RATIONAL SOLUTIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS

A. Eremenko

Purdue University, Department of Mathematics West Lafayette, Indiana 47907, U.S.A.; eremenko@ math.purdue.edu

Abstract. We prove that degrees of rational solutions of an algebraic differential equation $F(dw/dz, w, z) = 0$ are bounded. For given F an upper bound for degrees can be determined explicitly. This implies that one can find all rational solutions by solving algebraic equations.

Consider the differential equation

$$
(1) \tF(w', w, z) = 0 \t(w' = dw/dz)
$$

where F is a polynomial in three variables.

Theorem 1. For every F there exists a constant $C = C(F)$ such that the degree of every rational solution w of (1) does not exceed C.

This statement is not true for differential equations of higher order. Indeed, all functions $w_n(z) = z^n$ satisfy

$$
\left(z\frac{w'}{w}\right)' = 0.
$$

We will show that the bound for the degree $C(F)$ can be determined effectively. So theoretically it is possible to find all rational solutions of (1) by substituting an expression for w with indeterminate coefficients and solving the resulting system of algebraic equations. It is a challenging unsolved question whether Theorem 1 can be extended to algebraic solutions. Partial results in this direction were obtained by H. Poincaré in $[8]$, $[9]$.

Before proving the theorem in full generality we give a very simple proof for the particular case when the equation is solved with respect to derivative. This simplified proof does not give any effective bound for C .

¹⁹⁹¹ Mathematics Subject Classification: Primary 30D35. Supported by NSF grant DMS 9500636.

Proof in the special case. (The method is similar to [3], see also [4]). Let us write the equation in the form

$$
F_1(w, z)(w') + F_0(w, z) = 0,
$$

where F_i are polynomials in w and z for $j = 0, 1$. Assume that equation (1) has infinitely many rational solutions (otherwise there is nothing to prove). Then we can find three different rational solutions w_1 , w_2 and w_3 such that

(2)
$$
F_1(w_i(z), z) \neq 0, \quad i = 1, 2, 3.
$$

Let us consider the finite set $E \subset \overline{C}$ consisting of the following points:

(i) if at some point z_0 we have $F_1(w_i(z_0), z_0) = 0$ for some i then z_0 belongs to E :

(ii) the point ∞ and all poles of w_i , $i = 1, 2, 3$ belong to E;

(iii) if $w_i(z_0) = w_j(z_0)$ for some $i \neq j$ then z_0 belongs to E.

Condition (2) guarantees that the subset of E defined in (i) is finite. The subsets of E described in (ii), and (iii) are evidently finite.

Denote by R the set of all rational solutions, different from w_1, w_2, w_3 and let $w \in R$. We claim that

(3)
$$
w(z) \neq w_i(z)
$$
 for $i = 1, 2, 3$ and $z \in \overline{\mathbf{C}} \setminus E$.

Indeed, if for example $w(z_0) = w_1(z_0) := w_0$ and $z_0 \notin E$, then $w_0 \neq \infty$ and $F_1(w_0, z_0) \neq 0$ in view of (ii) and (i). Thus by the Uniqueness Theorem for solutions of the Cauchy problem we conclude that $w = w_1$, which contradicts to our assumption.

Now we consider the following set of rational functions

$$
S = \left\{ \frac{(w - w_1)(w_3 - w_2)}{(w - w_2)(w_3 - w_1)} : w \in R \right\}.
$$

It follows from (3) and (iii) that functions from S can take the values 0, 1 and ∞ only on E. On the other hand, if f is a rational function of degree d then the preimage $f^{-1}(\{0, 1, \infty\})$ contains at least $d+2$ distinct points, which follows from the Riemann–Hurwitz formula. Thus the degrees of functions in S are bounded and so the degrees of functions in R are bounded.

This proof evidently does not provide any algorithm for estimating $C(F)$ for a given polynomial F , or for checking whether a rational solution exists at all. So we give another proof, which permits at least in principle to find the constant $C(F)$ effectively, and which is applicable to all polynomials F. In what follows we will always assume that the polynomial F is irreducible, which does not restrict generality.

Preliminaries and notations. We need some facts from the theory of algebraic functions ([1] or [10, Chapters 18, 19] are standard references) and from differential algebra [7].

Let $k = \mathbf{C}(z)$ be the field of rational functions and K be its algebraic closure, that is the field of all algebraic functions. The degree of a rational function has a natural extension to K. Namely for $\alpha \in K$ we denote by $T(\alpha)$ the number of poles of α on its Riemann surface (counting multiplicity), divided by the number of sheets of this Riemann surface over C . So T is an absolute logarithmic height in the terminology of [6, Chapter III, §1]. Its definition clearly does not depend on the Riemann surface on which α is defined. The following properties are evident:

- $T(\alpha^n)$ (4) $T(\alpha^n) = nT(\alpha)$ for positive integers n and
- (5) $T(\alpha^{-1}) = T(\alpha), \qquad \alpha \in K.$

For $\alpha \in K$ we denote by $i(\alpha)$ the total ramification. That is if a germ of α at $z_0 \in \mathbb{C}$ is expressed as

$$
\alpha(z) = \sum a_n (z - z_0)^{n/m},
$$

(where we assume that m is chosen smallest possible) then this germ contributes $m-1$ units to $i(\alpha)$. We have

(6)
$$
T(\alpha') \le 2T(\alpha) + i(\alpha) \qquad (f' = d/dz).
$$

Given an irreducible polynomial $P \in K[t_1, t_2]$ we consider the factor $R =$ $K[t_1, t_2]/(P)$, where (P) is the ideal generated by P. Then R is a field of transcendency degree 1 over K .

A valuation ring $V \subset R$ is a ring which contains K, is not identical with R and has the property that for every $x \in R$ either $x \in V$ or $x^{-1} \in V$. The set of all non-invertible elements of a valuation ring V forms a maximal ideal ν and there is an element $t \in V$, called a *local uniformizer*, such that $\nu = tV$ and $\bigcap_{n=1}^{\infty} t^n V = \emptyset$. The factor ring V/ν is equal to K, so every valuation ring defines a map $p: R \to K \cup \{\infty\}$ with the properties:

$$
p(x + y) = p(x) + p(y),
$$
 $p(xy) = p(x)p(y)$

whenever the expressions in the right sides of these formulas are defined 1 and $p(\alpha) = \alpha$ if $\alpha \in K$. A map with such properties is called place. Given a place one can recover the corresponding valuation ring as $V_p = p^{-1}(K)$ and there is one-to-one correspondence between places and valuation rings.

¹ We use the ordinary conventions: $\alpha + \infty = \infty$, $\alpha \in K$ and $\alpha.\infty = \infty$, $\alpha \in K^*$ but $\infty + \infty$ or $0.\infty$ are undefined.

Let a place p be given and let V_p be its valuation ring. Every element of the field R can be expressed in the form $x = t_p^n u$, where u is an invertible element of V_p , t_p is a local uniformizer and n is an integer. This integer n is called the order of x at the place p and denoted by $\text{ord}_p x$.

In the case when $R = K(x)$ the places are in natural one-to-one correspondence with the set $K \cup {\infty}$, that is $p(y)$ is just the value of the rational function y at the point $p \in K \cup \{\infty\}.$

Let $R_1 \subset R_2$ be a finite field extension where both R_1 and R_2 have transcendency degree 1 over K. Then every valuation ring $V_p \subset R_1$ is contained in some valuation ring $V_q \subset R_2$. We say that this place q in R_2 lies over the place p in R_1 . There is at least one but finitely many places in R_2 lying over a fixed place in R_1 .

Let $t_1, t_2 \in R$ and P be an irreducible polynomial such that $P(t_1, t_2) = 0$. If some elements $\alpha_1, \alpha_2 \in K$ satisfy $P(\alpha_1, \alpha_2) = 0$ then there is a place p in R such that $p(t_1) = \alpha_1$ and $p(t_2) = \alpha_2$.

A *divisor* is an element of free Abelian group generated by places. If $\delta =$ $n_1p_1 + \cdots + n_qp_q$ is a divisor then its degree is defined by deg $\delta = n_1 + \cdots + n_q$. A divisor is called *effective* if $n_j \geq 0$ for all j. This defines a partial order relation on the set of divisors: $\delta_1 \geq \delta_2$ if $\delta_1 - \delta_2$ is effective. Every divisor δ can be written as $\delta = \delta^+ - \delta^-$, where δ^+ and δ^- are effective divisors without common places.

For $x \in R$ we denote by $\delta(x)$ the divisor $\sum (\text{ord}_p x)p$, where summation is spread over all places in R (only finitely many terms in this sum have nonzero coefficients). For every $x \in R$ we have $\deg \delta(x) = 0$. To every field of transcendency degree 1 corresponds a non-negative integer g , called *genus* with the following property: for every divisor δ of degree deg $\delta \geq g$ there exists an element $x \in R$ such that $\delta(x) \geq -\delta$. This is a corollary from the Riemann–Roch theorem.

Let us recall the construction of the Newton polygon (see, for example [5, IV, $\S3$). Let x and y be elements of R satisfying an irreducible relation

(7)
$$
P_0(x) + P_1(x)y + \cdots + P_m(x)y^m = 0, \qquad P_j \in K[x].
$$

Let p_1, \ldots, p_n be all places in R which lie over some place p in $K(x) \subset R$ and t be a local uniformizer at p.

Mark on the plane the points with coordinates $(j, \text{ord}_p P_j(x))$, $0 \leq j \leq m$, and consider the maximal convex function whose graph lies below or passes through these points. The slopes of this graph are exactly the numbers $-\text{ord}_{p_j} y / \text{ord}_{p_j} t$.

We use two propositions which follow from consideration of Newton's polygon.

Proposition 1. The following statements about x and y in (7) are equivalent:

- (a) ord_p $x \geq 0$ implies ord_p $y \geq 0$ for every place p in R and
- (b) deg $P_m = 0$.

Proof. Let p be a place in $K(x)$ and q be a place in R lying over p. Then ord_p $x \geq 0$ if and only if ord_q $x \geq 0$. Assume that these inequalities do hold for p and q. We have $\text{ord}_p P_i(x) \geq 0$, $j = 0, \ldots, m$. Then (a) is equivalent to the condition that all slopes of the Newton polygon constructed for p are non-positive. On the other hand, polynomials P_i have no common factor because the equation (11) is irreducible, so $\text{ord}_p P_k(x) = 0$ for some $k \in \{0, \ldots, m\}$. We conclude that $\text{ord}_p P_m(x) = 0$ for all places p in $K(x)$ such that $\text{ord}_p x \geq 0$. This is equivalent to (b).

Proposition 2. If $\delta^-(y) \leq \delta^-(x)$ then $\deg P_j \leq m - j$, $0 \leq j \leq m$.

Proof. Consider the infinite place q in $K(x)$. A local uniformizer at this place is $1/x$. We have $\text{ord}_q P_i(x) = -\text{deg } P_i$. Our assumption about x and y implies that all slopes of the Newton polygon are at most 1. Furthermore, deg $P_m = 0$ by Proposition 1. We conclude that deg $P_j \leq m - j$, $0 \leq j \leq m$.

Lemma 1. If $x, y \in R$ and $\delta^-(y) \leq \delta^-(x)$ then there exists a constant C, depending on x and y such that for every place p in R with $\text{ord}_p x \geq 0$ we have

$$
T(p(y)) \leq T(p(x)) + C.
$$

Proof. Consider the irreducible polynomial relation (7) between x and y . By Proposition 2 we can rewrite (7) in the form

$$
\left(\frac{y}{x}\right)^m + \frac{P_{m-1}(x)}{x} \left(\frac{y}{x}\right)^{m-1} + \dots + \frac{P_0(x)}{x^m} = 0, \quad \text{where} \quad \deg P_j \le m - j,
$$

and substitute $p(x)$ and $p(y)$ instead of x and y. It is clear that poles of $p(y)$ can occur only at poles of $p(x)$ or at the poles of coefficients of P_i . This proves the lemma.

Lemma 2. Let $P \in K(t_1, t_2)$ be an irreducible polynomial of degree m with respect to t_1 and of degree n with respect to t_2 . Given $\varepsilon > 0$ there exists a constant C_0 depending on P and ε such that for every α and β in K satisfying $P(\alpha, \beta) = 0$ we have

$$
(n - \varepsilon)T(\beta) - C_0 \le mT(\alpha) \le (n + \varepsilon)T(\beta) + C_0.
$$

This is a special case of a general theorem about heights on algebraic varieties [6, Chapter 4, Proposition 3.3]. We give here a simple proof for our special case following the lines of [2].

Proof of Lemma 2. Consider the field $R = K[t_1, t_2]/(P)$. We have $\deg \delta^{-}(t_1) = n$ and $\deg \delta^{-}(t_2) = m$. Set $s_1 = t_1^m$ and $s_2 = t_2^n$. These elements are connected by an irreducible polynomial relation $Q(s_1, s_2) = 0$, which

has the same degree with respect to s_1 and s_2 . In view of the property (4) it is enough to prove

(8)
$$
T(p(s_1)) \leq (1+\varepsilon)T(p(s_2)) + C
$$

for every place p in R . (The inequality in the opposite direction is then obtained by reversing the roles of s_1 and s_2 .)

Choose an integer N so large that

(9)
$$
\frac{N+g}{N} \leq 1+\varepsilon,
$$

where q is the genus of R .

Consider the divisor $\delta = (N+g)\delta^-(s_2) - N\delta^-(s_1)$ whose degree is equal to $qmn > q$. By the corollary of the Riemann–Roch theorem mentioned above there is an element $x \in R$ such that $\delta(x) \geq -\delta$. It follows that

$$
(N+g)\delta^-(s_2) = \delta^+ \ge \delta^-(x),
$$

so by Lemma 1 we conclude that

(10)
$$
(N+g)T(P(s_2)) \geq T(p(x)) - C_1
$$

for every place p . On the other hand

$$
N\delta^{-}(s_1) = \delta^{-} \leq \delta^{+}(x) = \delta^{-}(x^{-1})
$$

so by Lemma 1 and property (5) we conclude that

$$
NT(p(s_1)) \le T(p(x^{-1})) + C_2 = T(p(x)) + C_2.
$$

Combined with (10) and (9) this gives (8). The lemma is proved.

Now we consider the differential equation (1).

A differential field is a field with an additive map D into itself which satisfies $D(xy) = D(x)y + xD(y)$. Such a map is called *derivation*. As before we define a field $R = K[w', w]/(F)$ of transcendency degree 1 over K. There is a unique derivation $D: R \to R$ such that $D(w) = w'$ and $D(\alpha) = d\alpha/dz$ for every $\alpha \subset K$. Here d/dz stands for the usual differentiation in K.

A solution $w = \alpha \in K$ of the differential equation $F(w', w) = 0$ defines a place p with the additional property that

$$
p(Dx) = \frac{d}{dz}p(x)
$$
 for every $x \in R$.

We will call such place a *differential place*.

We say that the differential field R is Fuchsian if the derivation maps every valuation ring into itself. (In [7] such fields are called "differential fields with no movable singularities".) The following classification of Fuchsian fields can be found in [7]:

1. If R is of genus 0 there is an element $x \in R$ such that $R = K(x)$ and $Dx = a_2x^2 + a_1x + a_0$ with some $a_i \in K$.

2. If R is of genus 1, there are two possibilities:

a) There is an element $x \in R$ such that $R = K(x, Dx)$ and $(Dx)^2 = a(x (e_1)(x - e_2)(x - e_3)$ with some $a \in K$ and $e_i \in \mathbb{C}$, $e_1 + e_2 + e_3 = 0$ (*Poincaré* field) or

b) there are $x, y \in R$ such that $R = K(x, y)$ and $Dx = Dy = 0$ (Clairaut field).

3. If R is a Fuchsian field of genus greater then 1 then R is a Clairaut field $(see 2a).$

An inspection of the proofs in [7] shows that there is an explicit algorithm of finding the element x , mentioned in 1, 2 or 3. More precisely, if the equation $F(w', w) = 0$ is given one can write explicitly the irreducible equation $Q(x, w) = 0$ where x is the element mentioned in 1, 2 or 3. This also gives explicitly the coefficients a, a_i , e_i , $i = 1, 2, 3$ of the differential equations satisfied by x in 1 or 2.

Now we are ready to give the

Proof of Theorem 1. We consider four cases.

Case 1. R is not Fuchsian. This means that there is a place p whose valuation ring V_p is not closed with respect to derivation. Let t be a local uniformizer at p. Then $\text{ord}_pDt < 0$. Consider the irreducible equation connecting t and Dt:

(11)
$$
P_m(t)(Dt)^m + \cdots + P_0(t) = 0, \qquad P_j \in K[t].
$$

By Proposition 1 we have $\deg P_m > 0$. Now put $t = x^{-1} + a$ where $a \in \mathbb{C}$ is such that $P_i(a) \neq 0$ for $0 \leq j \leq m$. From (11) we obtain the equation for x and Dx:

(12)
$$
P_m\left(\frac{1+ax}{x}\right)x^{-2m}(-Dx)^m + \dots + P_0\left(\frac{1+ax}{x}\right) = 0.
$$

We put $d_i = \deg P_i$ and

(13)
$$
d = \max_{j} \{d_j + 2j\} \ge 2m + 1 \quad \text{(because } d_m \ge 1)
$$

After multiplying (1) by x^d we obtain an irreducible polynomial equation

(14)
$$
Q_m(x)(Dx)^m + \dots + Q_0(x) = 0
$$

where deg $Q_i = d - 2j$. In particular deg $Q_0 = d \geq 2m + 1$ in view of (13).

We have $x = r(w, w')$ where r is a rational function with coefficients in K. A rational solution $\alpha \in \mathbb{C}(z)$ of the differential equation $F(w', w) = 0$ defines a differential place s and we have $s(x) = r(\alpha, d\alpha/dz)$ so all ramification points of

the algebraic function $s(x)$ may come only from the coefficients of r. Thus the total ramification of $s(x)$ is bounded by a constant C_1 depending only on F and we have by (6)

(15)
$$
T(s(Dx)) \leq 2T(s(x)) + C_1.
$$

On the other hand, applying Lemma 2 to (14) we obtain

(16)
$$
T(s(Dx)) \ge \frac{2m+1}{m}T(s(x)) - C_2
$$

with some constant C_2 which also depends only on F. Inequalities (15) and (16) imply that $T(s(x)) \leq m(C_1 + C_2)$, that is $T(s(x))$ is bounded by a constant depending only on F . One more application of Lemma 2 shows that the same is true about $\alpha = s(w)$.

Case 2. R is a Fuchsian field of genus 0. In this case it is enough to find a bound for $T(\alpha)$ where α is an algebraic solution of a Riccati differential equation

$$
\frac{d\alpha}{dz} = a_2 \alpha^2 + a_1 \alpha + a_0, \qquad a_i \in K.
$$

First we consider the case when $a_2 = 0$. Poles of a solution may occur only at the points where a_1 or a_0 has a pole. If z_0 is a pole of α of order n, greater than the order of pole of a_0 , then a_1 has at z_0 a simple pole with residue n. Thus the total number of poles of α , counting multiplicity is bounded from above by a constant depending only on a_1 and a_0 .

Now we assume that $a_2 \neq 0$. The substitution

(17)
$$
\alpha = \frac{1}{a_2}u - \frac{a_1}{2a_2} - \frac{1}{2a_2^2}\frac{da}{dz}
$$

reduces the equation to the standard form form $u' = u^2 + a$ with some $a \in K$. Now u may have poles which are not poles of a (they are called *movable poles*). The residues of u at all movable poles are equal to -1 . But the total sum of residues of $u(z)dz$ is equal to 0. Thus to estimate the number of movable poles it is enough to find a bound of residues of u at poles of a. Let z_0 be a pole of u and a also has a pole at z_0 . If a has a simple pole at z_0 then the residue of u at z_0 is equal to 1. If a has a multiple pole at z_0 then its multiplicity has to be even, so (assuming that z_0 is not a ramification point of a and $z_0 \neq \infty$)

$$
a(z) = \sum_{n=-2m}^{\infty} b_n (z - z_0)^n.
$$

The order of the pole of u at z_0 should be equal to m, and we substitute the series with indeterminate coefficients

$$
u(z) = \sum_{n=-m}^{\infty} c_n (z - z_0)^n
$$

into the equation. We obtain:

$$
\sum_{n=-m-1}^{\infty} (n+1)c_{n+1}(z-z_0)^n = \left(\sum_{n=-m}^{\infty} c_n(z-z_0)^n\right)^2 + \sum_{n=-2m}^{\infty} b_n(z-z_0)^n.
$$

From this equation we see that there are two possible choices for c_{-m} and once c_{-m} is chosen, the coefficients c_{-m+1}, \ldots, c_{-1} are determined in a unique way. Thus the residue c_{-1} has an estimate in terms of a.

If z_0 is a ramification point of a, let $z - z_0 = \zeta^k$, where ζ is a local parameter on the Riemann surface of a. Then we can rewrite the equation in terms of ζ and $v(\zeta) = u(z_0 + \zeta^k)$ that is

$$
\frac{dv}{d\zeta} = k\zeta^{k-1}(v^2 + b),
$$

where $b(\zeta) = a(z_0 + \zeta^k)$, then make again a change of variable similar to (17) to obtain an equation in the standard form and reduce the problem to the case we just considered. The case $z_0 = \infty$ is treated similarly with the substitution $z = \zeta^{-k}$ so that ζ is a local parameter at ∞ . This finishes the proof in Case 2.

Case 3. R is a Poincaré field of genus 1. We have to estimate the number of poles of an algebraic solution u of

$$
(u')^{2} = a(u - e_{1})(u - e_{2})(u - e_{3}).
$$

The general solution of this equation is given by $u = \varphi \circ A$, where φ is the Weierstrass elliptic function and A is an Abelian integral

$$
A(z) = \frac{1}{2} \int \sqrt{a(z)} \, dz.
$$

Algebraic solutions u are possible if and only if A is an integral of the first kind (that is $\sqrt{a(z)} dz$ is a holomorphic differential). This implies that

(18)
$$
|a(z)| = O(|z|^{-2-\varepsilon}), \quad \text{for some} \quad \varepsilon > 0.
$$

Thus, assuming that the Riemann surface S of u has k sheets, we have

$$
\int_{S} \frac{|u'|^2}{(1+|u|^2)^2} dm \le \int_{S} |a| \frac{|(u-e_1)(u-e_2)(u-e_3)|}{(1+|u|^2)^2} dm \le kC,
$$

where C depends on a and e_i , and dm stands for the two-dimensional Lebesgue measure pulled back from C to S . The left side of the above formula is the spherical area of the image of S under u, which is equal to π times the total number of poles of u. This implies a bound for $T(u)$ depending only on a.

Case 4. R is a Clairaut field of genus > 1 . Then there is an element x in the field R, transcendental over K with $Dx = 0$. We have an irreducible polynomial relation $Q(w, x) = 0$. So for every differential point p with $p(w) = \alpha$ we have $Q(\alpha, c) = 0$, where $c \in \mathbb{C}$, and this gives the desired estimate for $T(\alpha)$ via Lemma 2.

The author thanks A.A. Goldberg and A.Z. Mokhonko for useful discussions, and the referee for his or her valuable comments on the paper.

References

- [1] Chevalley, C.: Algebraic Functions of One Variable. Amer. Math. Soc., New York, 1951 (translated from French).
- [2] Eremenko, A.: Meromorphic solutions of algebraic differential equations. Russian Math. Surveys 37:4, 1982, 61–95; Errata: 38, 6, 1983.
- [3] Golubev, V.V.: On an application of Picard theorem to the theory of differential equations. - Mat. Sb., 1911 (Russian).
- [4] Golubev, V.V.: Lectures on Analytic Theory of Differential Equations. Gostehizdat, Moscow, 1950, (Russian, German translation is available).
- [5] Koblitz, N.: p-Adic Numbers, p-Adic Analysis and Zeta Functions. Springer-Verlag, New York, 1977.
- [6] Lang, S.: Fundamentals of Diophantine Geometry. Springer-Verlag, New York, 1983.
- [7] Matsuda, M.: First Order Algebraic Differential Equations. A Differential Algebraic Approach. - Lecture Notes in Math. 804, Springer-Verlag, New York, 1980.
- [8] POINCARÉ, H.: Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré. - Rend. Circ. Mat. Palermo, 5, 1891, 161–191; Oeuvres III, 35–58.
- [9] POINCARÉ, H.: Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré. - Rend. Circ. Mat. Palermo, 11, 1897, 193-239; Oeuvres III, 59–94.
- [10] van der Waerden, B.L.: Algebra, Vol. 2. Ungar, New York, 1970.

Received 1 October 1996