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Abstract. We prove that degrees of rational solutions of an algebraic differential equation
F (dw/dz, w, z) = 0 are bounded. For given F an upper bound for degrees can be determined
explicitly. This implies that one can find all rational solutions by solving algebraic equations.

Consider the differential equation

(1) F (w′, w, z) = 0 (w′ = dw/dz)

where F is a polynomial in three variables.

Theorem 1. For every F there exists a constant C = C(F ) such that the

degree of every rational solution w of (1) does not exceed C .

This statement is not true for differential equations of higher order. Indeed,
all functions wn(z) = zn satisfy

(

z
w′

w

)

′

= 0.

We will show that the bound for the degree C(F ) can be determined effec-
tively. So theoretically it is possible to find all rational solutions of (1) by substi-
tuting an expression for w with indeterminate coefficients and solving the resulting
system of algebraic equations. It is a challenging unsolved question whether Theo-
rem 1 can be extended to algebraic solutions. Partial results in this direction were
obtained by H. Poincaré in [8], [9].

Before proving the theorem in full generality we give a very simple proof for
the particular case when the equation is solved with respect to derivative. This
simplified proof does not give any effective bound for C .
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Proof in the special case. (The method is similar to [3], see also [4]).
Let us write the equation in the form

F1(w, z)(w′) + F0(w, z) = 0,

where Fj are polynomials in w and z for j = 0, 1. Assume that equation (1) has
infinitely many rational solutions (otherwise there is nothing to prove). Then we
can find three different rational solutions w1 , w2 and w3 such that

(2) F1(wi(z), z) 6≡ 0, i = 1, 2, 3.

Let us consider the finite set E ⊂ C̄ consisting of the following points:

(i) if at some point z0 we have F1

(

wi(z0), z0

)

= 0 for some i then z0 belongs
to E ;

(ii) the point ∞ and all poles of wi , i = 1, 2, 3 belong to E ;
(iii) if wi(z0) = wj(z0) for some i 6= j then z0 belongs to E .

Condition (2) guarantees that the subset of E defined in (i) is finite. The subsets
of E described in (ii), and (iii) are evidently finite.

Denote by R the set of all rational solutions, different from w1 , w2 , w3 and
let w ∈ R . We claim that

(3) w(z) 6= wi(z) for i = 1, 2, 3 and z ∈ C̄\E.

Indeed, if for example w(z0) = w1(z0) := w0 and z0 /∈ E , then w0 6= ∞ and
F1(w0, z0) 6= 0 in view of (ii) and (i). Thus by the Uniqueness Theorem for
solutions of the Cauchy problem we conclude that w = w1 , which contradicts to
our assumption.

Now we consider the following set of rational functions

S =

{

(w − w1)(w3 − w2)

(w − w2)(w3 − w1)
: w ∈ R

}

.

It follows from (3) and (iii) that functions from S can take the values 0, 1 and
∞ only on E . On the other hand, if f is a rational function of degree d then the
preimage f−1({0, 1,∞}) contains at least d+2 distinct points, which follows from
the Riemann–Hurwitz formula. Thus the degrees of functions in S are bounded
and so the degrees of functions in R are bounded.

This proof evidently does not provide any algorithm for estimating C(F ) for
a given polynomial F , or for checking whether a rational solution exists at all.
So we give another proof, which permits at least in principle to find the constant
C(F ) effectively, and which is applicable to all polynomials F . In what follows we
will always assume that the polynomial F is irreducible, which does not restrict
generality.
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Preliminaries and notations. We need some facts from the theory of algebraic
functions ([1] or [10, Chapters 18, 19] are standard references) and from differential
algebra [7].

Let k = C(z) be the field of rational functions and K be its algebraic closure,
that is the field of all algebraic functions. The degree of a rational function has
a natural extension to K . Namely for α ∈ K we denote by T (α) the number of
poles of α on its Riemann surface (counting multiplicity), divided by the number
of sheets of this Riemann surface over C̄ . So T is an absolute logarithmic height

in the terminology of [6, Chapter III, §1]. Its definition clearly does not depend on
the Riemann surface on which α is defined. The following properties are evident:

T (αn) = nT (α) for positive integers n and(4)

T (α−1) = T (α), α ∈ K.(5)

For α ∈ K we denote by i(α) the total ramification. That is if a germ of α at
z0 ∈ C is expressed as

α(z) =
∑

an(z − z0)
n/m,

(where we assume that m is chosen smallest possible) then this germ contributes
m − 1 units to i(α) . We have

(6) T (α′) ≤ 2T (α) + i(α) ( ′ = d/dz).

Given an irreducible polynomial P ∈ K[t1, t2] we consider the factor R =
K[t1, t2]/(P ) , where (P ) is the ideal generated by P . Then R is a field of tran-
scendency degree 1 over K .

A valuation ring V ⊂ R is a ring which contains K , is not identical with
R and has the property that for every x ∈ R either x ∈ V or x−1 ∈ V . The
set of all non-invertible elements of a valuation ring V forms a maximal ideal ν
and there is an element t ∈ V , called a local uniformizer, such that ν = tV and
⋂

∞

n=1
tnV = ∅ . The factor ring V/ν is equal to K , so every valuation ring defines

a map p: R → K ∪ {∞} with the properties:

p(x + y) = p(x) + p(y), p(xy) = p(x)p(y)

whenever the expressions in the right sides of these formulas are defined1 and
p(α) = α if α ∈ K . A map with such properties is called place. Given a place
one can recover the corresponding valuation ring as Vp = p−1(K) and there is
one-to-one correspondence between places and valuation rings.

1 We use the ordinary conventions: α +∞ = ∞ , α ∈ K and α.∞ = ∞ , α ∈ K∗ but ∞+∞

or 0.∞ are undefined.
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Let a place p be given and let Vp be its valuation ring. Every element of the
field R can be expressed in the form x = tnpu , where u is an invertible element
of Vp , tp is a local uniformizer and n is an integer. This integer n is called the
order of x at the place p and denoted by ordpx .

In the case when R = K(x) the places are in natural one-to-one correspon-
dence with the set K ∪{∞} , that is p(y) is just the value of the rational function
y at the point p ∈ K ∪ {∞} .

Let R1 ⊂ R2 be a finite field extension where both R1 and R2 have tran-
scendency degree 1 over K . Then every valuation ring Vp ⊂ R1 is contained in
some valuation ring Vq ⊂ R2 . We say that this place q in R2 lies over the place
p in R1 . There is at least one but finitely many places in R2 lying over a fixed
place in R1 .

Let t1, t2 ∈ R and P be an irreducible polynomial such that P (t1, t2) = 0.
If some elements α1, α2 ∈ K satisfy P (α1, α2) = 0 then there is a place p in R
such that p(t1) = α1 and p(t2) = α2 .

A divisor is an element of free Abelian group generated by places. If δ =
n1p1 + · · ·+nqpq is a divisor then its degree is defined by deg δ = n1 + · · ·+nq . A
divisor is called effective if nj ≥ 0 for all j . This defines a partial order relation
on the set of divisors: δ1 ≥ δ2 if δ1−δ2 is effective. Every divisor δ can be written
as δ = δ+ − δ− , where δ+ and δ− are effective divisors without common places.

For x ∈ R we denote by δ(x) the divisor
∑

(ordpx)p , where summation
is spread over all places in R (only finitely many terms in this sum have non-
zero coefficients). For every x ∈ R we have deg δ(x) = 0. To every field of
transcendency degree 1 corresponds a non-negative integer g , called genus with
the following property: for every divisor δ of degree deg δ ≥ g there exists an
element x ∈ R such that δ(x) ≥ −δ . This is a corollary from the Riemann–Roch
theorem.

Let us recall the construction of the Newton polygon (see, for example [5, IV,
§3]). Let x and y be elements of R satisfying an irreducible relation

(7) P0(x) + P1(x)y + · · ·+ Pm(x)ym = 0, Pj ∈ K[x].

Let p1, . . . , pn be all places in R which lie over some place p in K(x) ⊂ R and t
be a local uniformizer at p .

Mark on the plane the points with coordinates
(

j, ordpPj(x)
)

, 0 ≤ j ≤ m , and
consider the maximal convex function whose graph lies below or passes through
these points. The slopes of this graph are exactly the numbers −ordpj

y/ordpj
t .

We use two propositions which follow from consideration of Newton’s polygon.

Proposition 1. The following statements about x and y in (7) are equiva-

lent:

(a) ordpx ≥ 0 implies ordpy ≥ 0 for every place p in R and

(b) deg Pm = 0 .
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Proof. Let p be a place in K(x) and q be a place in R lying over p . Then
ordpx ≥ 0 if and only if ordqx ≥ 0. Assume that these inequalities do hold for
p and q . We have ordpPj(x) ≥ 0, j = 0, . . . , m . Then (a) is equivalent to the
condition that all slopes of the Newton polygon constructed for p are non-positive.
On the other hand, polynomials Pj have no common factor because the equation
(11) is irreducible, so ordpPk(x) = 0 for some k ∈ {0, . . . , m} . We conclude that
ordpPm(x) = 0 for all places p in K(x) such that ordpx ≥ 0. This is equivalent
to (b).

Proposition 2. If δ−(y) ≤ δ−(x) then deg Pj ≤ m − j , 0 ≤ j ≤ m .

Proof. Consider the infinite place q in K(x) . A local uniformizer at this place
is 1/x . We have ordqPj(x) = −deg Pj . Our assumption about x and y implies
that all slopes of the Newton polygon are at most 1. Furthermore, deg Pm = 0
by Proposition 1. We conclude that deg Pj ≤ m − j , 0 ≤ j ≤ m .

Lemma 1. If x, y ∈ R and δ−(y) ≤ δ−(x) then there exists a constant C ,

depending on x and y such that for every place p in R with ordpx ≥ 0 we have

T
(

p(y)
)

≤ T
(

p(x)
)

+ C.

Proof. Consider the irreducible polynomial relation (7) between x and y . By
Proposition 2 we can rewrite (7) in the form

(y

x

)m

+
Pm−1(x)

x

(y

x

)m−1

+ · · ·+
P0(x)

xm
= 0, where deg Pj ≤ m − j,

and substitute p(x) and p(y) instead of x and y . It is clear that poles of p(y)
can occur only at poles of p(x) or at the poles of coefficients of Pj . This proves
the lemma.

Lemma 2. Let P ∈ K(t1, t2) be an irreducible polynomial of degree m with

respect to t1 and of degree n with respect to t2 . Given ε > 0 there exists a

constant C0 depending on P and ε such that for every α and β in K satisfying

P (α, β) = 0 we have

(n − ε)T (β) − C0 ≤ mT (α) ≤ (n + ε)T (β) + C0.

This is a special case of a general theorem about heights on algebraic varieties
[6, Chapter 4, Proposition 3.3]. We give here a simple proof for our special case
following the lines of [2].

Proof of Lemma 2. Consider the field R = K[t1, t2]/(P ) . We have
deg δ−(t1) = n and deg δ−(t2) = m . Set s1 = tm1 and s2 = tn2 . These ele-
ments are connected by an irreducible polynomial relation Q(s1, s2) = 0, which
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has the same degree with respect to s1 and s2 . In view of the property (4) it is
enough to prove

(8) T
(

p(s1)
)

≤ (1 + ε)T
(

p(s2)
)

+ C

for every place p in R . (The inequality in the opposite direction is then obtained
by reversing the roles of s1 and s2 .)

Choose an integer N so large that

(9)
N + g

N
≤ 1 + ε,

where g is the genus of R .
Consider the divisor δ = (N + g)δ−(s2) − Nδ−(s1) whose degree is equal to

gmn ≥ g . By the corollary of the Riemann–Roch theorem mentioned above there
is an element x ∈ R such that δ(x) ≥ −δ . It follows that

(N + g)δ−(s2) = δ+ ≥ δ−(x),

so by Lemma 1 we conclude that

(10) (N + g)T
(

P (s2)
)

≥ T
(

p(x)
)

− C1

for every place p . On the other hand

Nδ−(s1) = δ− ≤ δ+(x) = δ−(x−1)

so by Lemma 1 and property (5) we conclude that

NT
(

p(s1)
)

≤ T
(

p(x−1)
)

+ C2 = T
(

p(x)
)

+ C2.

Combined with (10) and (9) this gives (8). The lemma is proved.

Now we consider the differential equation (1).
A differential field is a field with an additive map D into itself which satisfies

D(xy) = D(x)y + xD(y) . Such a map is called derivation. As before we define
a field R = K[w′, w]/(F ) of transcendency degree 1 over K . There is a unique
derivation D: R → R such that D(w) = w′ and D(α) = dα/dz for every α ⊂ K .
Here d/dz stands for the usual differentiation in K .

A solution w = α ∈ K of the differential equation F (w′, w) = 0 defines a
place p with the additional property that

p(Dx) =
d

dz
p(x) for every x ∈ R.

We will call such place a differential place.
We say that the differential field R is Fuchsian if the derivation maps every

valuation ring into itself. (In [7] such fields are called “differential fields with no
movable singularities”.) The following classification of Fuchsian fields can be found
in [7]:
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1. If R is of genus 0 there is an element x ∈ R such that R = K(x) and
Dx = a2x

2 + a1x + a0 with some ai ∈ K .
2. If R is of genus 1, there are two possibilities:
a) There is an element x ∈ R such that R = K(x, Dx) and (Dx)2 = a(x −

e1)(x − e2)(x − e3) with some a ∈ K and ei ∈ C , e1 + e2 + e3 = 0 (Poincaré

field) or
b) there are x, y ∈ R such that R = K(x, y) and Dx = Dy = 0 (Clairaut

field).
3. If R is a Fuchsian field of genus greater then 1 then R is a Clairaut field

(see 2a)).
An inspection of the proofs in [7] shows that there is an explicit algorithm

of finding the element x , mentioned in 1, 2 or 3. More precisely, if the equation
F (w′, w) = 0 is given one can write explicitly the irreducible equation Q(x, w) = 0
where x is the element mentioned in 1, 2 or 3. This also gives explicitly the
coefficients a , ai , ei , i = 1, 2, 3 of the differential equations satisfied by x in 1
or 2.

Now we are ready to give the

Proof of Theorem 1. We consider four cases.

Case 1. R is not Fuchsian. This means that there is a place p whose valuation
ring Vp is not closed with respect to derivation. Let t be a local uniformizer at p .
Then ordpDt < 0. Consider the irreducible equation connecting t and Dt :

(11) Pm(t)(Dt)m + · · ·+ P0(t) = 0, Pj ∈ K[t].

By Proposition 1 we have deg Pm > 0. Now put t = x−1 +a where a ∈ C is such
that Pj(a) 6= 0 for 0 ≤ j ≤ m . From (11) we obtain the equation for x and Dx :

(12) Pm

(1 + ax

x

)

x−2m(−Dx)m + · · ·+ P0

(1 + ax

x

)

= 0.

We put dj = deg Pj and

(13) d = max
j

{dj + 2j} ≥ 2m + 1 (because dm ≥ 1)

After multiplying (1) by xd we obtain an irreducible polynomial equation

(14) Qm(x)(Dx)m + · · · + Q0(x) = 0

where deg Qj = d − 2j . In particular deg Q0 = d ≥ 2m + 1 in view of (13).
We have x = r(w, w′) where r is a rational function with coefficients in K .

A rational solution α ∈ C(z) of the differential equation F (w′, w) = 0 defines a
differential place s and we have s(x) = r(α, dα/dz) so all ramification points of
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the algebraic function s(x) may come only from the coefficients of r . Thus the
total ramification of s(x) is bounded by a constant C1 depending only on F and
we have by (6)

(15) T
(

s(Dx)
)

≤ 2T
(

s(x)
)

+ C1.

On the other hand, applying Lemma 2 to (14) we obtain

(16) T
(

s(Dx)
)

≥
2m + 1

m
T

(

s(x)
)

− C2

with some constant C2 which also depends only on F . Inequalities (15) and (16)
imply that T

(

s(x)
)

≤ m(C1 + C2) , that is T
(

s(x)
)

is bounded by a constant
depending only on F . One more application of Lemma 2 shows that the same is
true about α = s(w) .

Case 2. R is a Fuchsian field of genus 0. In this case it is enough to find a
bound for T (α) where α is an algebraic solution of a Riccati differential equation

dα

dz
= a2α

2 + a1α + a0, ai ∈ K.

First we consider the case when a2 = 0. Poles of a solution may occur only
at the points where a1 or a0 has a pole. If z0 is a pole of α of order n , greater
than the order of pole of a0 , then a1 has at z0 a simple pole with residue n . Thus
the total number of poles of α , counting multiplicity is bounded from above by a
constant depending only on a1 and a0 .

Now we assume that a2 6= 0. The substitution

(17) α =
1

a2

u −
a1

2a2

−
1

2a2
2

da

dz

reduces the equation to the standard form form u′ = u2 + a with some a ∈ K .
Now u may have poles which are not poles of a (they are called movable poles).
The residues of u at all movable poles are equal to −1. But the total sum of
residues of u(z)dz is equal to 0. Thus to estimate the number of movable poles
it is enough to find a bound of residues of u at poles of a . Let z0 be a pole of u
and a also has a pole at z0 . If a has a simple pole at z0 then the residue of u
at z0 is equal to 1. If a has a multiple pole at z0 then its multiplicity has to be
even, so (assuming that z0 is not a ramification point of a and z0 6= ∞)

a(z) =
∞
∑

n=−2m

bn(z − z0)
n.



Rational solutions of first-order differential equations 189

The order of the pole of u at z0 should be equal to m , and we substitute the
series with indeterminate coefficients

u(z) =

∞
∑

n=−m

cn(z − z0)
n

into the equation. We obtain:

∞
∑

n=−m−1

(n + 1)cn+1(z − z0)
n =

( ∞
∑

n=−m

cn(z − z0)
n

)2

+

∞
∑

n=−2m

bn(z − z0)
n.

From this equation we see that there are two possible choices for c−m and once
c−m is chosen, the coefficients c−m+1, . . . , c−1 are determined in a unique way.
Thus the residue c−1 has an estimate in terms of a .

If z0 is a ramification point of a , let z−z0 = ζk , where ζ is a local parameter
on the Riemann surface of a . Then we can rewrite the equation in terms of ζ and
v(ζ) = u(z0 + ζk) that is

dv

dζ
= kζk−1(v2 + b),

where b(ζ) = a(z0 + ζk) , then make again a change of variable similar to (17)
to obtain an equation in the standard form and reduce the problem to the case
we just considered. The case z0 = ∞ is treated similarly with the substitution
z = ζ−k so that ζ is a local parameter at ∞ . This finishes the proof in Case 2.

Case 3. R is a Poincaré field of genus 1. We have to estimate the number of
poles of an algebraic solution u of

(u′)2 = a(u − e1)(u − e2)(u − e3).

The general solution of this equation is given by u = ℘ ◦ A , where ℘ is the
Weierstrass elliptic function and A is an Abelian integral

A(z) =
1

2

∫

√

a(z) dz.

Algebraic solutions u are possible if and only if A is an integral of the first kind
(that is

√

a(z) dz is a holomorphic differential). This implies that

(18) |a(z)| = O(|z|−2−ε), for some ε > 0.

Thus, assuming that the Riemann surface S of u has k sheets, we have
∫

S

|u′|2

(1 + |u|2)2
dm ≤

∫

S

|a|
|(u − e1)(u − e2)(u − e3)|

(1 + |u|2)2
dm ≤ kC,

where C depends on a and ei , and dm stands for the two-dimensional Lebesgue
measure pulled back from C to S . The left side of the above formula is the
spherical area of the image of S under u , which is equal to π times the total
number of poles of u . This implies a bound for T (u) depending only on a .
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Case 4. R is a Clairaut field of genus ≥ 1. Then there is an element x
in the field R , transcendental over K with Dx = 0. We have an irreducible
polynomial relation Q(w, x) = 0. So for every differential point p with p(w) = α
we have Q(α, c) = 0, where c ∈ C , and this gives the desired estimate for T (α)
via Lemma 2.

The author thanks A.A. Goldberg and A.Z. Mokhonko for useful discussions,
and the referee for his or her valuable comments on the paper.
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