at z0 . By (ULP), any such geodesic γ(t) , 0 ≤ t ≤ Tγ , determines a point
w = limt→Tγ

γ(t) ∈ ∂D . We may consider w as a function of γ′(0) in the tangent
space Tz0D

∼= S1 = ∂D . As in the proof of Theorem 3, w depends monotonically
and continuously on γ′z0(0) and all such limit points must cover ∂D .

Let w1, w2 ∈ ∂D , and let γ1 and γ2 be two geodesics starting at z0 which
have w1 and w2 as asymptotic limits, respectively. Let an = γ1(tn) , bn = γ2(tn

′) ,
an → w1 , bn → w2 , and let Γn = Γn(t) be the (unique) geodesic joining an to bn .
(Since σr → ∞ it follows easily that such geodesics exist and lie in D .) A direct
application of the Gauss–Bonnet theorem gives that the integrals

∫
Tn
K(g) dAg are

uniformly bounded below, where Tn is the triangle bounded by γ1|[0,tn] , γ2|[0,tn′] ,
and Γn . By (6.1) Γn cannot converge to ∂D . Hence, by passing to a subsequence
of the Γn , there is sequence {zn} on Γn with zn → z1 ∈ D , and also with the
tangent vectors Γ′

n at zn converging to a direction θ1 at z1 . Then the geodesic
through z1 with direction θ1 is the desired geodesic; when followed forward and
backward from z1 it will have w1 and w2 as asymptotic limits. This completes
the proof of Theorem 7.

Next, we show that for complete metrics a condition on just the angular
derivative of the conformal factor is sufficient to guarantee (ULP) and (BPJ). In
many examples the conformal factor is a radial function, so this result is particu-
larly useful.

Theorem 8. Let g = e2σg0 be complete. Suppose for some annulus 0 <
r0 ≤ |z| < 1 and for some constant C <∞ that

(6.2) σθθ(re
iθ) ≤ C.

Then (ULP) and (BPJ) hold.

Proof. Let r0 ≤ r < 1. On every circle |z| = r there is at least one point
where σθ vanishes, and hence σθ ≤ 2πC . But then also σθ ≥ −2πC , and thus

(6.3) |σθ(reiθ)| ≤ 2πC.
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From the curvature condition −e−2σ∆σ ≤ 0 we then have that

σrr +
1

r
σr +

1

r2
σθθ ≥ 0, or rσrr + σr ≥ −C

r
≥ −C

r0
.

We write this as

(6.4) (rσr)r ≥ −C

r0
,

from which

(6.5) rσr ≥ −c > −∞ on r0 ≤ |z| < 1.

Next, as g is complete,
∫ 1

0
eσ(x) dx = ∞ , and hence there exists a sequence

{xn} , xn → 1, with σ(xn) → ∞ . We may assume that xn is increasing and that
σ(xn+1) − σ(xn) ≥ n . It follows from (6.3) that on any radius σ(xne

iθ) → ∞ ,
and that σ(xn+1e

iθ) − σ(xne
iθ) ≥ n − 4πC if xn ≥ r0 . For θ fixed, the mean

value theorem then yields a sequence {yn(θ)eiθ} , xn ≤ yn(θ) ≤ xn+1 , such that
σr

(
yn(θ)e

iθ
)
→ ∞ . Now from (6.4) we deduce that

(6.6) σr(z) → ∞ as |z| → 1.

The preceding theorem now applies.

The conditions in Theorems 7 and 8 are certainly not optimal, but they are
well suited to many applications and examples. Separately or together they seem
to express the fact that the metrics we need to work with are ‘asymptotically
radial’, but we do not put forward a definition.

7. An example

We consider the family of metrics

g =
|dz|2

(1 − |z|2)2t , 0 < t < 1,

of negative curvature, for which D has finite diameter

δ = 2

∫ 1

0

dx

(1 − x2)t
=

√
π

Γ(1 − t)

Γ
(

3
2 − t

) .

The corresponding univalence criterion reads

(7.1)

∣∣∣∣Sf(z) − 2t(1 − t)z̄2

(1 − |z|2)2
∣∣∣∣ ≤

2t

(1 − |z|2)2 +
2π2

δ2
1

(1 − |z|2)2t .
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See [2] and [10].
The function σ(z) = −t log(1 − |z|2) is radial, and

(7.2) σr =
2tr

1 − r2
→ ∞, r → 1.

It follows from Theorem 7 that g satisfies both the properties (ULP*) and (BPJ).
Let

(7.3) F (z) =
1

c
tan

{
c

∫ z

0

dζ

(1 − ζ2)t

}
, c =

π

δ
.

It was shown in [6] that this function, which satisfies (7.1) with equality along
(−1, 1), satisfies the inequality in the full disk if and only if 1

2 ≤ t < 1. Thus for
this range of t , F is an extremal function for (7.1) and (−1, 1) is an extremal
geodesic. By rotating F we get extremal functions and extremal geodesics for
any diameter. Furthermore, one can check that the only geodesics having length
δ are precisely the euclidean diameters. It then follows from Lemma 2 that F
and its rotations account for all the extremal functions for the criterion (7.1) for
0 < t < 1. In particular, for 0 < t < 1

2
there are no extremal functions and any

f satisfying (7.1) for a t in this range will map the disk onto a Jordan domain.
Now let f satisfy (7.1) and suppose that f is not an extremal function.

We normalize so that uf (0) = 1 and graduf (0) = 0. (Since eσ(0) = 1 and 0
is a critical point for σ , this normalization for f is equivalent to |f ′(0)| = 1,
f ′′(0) = 0.) Let γ = γ(t) be any radial segment, with γ(0) = 0. Then for
U(t) = uf

(
γ(t)

)
we have

U ′′ ≥ −π
2

δ2
U,

and since f is not extremal it follows that inf0≤t<δ/2 U(t) > 0. It is not difficult
to show that this infimum is uniformly bounded below, independent of γ . Hence
infz∈D uf (z) = a > 0, and therefore

|f ′(z)| ≤ 1

a2
eσ(z) =

1

a2

1

(1 − |z|2)t .

This inequality implies that f(D) is a bounded (Jordan) domain, and that f
admits a (1 − t)-Hölder continuous extension to D; see e.g. [7].

Similar remarks apply to the family of complete metrics

g =
|dz|2

(1 − |z|2)2t ,

where this time 1 < t ≤ 2. For the diameter (−1, 1) an extremal is again given
by

F (z) =

∫ z

0

dζ

(1 − ζ2)t
,
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but now F satisfies (1.5), which translates to

(7.4)

∣∣∣∣Sf − 2t(1 − t)z̄2

(1 − |z|2)2
∣∣∣∣ ≤

2t

(1 − |z|2)2 ,

in D for the full range 1 < t ≤ 2; see [6] and [2]. In this case we do not know if
there are any other extremal functions.

Suppose f is a non-extremal satisfying (7.4) and normalized by f ′′(0) = 0.
Then the convexity of uf gives

|f ′(z)| ≤ eσ(z)

(
a+ bdg(0, z)

)2 ,

for some constants a , b . One checks that

dg(0, z) ∼
1

(1 − |z|)t−1
, |z| → 1,

and using this we get,

|f ′(z)| = O

(
1

(1 − |z|)2−t
)
.

This implies that f(D) is bounded and has a (t− 1)-Hölder continuous extension
to D. A homeomorphic extension for f is induced by the reflection

Λf
(
f(z)

)
= f(z) +

(1 − |z|2)f ′(z)

tz̄ − (1 − |z|2)(f ′′/2f ′)(z)
.
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