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Abstract. A subset of the real line is called quasisymmetrically thick if all its images under
quasisymmetric self-mappings of the real line have positive Lebesgue measure. We establish two
sufficient conditions for a set to be quasisymmetrically thick, give an example distinguishing the
conditions, and show that one of these conditions, which applies to sets with a Cantor-type struc-
ture, is sharp. We give the analogues of these conditions for sets all of whose K -quasisymmetric
images have positive measure, for fixed K . These results are related to Wu’s work on sets all
of whose quasisymmetric images have measure zero [Wu]. We also prove a result about when a
Cantor set of positive measure cannot be mapped quasisymmetrically to a set of zero measure; for
instance, a middle-interval Cantor set of positive measure, constructed in the usual way, cannot
be mapped quasisymmetrically to the ternary Cantor set.

1. Introduction

An increasing self-homeomorphism f of the real line R is called quasisym-

metric if there is some K ≥ 1 such that

(1.1)
1

K
≤ f(x + t) − f(x)

f(x) − f(x − t)
≤ K,

for all x ∈ R , t > 0. We also say f is K -quasisymmetric, when we wish to
emphasize a particular value of K . The central question of this paper is the
following: When does a quasisymmetric function map a set of positive Lebesgue
measure in the real line to a set which also has positive measure?

A strong formulation of this question is to ask which sets are mapped to sets
of positive measure by all quasisymmetric maps. In other words, which sets are
quasisymmetrically thick, according to the following definition:

Definition 1.1. A subset E of the real line is quasisymmetrically thick if
for every quasisymmetric self-homeomorphism f of the real line, the set f(E) has
positive Lebesgue measure.

For example, any set which contains an interval is quasisymmetrically thick.
Quasisymmetrically thick sets have positive Lebesgue measure.
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We begin with two types of sufficient conditions for a set to be quasisymmet-
rically thick. For convenience we consider subsets of the unit interval [0, 1] and
quasisymmetric maps f : [0, 1] → [0, 1] . Our first result applies to sets formed by
successively removing intervals, which may overlap, from [0, 1] . If these intervals
decrease in size sufficiently fast, then the set which remains is quasisymmetrically
thick. (Throughout the paper, | · | denotes Lebesgue measure on R .)

Theorem 1.2. Let E = [0, 1] \ ⋃
m Im , where the Im are open subintervals

of [0, 1] such that
∑

m |Im|p < ∞ for all p > 0 , and E has positive measure.

Then E is quasisymmetrically thick.

Our second sufficient condition is for sets with a Cantor-type property which
we call being {αn} -thick.

Definition 1.3. Given a sequence {αn} with 0 < αn < 1, a set E ⊂ R is
called {αn} -thick if there is a sequence of sets En = {En,j} , where for each n the
En,j are intervals with mutually disjoint interiors, such that

sup
j

|En,j| → 0 as n → ∞,(1.2)

and each En,j \ E contains an interval Jn,j so that the following conditions hold:

|Jn,j | ≤ αn |En,j|,(1.3)
⋃
En

(
En,j \ Jn,j

)
⊂

⋃
En+1

En+1,k,(1.4)

⋃
En+1

(
En+1,k \ Jn+1,k

)
⊂

⋃
En

(
En,j \ Jn,j

)
,(1.5)

⋂
n

⋃
j

(
En,j \ Jn,j

)
⊂ E.(1.6)

An {αn} -thick set E contains a Cantor-like set
⋂

n

⋃
j (En,j \Jn,j) , with the

Jn,j lying in the complement of E , which has ‘small gaps’: condition (1.3) says
that at level n , the lengths of the removed intervals Jn,j are at most αn times
the lengths of the intervals En,j . An {αn} -thick set may have positive or zero
measure.

The ternary Cantor set is { 1
3} -thick. More generally, any {αn} -regular Can-

tor set (Definition 1.9 below) is {αn} -thick. One can vary the standard Can-
tor construction by first dividing the intervals remaining after the nth stage into
subintervals I , and then removing an open interval from each of these. If the open
intervals removed from subintervals I all have length at most αn|I| , then this also
yields an {αn} -thick set.

We give a sufficient condition, on the sequence {αn} , for an {αn} -thick set
to be quasisymmetrically thick.

Theorem 1.4. Let E be an {αn} -thick set with
∑∞

1 αp
n < ∞ for all p > 0 .

Then E is quasisymmetrically thick.
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We also show that this condition is sharp:

Theorem 1.5. If {αn} is a decreasing sequence with αn → 0 , 0 < αn < 1 ,

and
∑∞

1 αp
n = ∞ for some p > 4α1 , then there exists a perfect set E which is

{αn} -thick and satisfies |f(E)| = 0 for some quasisymmetric map f .

We remark that this {αn} -thick set E will itself have positive measure, if
also

∑
αn < ∞ .

A little more generally, given K ≥ 1 one can ask which sets are mapped to
sets of positive measure by all K -quasisymmetric mappings. In Corollaries 4.1
and 4.2, we give sufficient conditions for this to happen. In these analogues of
Theorems 1.2 and 1.4, the summation conditions are assumed to hold only for
sufficiently large values of the exponent p . We give relations between the qua-
sisymmetry constant K and the critical exponent of convergence.

Our next result is of a different type. We first recall the Cantor set construc-
tion.

Definition 1.6. Given a sequence {αn} with 0 < αn < 1, we construct
an {αn} -regular middle-interval Cantor set E in [0, 1] . Let E1,1 = [0, 1] . First
remove the open middle interval J1,1 of length α1|E1,1| from E1,1 , leaving two
closed intervals E2,1 and E2,2 of equal length. At stage two, remove the two
open middle intervals J2,1 and J2,2 , both of length α2|E2,1| , from the intervals
E2,1 and E2,2 respectively. At the nth stage, remove the 2n−1 open middle
intervals Jn,j , each of length αn|En,1| , from the intervals En,j . The Cantor set

is E =
⋂∞

n=1

⋃2n−1

j=1 En,j . The Lebesgue measure of E is |E| =
∏∞

n=1(1 − αn) ,

which is positive if and only if
∑∞

n=1 αn < ∞ .

By a regular Cantor set we mean one in which the 2n−1 open intervals re-
moved at the nth stage all have the same length, but need not be middle intervals.

Suppose E is an {αn} -regular middle-interval Cantor set of positive measure.
We give a sufficient condition on a quasisymmetric map f which ensures that the
image f(E) also has positive measure.

Theorem 1.7. Let E be a regular middle-interval Cantor set of positive

measure in [0, 1] . Then E cannot be mapped to a set of measure zero by any

quasisymmetric map f : [0, 1] → [0, 1] which satisfies the condition |f(Jn,j)| A∼
|f(Jn,l)| for all n , j , and l with 1 ≤ j , l ≤ 2n−1 , for a constant A independent

of n , j , and l .

The notation x
A∼ y means that (1/A) y ≤ x ≤ A y ; we say that x and y are

comparable with constant A . The case A = 1 gives the following result:

Corollary 1.8. A regular middle-interval Cantor set of positive Lebesgue

measure cannot be mapped quasisymmetrically to a regular Cantor set of measure

zero.
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For example, the {(n + 1)−2} -regular middle-interval Cantor set cannot be
mapped quasisymmetrically to the ternary Cantor set.

Of course, the homeomorphic image f(E) of a Cantor set also has a Cantor-
like structure, but f may strongly distort the geometry of E . Our condition on f
says that f does not distort the geometry too much, in the sense that the gaps in
f(E) corresponding to intervals removed from E at a given stage all have about
the same length, and that this holds at each stage of the construction of E . This
need not be true for a general quasisymmetric map f .

Much of this paper was inspired by J.-M. Wu’s work [Wu] on sets which
are null with respect to all doubling measures on the real line. We call these sets
quasisymmetrically null, in view of the relationship between doubling measures and
quasisymmetric maps, recalled below. A set E is quasisymmetrically null if and
only if f(E) has measure zero for all quasisymmetric maps f . Quasisymmetrically
null sets are at the opposite extreme from quasisymmetrically thick sets E , for
which all quasisymmetric images f(E) have positive measure.

Our {αn} -thick sets are related to Wu’s {αn} -porous sets, which she defines
as follows: Given a sequence {αn} with 0 < αn < 1, a set E ⊂ R is called
{αn} -porous if there is a sequence of covers En = {En,j} of E , by intervals
En,j with mutually disjoint interiors, such that supj |En,j | → 0 as n → ∞ ,
and each En,j \ E contains an interval Jn,j such that |Jn,j | ≥ αn |En,j| and⋃

En

(
En,j \ Jn,j

)
⊃

⋃
En+1

En+1,k . In contrast with {αn} -thick sets, an {αn} -

porous set is covered by a Cantor-like set
⋂

n

⋃
j (En,j\Jn,j) , with the Jn,j lying in

the complement of E , which has large gaps: at level n , the lengths of the removed
intervals Jn,j are at least αn times the lengths of the intervals En,j . Cantor-type
sets provide examples of {αn} -porous sets, and the porous sets studied by Martio
([M]; see also [HKM]) in relation to A -harmonic measure are {c} -porous for some
c > 0.

Wu gives a sufficient condition for an {αn} -porous set to be quasisymmetri-
cally null, and shows that this condition is sharp:

Theorem 1.9 [Wu, Theorem 1]. Suppose that E is an {αn} -porous set with∑∞

1 αp
n = ∞ for all p ≥ 1 . Then E is quasisymmetrically null.

Theorem 1.10 [Wu, Theorem 2]. If 0 < αn < 1
4

is a decreasing sequence

with
∑∞

1 αp
n < ∞ for some p ≥ 1 , then there exists a perfect set E which is

{αn} -porous and satisfies |f(E)| > 0 for some quasisymmetric map f .

Our Theorems 1.4 and 1.5 are analogues of these results for {αn} -thick sets
and quasisymmetrically thick sets. To summarize, if E is {αn} -thick with small
enough gaps, then E is quasisymmetrically thick, while if E is {αn} -porous with
large enough gaps, then E is quasisymmetrically null; and the examples in Theo-
rems 1.5 and 1.10 show that these results are sharp.

We also give a K -dependent version of [Wu, Theorem 1] (see Corollary 4.3).
Theorem 1.7 has some overlap with [Wu, Theorem 1]. Her result implies that

an {αn} -regular Cantor set of measure zero, for which the sum
∑

n αp
n diverges
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for every p ≥ 1, cannot be mapped quasisymmetrically to any set of positive
measure. Theorem 1.7 implies that no {αn} -regular Cantor set of measure zero
can be mapped quasisymmetrically to any regular Cantor set of positive measure.

A positive measure µ on R is a doubling measure with constant λ , written
µ ∈ D(λ) , if for every pair of neighboring intervals I and J of R of the same
length, the condition (1/λ) µ(J) ≤ µ(I) ≤ λ µ(J) holds. If µ ∈ D(λ) , then the
function f defined by f(x) − f(0) =

∫ x

0
dµ is λ-quasisymmetric. Conversely, if

f is K -quasisymmetric, then the measure µ defined by µ([a, b]) = f(b) − f(a)
for intervals [a, b] is doubling with constant K . Clearly µ(E) = 0 if and only if
|f(E)| = 0. If a measure µ ∈ D(λ) is given by µ(E) =

∫
E

w(x) dx , where w(x)
is a locally integrable, non-negative, real-valued function on R , we call w(x) a
doubling weight function for µ .

In Section 2 of the paper we prove Theorems 1.2 and 1.4. We also construct
a set which satisfies the hypotheses of Theorem 1.4 but not the criterion of Theo-
rem 1.2. Section 3 is devoted to the proof of Theorem 1.5. Section 4 contains the
K -dependent versions of Theorems 1.2, 1.4, and 1.9; an example linking these to
Theorem 1.7; and the proof of Theorem 1.7.

It is a pleasure for the second author to thank her advisor, Peter Jones, for his
patient guidance and encouragement, one small part of which was his suggestion
of Theorem 1.2 above. Theorems 1.2 and 1.7 appeared in the second author’s
thesis [W].

2. Sufficient conditions for quasisymmetrically thick sets

We begin with a ‘gap sum’ sufficiency condition which gives a precise version
of the following idea: a set formed by successively removing subintervals of the
unit interval will be quasisymmetrically thick if the lengths of these removed ‘gaps’
decrease sufficiently fast. Note that the subintervals need not be removed in any
prescribed pattern, and they need not be disjoint.

Theorem 1.2. Let E = [0, 1]\
⋃∞

m=1 Im , where the Im are open subintervals

of [0, 1] such that

(2.1)

∞∑

m=1

|Im|p < ∞ for all p > 0,

and E has positive measure. Then E is quasisymmetrically thick.

Remarks. For example, (2.1) holds if |Im| = 2−m . If E contains an interval,
the result is immediate. If, for instance, the midpoints of the Im ’s are dense in
[0, 1] , then E contains no interval.

Proof. Let ϕ: [0, 1] → [0, 1] be K -quasisymmetric. We show that |ϕ(E)| > 0
by establishing a Hölder condition |ϕ(E)| ≥ c |E|K .



156 Susan G. Staples and Lesley A. Ward

Order the Im so that |I1| ≥ |I2| ≥ · · · . Let cp =
∑

m |Im|p for each p > 0.
Then |Im| ≤ (cp/m)1/p for all m . Otherwise there is some k such that

(2.2)

k∑

m=1

|Im|p ≥ k
cp

k
=

∞∑

m=1

|Im|p;

therefore E is a finite union of intervals and |ϕ(E)| > 0.
Let N be a large integer, and let I be the largest subinterval of F = [0, 1] \⋃N−1

m=1 Im . Since F has at most N components, and F ⊃ E , we have

(2.3) |I| ≥ |F |
N

≥ |E|
N

.

Let ϕ̃ = g ◦ ϕ ◦ f , where f : [0, 1] → I and g: ϕ(I) → [0, 1] are linear bi-
jections. Then ϕ̃ has the same quasisymmetry constant K as ϕ . Therefore ϕ̃
and ϕ̃−1 are Hölder continuous with exponent 1/K . Let Ĩm = f−1(Im∩I) . Then

(2.4) |Ĩm| =
|Im ∩ I|

|I| ≤ |Im|
|I| ≤ N

|E|
(cp

m

)1/p

,

and |Ĩm| = 0 for 1 ≤ m < N . Set p = 1/(2K) ; then

(2.5)

∣∣∣∣ ϕ̃

(
∞⋃

m=0
Ĩm

)∣∣∣∣ ≤ c

∞∑

m=0

|Ĩm|1/K ≤ c

∞∑

m=N

[
N

|E|
(cp

m

)1/p
]1/K

= c (|E|, K) N1/K
∞∑

m=N

1

m2
= c (|E|, K) N (1/K)−1,

which tends to zero as N → ∞ , since K > 1. Choose N = N(K) large enough
that

∣∣ϕ̃
(⋃∞

m=N Ĩm

)∣∣ ≤ 1
2 . Then

∣∣ϕ
(⋃

m Im ∩ I
)∣∣ ≤ 1

2 |ϕ(I)| , and so

(2.6) |ϕ(E)| ≥ |ϕ(E ∩ I)| ≥ |ϕ(I)|
2

≥ c |I|K
2

≥ c

2

( |E|
N

)K

> 0.

Therefore E is quasisymmetrically thick.

Next we show that if the gaps in an {αn} -thick set are small enough, then
the set is quasisymmetrically thick.

Theorem 1.4. Let E be an {αn} -thick set with
∑∞

1 αp
n < ∞ for all p > 0 .

Then E is quasisymmetrically thick.

The proof of Theorem 1.4 relies on Lemma 1 of [Wu], which we rephrase here:
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Lemma 2.1. Let µ be any doubling measure on [0, 1] with doubling constant

λ and let I be any subinterval of [0, 1] . Then

(2.7)
1

(1 + λ)2
|I|log2(1+λ)µ([0, 1]) ≤ µ(I) ≤ 4|I|log2((1+λ)/λ)µ([0, 1]).

Proof of Theorem 1.4. Assume that E ⊂ [0, 1] , and let En =
⋃

j En,j be
the sequence of sets and Jn,j the subintervals of En,j \ E given in the {αn} -
thick definition. Let µ be any doubling measure with constant λ , and set p =
log2((1 + λ)/λ) . Rescaling Lemma 2.1 and using condition (1.3), we have

(2.8) µ(Jn,j) ≤ 4αp
nµ(En,j).

This gives

(2.9) µ(En,j \ Jn,j) ≥ (1 − 4αp
n)µ(En,j).

The right hand side of (2.9) is positive for all sufficiently large n , say n ≥ N0 ,
because

(2.10)

∞∑

1

4αp
n < ∞,

by hypothesis.
Using condition (1.4) and summing over j , we obtain

(2.11)
∑

k

µ(En+1,k) ≥ (1 − 4αp
n)

∑

j

µ(En,j).

From (2.9) it follows recursively that for n ≥ N0 ,

(2.12) µ
(⋃

j

(En,j \ Jn,j)
)
≥

( n∏

m=N0

(1 − 4αp
m)

) ∑

j

µ(EN0,j),

so that

(2.13) µ(E) ≥
( ∏

n≥N0

(1 − 4αp
n)

)∑

j

µ(EN0,j).

The convergence of the sum in (2.10) guarantees that this infinite product is posi-
tive, and we conclude that µ(E) > 0. Since µ was an arbitrary doubling measure,
it follows that E is quasisymmetrically thick.

We give an example of a quasisymmetrically thick set which meets the crite-
rion of Theorem 1.4, but does not satisfy the gap sum condition of Theorem 1.2.
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Example 2.2. The set E ⊂ [0, 1] is the {αn} -regular, middle-interval Cantor
set with {αn} = {2−n} . With this choice of {αn} , |E| > 0.

The hypothesis of Theorem 1.4 holds, since
∑

n αp
n =

∑
n 2−np < ∞ for all

p > 0.
However, the gap sum for this particular Cantor set diverges when the expo-

nent p is small. To compute the gap sum, note that we removed one interval of
length α1 , two intervals of length 2−1(1 − α1)(α2) , and similarly 2n intervals of
length 2−n

[∏n
1 (1 − αi)

]
(αn+1) , for n ≥ 1. Thus,

(2.14)

∞∑

m=1

|Im|p = αp
1 +

∞∑

n=1

2n ·2−np

( n∏

i=1

(1−αi)

)p

αp
n+1 ≥

∞∑

n=1

2n(1−p)|E|pαp
n+1,

since
∏n

i=1(1−αi) decreases to |E| as n tends to infinity. For this specific example
with {αn} = {2−n} ,

(2.15)

∞∑

m=1

|Im|p ≥ |E|p
∞∑

n=1

2n(1−p)2−(n+1)p,

which diverges for p ≤ 1
2 .

3. Sharpness of Theorem 1.4

In this section we show that the condition in Theorem 1.4 for an {αn} -thick
set to be quasisymmetrically thick is sharp.

Theorem 1.5. If {αn} is a decreasing sequence with αn → 0 , 0 < αn < 1 ,

and
∑∞

1 αp
n = ∞ for some p > 4α1, then there exists a perfect set E which is

{αn} -thick and satisfies |f(E)| = 0 for some quasisymmetric map f .

Proof. We construct both the set E and the measure µ . The set E is
a minor modification of the set constructed by Wu to prove [Wu, Theorem 2]
above. For completeness, we include here the full description of E . The method
of construction of E parallels the Cantor construction; the main difference is that
after removing open intervals, we subdivide the closed intervals which remain into
many subintervals En,j , and then remove open intervals from each of these En,j .
The measure µ involves a class of periodic doubling weight functions hn(x) ; µ
will be a weak limit of finite products fn(x) of dilations of these weights. Since we
shall want both the αn portion that is removed in the nth level of construction of
E and the portion which remains to represent an integral number of periods for
the doubling weight hn(x) , we slightly alter the original sequence {αn} .

Below we inductively define a sequence {Nn} which determines the period
Mn of the doubling weight function fn(x) by the formula Mn =

∏n
1 Nj . For now

it suffices to say that {Nn} is a rapidly increasing sequence of odd integers such
that N1 = 1 and Nn+1 ≥ 3(αn/2)−1 = 6α−1

n for n ≥ 1. A simple arithmetic
argument shows that we may replace 1

2αn by a number βn such that

(i) 1
2
αn ≤ βn ≤ αn ; and

(ii) βn = mn/Nn+1 , where mn is an odd integer.
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We now construct E . First remove the open middle interval of length β1 =
m1/N2 from [0, 1] , leaving two intervals each of length (N2 − m1)/2N2 . This
number is an integer multiple of (N2)

−1 , since both N2 and m1 are odd. Therefore
we may subdivide these two intervals into a total of N2−m1 subintervals of equal
length N−1

2 . Let P1 denote this collection of subintervals.
Continue this process inductively. At the nth stage, Pn−1 consists of (N2 −

m1) · · · (Nn−mn−1) intervals I , each of length (N2 · · ·Nn)−1 . From each such I ,
remove the open middle interval of length βn|I| = (mn/Nn+1)|I| . The resulting
closed intervals each have length

(3.1)
1 − βn

2
|I| =

Nn+1 − mn

2Nn+1

1

N2 · · ·Nn
,

which is an integer multiple of (N2 · · ·Nn+1)
−1 . Therefore we may subdivide these

intervals evenly into subintervals of length (N2 · · ·Nn+1)
−1 . Let Pn denote the

collection of these subintervals. Define

(3.2) E =
⋂
n

⋃
I∈Pn

I.

This set E is {αn} -thick; the intervals in Pn−1 serve as the En,j . The sequences
{Nn} and {βn} will be prescribed below.

Next we construct a doubling weight h which will be the main tool in the
construction of the doubling measure µ . The map h is a modification of the
function in [Wu, Lemma 2] which in turn is based on the example of Beurling and
Ahlfors [BA, Theorem 3].

Lemma 3.1. Given 0 < α < 1
4p and 0 < p < 1

7 , there exists a function h(x)
such that h(x) is continuous on R with period 1 ;

∫ 1

0

h(x) dx = 1;(3.3)

h(x) = 1
4
αp−1 on

[
1
2
(1 − α), 1

2
(1 + α)

]
;(3.4)

and h(x) is a doubling weight with constant λ = λ(p) which depends only on p .

Proof. We define a suitable function on [0, 1] . Let h be a symmetric function,
h(x) = h(1 − x) , defined piecewise on five subintervals of

[
0, 1

2

]
: constant on the

first interval as dictated by (3.4), linear and decreasing by a factor of p3/2 on the
next interval, a shifted power function with power p − 1 on the middle interval,
linear and increasing on the fourth interval and constant on the last interval. The
constant d on the fifth interval is chosen last to make h have mean value one. It
turns out that d should be

d = (4 − 2αp − p3/2αp − 2pp+1/2 + 2p1/2αp − pp+3/2)/(4 − 4α − 12p).
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Note that the quantity d is uniformly bounded away from 0 and ∞ for 0 < p < 1
7

and 0 < α < 1
4
p ; in particular 1

4
< d < 5

2
. The salient features of h are that

the first two intervals where h is comparable to αp−1 are of size α and that h is
comparable to αp−1 for intervals of size comparable to α on the left hand side of
the middle interval, but bounded independently of α at the right hand endpoint
of the middle interval. Our function h is

(1) h(x) = 1
4αp−1 on I1 =

[
1
2 (1 − α), 1

2 (1 + α)
]
;

(2) h(x) is linear on I2 =
[

1
2
(1 + α), 1

2
(1 + 3α)

]
, with h

(
1
2
(1 + α)

)
= 1

4
αp−1 and

h
(

1
2
(1 + 3α)

)
= 1

4
p3/2αp−1 ;

(3) h(x) = 1
4

(
p3/2

(
(x − 1

2
(1 + α)

)p−1)
on I3 =

[
1
2
(1 + 3α), 1

2
(1 + α) + p

]
;

(4) h(x) is linear on I4 =
[
1
2 (1 + α) + p, 1

2 (1 + α) + 2p
]
, with h

(
1
2(1 + α) + p

)
=

1
4pp+1/2 and h

(
1
2 (1 + α) + 2p

)
= d ;

(5) h(x) = d on I5 =
[
1
2 (1 + α) + 2p, 1

]
.

We verify the desired properties of h(x) . The continuity is evident from the
definition of h(x) . Property (3.3) holds by our choice of d .

To confirm that h(x) is indeed a doubling weight whose constant λ depends
only on p , one compares

∫
I
h(x) dx to

∫
J

h(x) dx for adjacent intervals I and
J of equal length. If I = [a, b] the notation I + c = [a + c, b + c] denotes the
translate of I by c . The lengths of the intervals used in the definition of h(x)
satisfy |I1| = |I2| = α , |I3| = p − α , |I4| = p , and |I5| = 1

2(1 − α) − 2p . Note
that |I3| = p − α > 3α , 3

4 |I4| ≤ |I3| < |I4| , and |I5| > |I4| , since 0 < α < 1
4p

and 0 < p < 1
7
. For the intervals of critical concern, we check that the ratios

of the corresponding integrals can be uniformly bounded away from 0 and ∞
independent of α . For intervals of length |I| > 1, this follows from the periodicity
of h . When α ≤ |I| ≤ 1, the bounds follow from the following computations over
key intervals:

1 + p3/2

2
=

∫
I2

h(x) dx
∫

I1
h(x) dx

≤ 1 ,(3.5)

2p1/2(2p − 1)

1 + p3/2
=

∫
I2+α

h(x) dx
∫

I2
h(x) dx

≤ 1 ,(3.6)

p1/2(4p − 1)

2 + p3/2
=

∫
(I2+α)∪(I2+2α)∪(I2+3α)

h(x) dx
∫

I1∪I2∪(I1−α)
h(x) dx

≤ 1,(3.7)

p(pp+1/2 + 4d)

2
(
( 1
4p)p + pp+1/2

) ≤
∫

I4
h(x) dx

∫
I2∪I3

h(x) dx
≤ p(pp+1/2 + 4d)

2pp+1/2
, and(3.8)

2d
1
4
pp+1/2 + d

=

∫
I4+p

h(x) dx
∫

I4
h(x) dx

.(3.9)

For smaller intervals of size |I| < α , the computations of interest are for
adjacent intervals on the border of I2 and I3 , and for adjacent intervals at the
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left hand end of I3 . If we set |I| = cα , 0 < c < 1, the calculations can be checked
more easily and similar bounds independent of α can be established. For small
intervals on the border of I3 and I4 the uniform boundedness of d controls the
ratio of the integrals. This completes the proof of Lemma 3.1.

We continue the proof of Theorem 1.5; it remains to construct the measure µ .
We are given a decreasing sequence αn → 0 with 0 < αn < p/4, satisfying∑

αp
n = ∞ for some p > 0. We may assume that p < 1

7 , for if the sum diverges
for an exponent p0 , it diverges for p < p0 as well. If by choosing p < 1

7 we no
longer have αn < p/4 for some range 1 ≤ n ≤ N0 , but know that αn < p/4
for n > N0 , note that the proof below can be modified by taking hn(x) = x
for 1 ≤ n ≤ N0 and by appropriately shifting the starting indices in both the
induction and the infinite product used to generate the upper bound for µ(E) .

For each pair ( 1
2
αn, p) , fix a function hn(x) which satisfies the criteria of

Lemma 3.1 with α = 1
2αn . We define

Mn =

n∏

j=1

Nj and fn(x) =

n∏

j=1

hj(Mjx),(3.10)

An =
∞⋃

i=−∞

[
i, i +

(
1
4 (2 − αn)

)]
∪

[
i +

(
1
4(2 + αn)

)
, i + 1

]
,(3.11)

Bn =
∞⋃

i=−∞

[
i, i +

(
1
2 (1 − βn)

)]
∪

[
i +

(
1
2 (1 + βn)

)
, i + 1

]
,(3.12)

Fn+1 = {x ∈ Fn : Mn+1x ∈ An+1}, F0 = [0, 1],(3.13)

Gn+1 = {x ∈ Gn : Mn+1x ∈ Bn+1} =
⋃

I∈Pn+1

I, G0 = [0, 1].(3.14)

Note that E =
⋂

n Gn and Gn ⊂ Fn . We now explain how to prescribe {Nn}
so that the measure µ defined as a weak limit point of {fn} satisfies µ(E) =
0. Choose Nn+1 inductively according to the following scheme. (The induction
process here and in [Wu] must be done more carefully than as originally stated
in [Wu]. For example, (1.1) in [Wu] (the condition corresponding to (3.16) here) is
dependent on knowing the “modified αn ” (βn in our notation) which is defined in
terms of Nn+1 . Condition (1.1) is also dependent on knowing what we call Gn in
our notation; this already requires that there are an integral number of intervals
in Pn of size (Mn+1)

−1 . However, the induction proceeds by finding Nn+1 . The
problem can be avoided by defining and working with the four sets An , Bn , Fn ,
and Gn .)

Set N1 = 1. For the inductive step, assume that odd integers N2 , N3, . . . , Nn

have been chosen such that

(3.15) Nj > 6(αj−1)
−1 for 2 ≤ j ≤ n,

(3.16)

∫

Fj

fj(x) dx ≤
j∏

i=1

(
1 − αp

i

8(2p)

)
for 1 ≤ j ≤ n,
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and whenever |x − x′| ≤ M−1
j for 2 ≤ j ≤ n , we have both

j − 1

j
<

hj−1(Mj−1x)

hj−1(Mj−1x′)
<

j + 1

j
and(3.17)

j − 1

j
<

fj−1(x)

fj−1(x′)
<

j + 1

j
.(3.18)

The goal is to select an odd integer Nn+1 > Nn so that the conditions (3.15)–
(3.18) also hold for the index j = n + 1. Clearly condition (3.15) can be satisfied
by taking an odd integer Nn+1 large enough. By the uniform continuity of hn(x)
and fn(x) , conditions (3.17) and (3.18) will hold for the index j = n + 1 for
sufficiently large Nn+1 whenever |x − x′| < (Mn+1)

−1 .
It remains to show that (3.16) for j = n + 1 will also be satisfied if Nn+1 is

sufficiently large. We approximate by simple functions. Since Fn is measurable,
χFn

fn can be written as the pointwise a.e. and L1 -limit of a decreasing sequence
of simple functions of the form gk =

∑nk

j=1 ajχIj
, where the aj are constants

and the intervals {Ij} = {[cj , dj]} are finitely many disjoint open intervals with
rational endpoints.

Since

(3.19)

∫

Fn+1

fn+1(x) dx =

∫ 1

0

χFn
(x)fn(x)χAn+1

(Mn+1x)hn+1(Mn+1x) dx,

we consider the limit as M → ∞ of

(3.20)

∫ 1

0

χFn
(x)fn(x)χAn+1

(Mx)hn+1(Mx) dx.

Replacing χFn
fn with a fixed step function gk , this becomes

(3.21)

nk∑

j=1

aj

∫

Ij

χAn+1
(Mx)hn+1(Mx) dx.

To simplify this we make the following observations and computations. For a large
enough M each of the rational numbers cj , dj for 1 ≤ j ≤ nk can be expressed
as an integer multiple of 1/M . For such an M each Ij can be decomposed evenly
into an integral number of periods of the function χAn+1

(Mx)hn+1(Mx) . Then,

(3.22)

∫

Ij

χAn+1
(Mx)hn+1(Mx) dx = M |Ij|

∫ 1/M

0

χAn+1
(Mx)hn+1(Mx) dx

= |Ij |
∫ 1

0

χAn+1
(x)hn+1(x) dx

= |Ij |
∫

[0,1]∩An+1

hn+1(x) dx = |Ij |
(
1 − αp

n+1

4(2p)

)
,
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by (3.4). For the step function gk and large enough M we thus have

(3.23)

∫ 1

0

gk(x)χAn+1
(Mx)hn+1(Mx) dx =

(
1 − αp

n+1

4(2p)

)∑
aj|Ij |.

It follows that

(3.24) lim
M→∞

∫ 1

0

χFn
(x)fn(x)χAn+1

(Mx)hn+1(Mx) dx =
(
1 − αp

n+1

4(2p)

)∫

Fn

fn(x) dx.

Thus (3.16) can be satisfied by choosing Nn+1 sufficiently large.
With the induction now complete, let µ be a weak limit point of {fn} . We

verify that µ is a doubling measure, and then show that µ(E) = 0. Let I and I ′

be any two neighboring intervals satisfying |I| = |I ′| . We seek upper and lower
bounds for the ratio

(∫
I′

fm(x) dx
)
/
(∫

I
fm(x) dx

)
as m → ∞ . Since the period of

fm(x) is 1 for all m , we may assume that |I| ≤ 1. There exists an n such that
(Mn+1)

−1 ≤ |I| ≤ M−1
n . Write fm(x) as

(3.25) fm(x) = fn−1(x)hn(Mnx)
fm(x)

fn(x)
,

where m ≥ n + 1. For m ≥ n + 1, the function fm(x)/fn(x) has period P =
(Mn+1)

−1 . Thus the interval I contains at least one full period of fm(x)/fn(x) .
Write I = [x1, x1 + aP + ε] and I ′ = [x1 + aP + ε, x1 + 2aP + 2ε] , where a ≥ 1
is an integer and 0 ≤ ε < P . Then,

(3.26)

∫
I′

fm(x) dx∫
I
fm(x) dx

≤
∫ x1+4aP

x1+aP
fn−1(x)hn(Mnx)

(
fm(x)/fn(x)

)
dx

∫ x1+aP

x1
fn−1(x)hn(Mnx)

(
fm(x)/fn(x)

)
dx

.

On the entire interval [x1, x1 + 4aP ] , condition (3.18) guarantees that

(3.27) fn−1(x1)
(n − 1

n

)4

≤ fn−1(x) ≤ fn−1(x1)
(n + 1

n

)4

,

since 4aP ≤ 4M−1
n .

Consider the denominator of (3.26):

(3.28)

∫ x1+aP

x1

fm(x) dx ≥ fn−1(x1)
(n − 1

n

)4
(∫ x1+aP

x1

hn(Mnx)
fm(x)

fn(x)
dx

)
.

On intervals of length P = (Mn+1)
−1 , the function hn(Mnx) is essentially con-

stant by condition (3.17). Therefore, dividing [x1, x1 + aP ] into subintervals of

length P , and letting A =
∫ x1+P

x1
(fm(x)/fn(x)) dx , we have

(3.29)

∫ x1+P

x1

hn(Mnx)
fm(x)

fn(x)
dx ≥ hn(Mnx1)

(n − 1

n

)
A,
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and so on up to

(3.30)

∫ x1+aP

x1+(a−1)P

hn(Mnx)
fm(x)

fn(x)
dx ≥ hn

(
Mn

(
x1 + (a − 1)P

))(n − 1

n

)
A.

Using (3.17) again, it follows that

(3.31)

∫ x1+aP

x1

fm(x) dx ≥ c1fn−1(x1)AP−1

∫ x1+aP

x1

hn(Mnx) dx, c1 = c1(n).

Similarly, we can bound the numerator of (3.26) by

(3.32)

∫ x1+4aP

x1+aP

fm(x) dx ≤ c2fn−1(x1)AP−1

∫ x1+4aP

x1+aP

hn(Mnx) dx, c2 = c2(n).

Since hn(Mnx) is a doubling weight with constant λ = λ(p) , we have the
bound

(3.33)

∫
I′

fm(x) dx∫
I
fm(x) dx

≤ c2

c1
(λ + λ2 + λ3).

In the same way, we can find an upper bound for (
∫

I
fm(x) dx)/(

∫
I′

fm(x) dx) .
We conclude that µ is a doubling measure.

To see that µ(E) = 0, note first that by the hypothesis
∑

i

(
αp

i /8(2p)
)

= ∞ .

Combining this with the bound µ(E) ≤
∏∞

i=1

(
1−

(
αp

i /8(2p)
))

, which follows from
(3.16), gives the desired result.

4. K -dependent results, and regular middle-interval Cantor sets

We make explicit the dependence of our sufficient conditions on the constant
K of quasisymmetry. First we relate the exponent p in the gap sum of Theorem 1.2
to K ; this corollary follows immediately from the proof of the theorem.

Corollary 4.1. Let E = [0, 1] \ ⋃
m Im , where the Im are open subintervals

of [0, 1] such that
∑

m |Im|1/(1+K) < ∞ , and E has positive measure. Then the

measure |f(E)| > 0 for all K ′ -quasisymmetric mappings f such that K ′ < K .

The exponent p in the hypotheses of Theorems 1.4 and 1.9 can be linked to
K as well. We can conclude that certain {αn} -porous sets of measure zero cannot
be mapped K -quasisymmetrically onto sets of positive measure and certain {αn} -
thick sets of positive measure cannot be mapped K -quasisymmetrically onto sets
of zero measure. The next two results are direct consequences of Lemma 2.1 and
the ideas of Theorem 1.4.

Corollary 4.2. Let E be an {αn} -thick set for which
∑

α
log2(1+K/K)
n < ∞ .

Then the measure |f(E)| > 0 for all K -quasisymmetric mappings f .
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Corollary 4.3. Let E be an {αn} -porous set for which
∑

α
log2(1+K)
n = ∞ .

Then the measure |f(E)| = 0 for all K -quasisymmetric mappings f .

If E is an {αn} -Cantor set, that is |Jn,j | = αn|En,j| for all n and j , then in
the case K = 1, such as with the identity map, Corollaries 4.2 and 4.3 together
give the standard result that |E| = 0 if and only if

∑
αn = ∞ .

We illustrate our results in relation to a natural example.

Example 4.4. Consider the {(n + 1)−2} -regular middle-interval Cantor
set E . Is this set quasisymmetrically thick? E is {(n + 1)−2} -thick, but the
summability condition of Theorem 1.4 does not hold. Nor does the gap sum con-
dition of Theorem 1.2. For this set E , Corollary 4.2 asserts that |f(E)| > 0 for
all K -quasisymmetric functions f such that 1 ≤ K < 1 +

√
2, but says nothing

for larger values of K .
Theorem 1.5 asserts that there is some perfect {(n+ 1)−2} -thick set which is

not quasisymmetrically thick. However, in contrast to E , the example constructed
in our proof of Theorem 1.5 is not a regular middle-interval Cantor set, so this
does not imply anything about E .

Corollary 1.8, which is a special case of Theorem 1.7 below, implies that E
cannot be mapped quasisymmetrically to any regular Cantor set of zero measure.
However, we still do not know whether E is quasisymmetrically thick.

Given an {αn} -regular middle-interval Cantor set E , the next theorem gives
a condition on a quasisymmetric map f which implies that the image f(E) also
has positive measure. In contrast to the results discussed above, this condition
does not depend on the quasisymmetry constant K of f .

Theorem 1.7. Let E be a regular middle-interval Cantor set of positive

measure in [0, 1] . Then E cannot be mapped to a set of measure zero by any

quasisymmetric map f : [0, 1] → [0, 1] which satisfies the condition |f(Jn,j)| A∼
|f(Jn,l)| for all n , j , and l with 1 ≤ j , l ≤ 2n−1 , for a constant A independent

of n , j , and l .

Proof. Let E =
⋂∞

n=1

⋃2n−1

j=1 En,j be an {αn} -regular middle-interval Cantor

set as described in Section 1, with {αn} such that the measure |E| =
∏∞

n=1(1−αn)

of E is positive. We refer to the closed intervals En,j which appear at the nth

stage of the construction of E as closed construction intervals of E , and to the
open middle intervals Jn,j which are removed from the En,j as open construction

intervals of E . Define

(4.1) Dn = |En,j|, Ln = |Jn,j | = αnDn, for 1 ≤ j ≤ 2n−1.

In particular,

(4.2) Dn = 1
2 (1 − αn−1)Dn−1 ≥ 1

2 |E|Dn−1,
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and Dn is comparable to 2−n :

(4.3)
|E|

2n−1
≤ Dn ≤ 1

2n−1
.

For instance, if αn = 1/(n + 1)2 , then

Dn =
1

2n

n + 1

n
, Ln =

1

2n

1

n(n + 1)
, and |E| =

1

2
.

Suppose there is a K -quasisymmetric increasing homeomorphism f : [0, 1] →
[0, 1] such that |f(E)| = 0. Suppose further that the images under f of the gaps
at any given level of E are all of equal length:

(4.4) |f(Jn,j)| = |f(Jn,l)| for all n, 1 ≤ j, l ≤ 2n−1.

This means that f(E) is also a regular Cantor set. (At the end of the proof we
consider the more general case where the gaps at any given level of f(E) are all of
comparable but not necessarily equal length, with a constant A which is uniform
for all levels.)

We show that the quasisymmetry of f at the endpoints of the construction
intervals of E implies that f cannot be a homeomorphism.

Let x be the left endpoint of J1,1 . Take n large enough that Dn < L1 . Since
|f(E)| = 0, we have |f(B)| =

∑
n,j |f(B ∩ Jn,j)| for any measurable set B in

[0, 1] . Let En,j denote the closed construction interval [x−Dn, x] . Counting the
open construction intervals in En,j , and using (4.4), we see that

(4.5)
∣∣f

(
(x − Dn, x)

)∣∣ =
∞∑

m=n

2m−n|f(Jm,km
)|,

where Jm,km
is the first mth level open construction interval to the left of x . Fix

m ≥ n , and let y be the left endpoint of Jm,km
. Let nm be the unique integer

such that

(4.6) Dnm+1 < Lm ≤ Dnm
.

Then

(4.7)
|f(Jm,km

)| =
∣∣f

(
(y, y + Lm)

)∣∣ ≤
∣∣f

(
(y, y + Dnm

)
)∣∣

≤ K
∣∣f

(
(y − Dnm

, y)
)∣∣ = K

∣∣f
(
(x − Dnm

, x)
)∣∣,

since [y − Dnm
, y] and [x − Dnm

, x] are both closed construction intervals at
level nm , and so they contain the same numbers and sizes of open construction
intervals.
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Therefore, by (4.5), (4.7), and the quasisymmetry of f at x ,

(4.8)

∣∣f
(
(x, x + Dn)

)∣∣ ≤ K
∣∣f

(
(x − Dn, x)

)∣∣ = K

∞∑

m=n

2m−n|f(Jm,km
)|

≤ K2
∞∑

m=n

2m−n
∣∣f

(
(x − Dnm

, x)
)∣∣

≤ K3
∞∑

m=n

2m−n
∣∣f

(
(x, x + Dnm

)
)∣∣.

Let h(u) =
(
f(x + u) − f(x)

)
/u for 0 < u < L1 . Then (4.8) becomes

(4.9) Dnh(Dn) ≤ K3
∞∑

m=n

2m−nDnm
h(Dnm

).

Now by (4.2), (4.3), and the definitions of nm and Lm ,

(4.10)

h(Dn) ≤ K3

2n−1Dn

∞∑

m=n

2m−1Dnm
h(Dnm

)

≤ K3

|E|

∞∑

m=n

2m−1 2

|E|Dnm+1h(Dnm
) ≤ 2K3

|E|2
∞∑

m=n

2m−1Lmh(Dnm
)

=
2K3

|E|2
∞∑

m=n

2m−1αmDmh(Dnm
) ≤ 2K3

|E|2
∞∑

m=n

αmh(Dnm
).

A similar calculation shows that

(4.11) h(Dn) ≥ |E|2
2K3

∞∑

m=n

αm h(Dnm+1).

The quasisymmetry of f , and (4.2), imply that h(Dnm+1) ≥ ch(Dnm
) , where c

is a constant depending on |E| and K . So (4.11) implies that

(4.12) h(Dn) ≥ c |E|2
2K3

∞∑

m=n

αmh(Dnm
).

In particular the sum on the right hand side of (4.12) is finite. Then by (4.10)
the h(Dn) are bounded independently of n . Write ‖h‖∞ = supm h(Dnm

) . Now
iterate (4.10):

(4.13)

h(Dn) ≤ 2K3

|E|2
∞∑

m=n

αmh(Dnm
)

≤ 2K3

|E|2
∞∑

m=n

αm

[
2K3

|E|2
∞∑

r=nm

αrh(Dnr
)

]
≤ ‖h‖∞

[
2K3

|E|2
∞∑

m=n

αm

]2

,



168 Susan G. Staples and Lesley A. Ward

since nm ≥ m ≥ n . For each k = 2, 3, . . ., we obtain

(4.14) h(Dn) ≤ ‖h‖∞
[
2K3

|E|2
∞∑

m=n

αm

]k

.

Choose n large enough that (2K3/|E|2)
∑∞

m=n αm < 1. Then the right hand
side of (4.14) goes to zero as k → ∞ , so h(Dn) = 0 for all sufficiently large n .
Hence f is not one-to-one. Therefore f is not a homeomorphism, contradicting
our assumption.

Finally, suppose that the gaps at any given level of f(E) are all of comparable
but not necessarily equal length, with a constant A which is uniform for all levels.
Then (4.4) is replaced by

(4.15) |f(Jn,j)| A∼ |f(Jn,l)|, for all n, 1 ≤ j, l ≤ 2n−1,

where A is independent of n , j , and l . Earlier, we used (4.4) to establish (4.5)
and (4.7); now (4.15) gives their analogues

(4.16)
∣∣f

(
(x − Dn, x)

)∣∣ A∼
∞∑

m=n

2m−n|f(Jm,km
)|

and

(4.17) |f(Jm, km)| ≤ KA
∣∣f

(
(x − Dnm

, x)
)∣∣,

and the result follows as before.
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