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Abstract. Certain classes of plane homeomorphisms with general measure-theoretic restric-
tions on the local dilatation are considered. The noncompactness of such classes is proved. In
particular, the noncompactness of all David’s classes with exponential bounding functions is ob-
tained from this. It is also established that the closure of such a class cannot be a class of the same
type.

1. Definitions and preliminary considerations

In view of the well-known Gehring–Lehto theorem (see e.g. [LV, pp. 10, 134]),
an arbitrary sense-preserving homeomorphism of the complex plane f : C → C ,
having the first partial derivatives almost everywhere, satisfies the Beltrami equa-
tion

(1) fz̄ = µ(z)fz a.e.,

where µ: C → C is a measurable function with |µ(z)| ≤ 1 and, as usual, fz̄ =
1
2 (fx + ify) , fz = 1

2 (fx − ify) , z = x + iy . If fz = fz̄ = 0, we set µ(z) = 0. The
functions µ(z) and

(2) p(z) =
1 + |µ(z)|

1 − |µ(z)|

are called the complex dilatation and, simply, the dilatation of the mapping f at
the point z , respectively.

In particular, if f ∈ W 1
1,loc and p(z) ≤ Q a.e. for some Q ∈ [1,∞) , the

homeomorphism f is called a Q -quasiconformal mapping (cf. e.g. [LV, p. 176],
[A2, p. 24, 33]). In what follows, FQ denotes the class of all Q -quasiconformal
self-mappings of the extended complex plane C = C ∪ {∞} normalized in the
following way:

(3) f(0) = 0, f(1) = 1, f(∞) = ∞.
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As is well known (see [LV, p. 76]), the class FQ is sequentially compact with
respect to the locally uniform convergence, i.e. firstly, every sequence (fn) ⊂ FQ

has a subsequence converging locally uniformly to some mapping f0 and, secondly,
f0 ∈ FQ . It is customary to call the first property the precompactness and the
second the completeness of a class.

Various classes of mappings with unbounded dilatations have been studied
by many authors. The recent paper [D] by Guy David is of a special interest.
There he proved a new theorem on the existence and uniqueness of homeomorphic
solutions f ∈ W 1

1,loc normalized by (3) for the Beltrami equation (1) with the
coefficient µ(z) satisfying the following restrictions:

(4) meas {z ∈ C : |µ(z)| > 1 − ε} ≤ C0e
−α/ε

for all ε ≤ ε0 and for some fixed ε0 ∈ (0, 1] , α > 0, C0 > 0.
A study of compactness properties for David homeomorphisms was begun by

P. Tukia [T], who also wrote the condition (4) in the following equivalent and more
convenient form:

(5) meas {z ∈ C : p(z) > t} ≤ ce−γt

for all t ≥ T , where T ≥ 1, c > 0, γ > 0.
G. David [D] established the locally uniform boundedness, the local equicon-

tinuity and openness of such a class of homeomorphisms. Thus, in view of the
Arzela–Ascoli theorem (see e.g. [DS]), the above class of homeomorphisms is pre-
compact in the space of all plane homeomorphisms.

For precompact classes, it is clear that sequential compactness is equivalent to
completeness. In this respect, P. Tukia [T] succeeded only in establishing that all
the locally uniform limit functions of David homeomorphisms with the restriction
(5) are also David homeomorphisms but, in general, with other constants T , γ
and c . In this connection, questions have also arisen on sequential compactness
and completeness for the classes with measure-theoretic restrictions of the general
form

(6) meas {z ∈ C : p(z) > t} ≤ ϕ(t),

where ϕ: [1,∞) → [0,∞] is an arbitrary function.
In what follows, H(ϕ) denotes the class of all sense-preserving homeomor-

phisms f :C → C in W 1
1,loc normalized by (3) and satisfying the restriction (6)

for the dilatation.
G. David [D] has given examples showing that, for power functions ϕ , the

classes H(ϕ) may not be equicontinuous and, consequently, not sequentially com-
pact nor precompact.
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Our main goal is to show that the lack of sequential compactness and the lack
of completeness are common properties for the classes H(ϕ) , with the exception of
degenerate cases. In particular, David classes with the exponential restriction (5)
are not closed and, consequently, not sequentially compact, although all of these
classes are precompact.

Note that the classes H(ϕ) are always nonempty, because they contain the
identity I . The following statement shows that they are nontrivial, i.e., they
contain many mappings, under a natural condition on ϕ .

Proposition 1. Let ϕ: [1,∞) → [0,∞] be an arbitrary function. Then

H(ϕ) \ {I} 6= ∅ if and only if

(7) lim inf
t→1

ϕ(t) = ε > 0.

Moreover, in this case, the cardinality of the collection M(ϕ) of all complex di-

latations µ: C → ∆ = {ν ∈ C : |ν| < 1} of the mappings from H(ϕ) coincides

with the cardinality of the class of all measurable functions ω: C → ∆ .

Thus, in spite of the lack of an existence theorem in the general case, the
classes H(ϕ) remain a noteworthy object for investigation.

It is also important for what follows that the function ϕ in (6) may always be
replaced by another function with additional properties and without changing the
class H(ϕ) . More precisely, the following statement on a regular change holds.

Proposition 2. For every function ϕ: [1,∞) → [0,∞] there exists a unique

non-increasing function ϕr: [1,∞) → [0,∞] that is continuous from the right and

such that

(8) H(ϕ) = H(ϕr).

Moreover,

(9) ϕr(t) = lim
b→t+0

{

inf
1≤a≤b

ϕ(a)

}

for all t ≥ 1 .

The nonnegative non-increasing functions that are continuous from the right
are sometimes called measure functions in view of the well-known role of such
functions in general measure theory. In what follows, we will often use this termi-
nology.

Corollary 1. Let ϕ1 and ϕ2: [1,∞) → [0,∞] be measure functions. Then

(10) H(ϕ1) = H(ϕ2)

if and only if ϕ1(t) ≡ ϕ2(t) .
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Proof of Proposition 1. 1) The necessity of the condition (7) is obvious by the
well-known Weyl lemma (see, e.g., [A2, p. 33]) because fz̄ = 0 a.e. if ε = 0.

2) If (7) holds, there exists δ > 0 such that ϕ(t) ≥ 1
2ε for all t ∈ (1, 1 + δ) .

For such δ , the class H(ϕ) includes the mapping

f(z) =

{

z|z|δ , z ∈ ∆̺,
cz, z ∈C \ ∆̺,

if ̺ ≥ 1 and f(z)/c if ̺ ≤ 1, where ∆̺ = {z ∈ C : |z| < ̺} , ̺ =
√

ε/2π , c = ̺δ ,
because its dilatation is given by

p(z) =

{

1 + δ, z ∈ ∆̺,
1, z ∈ C \ ∆̺.

Note that f is even quasiconformal in view of the quasiconformal removability of
analytic arcs (see [LV, p. 47]).

3) Finally, let us show that, under the condition (7), M(ϕ) has the cardinality
of the class of all measurable functions ω: C → ∆.

By the existence theorem for the class FQ , Q = 1 + δ , for every measurable
function α(z): ∆̺ → R there exists a mapping f ∈ H(ϕ) ∩ FQ with the complex
dilatation

µ(z) =

{

τeiα(z), z ∈ ∆̺,
0, z ∈ C \ ∆̺,

where τ = δ/(2 + δ) and δ is as in the previous part of the proof. However, the
formula α(z) = γ

(

κ(z)
)

, where κ(z) = (̺−|z|)−1z/|z| , provides a one-to-one cor-
respondence between all measurable functions γ: C → R and all measurable func-
tions α: ∆̺ → R . Moreover, the collection of all measurable functions Ω: C → C

has a natural one-to-one correspondence to all pairs (γ1, γ2) of measurable func-
tions γ1 = Re Ω: C → R , γ2 = ImΩ: C → R .

It is well known that the cardinality of the Cartesian product M × M for
each infinite set M coincides with the cardinality of M (see e.g. [AP, p. 30]).
Consequently, the cardinality of M(ϕ) is equal to or greater than the cardinality
of all measurable functions Ω: C → C . On the other hand, as a subset of the
latter, M(ϕ) cannot have a greater cardinality. Hence their cardinalities coincide.
Further, the formula Ω(z) = β

(

ω(z)
)

, where β: ∆ → C , β(ζ) = (1 − |ζ|)−1ζ/|ζ| ,
gives us a one-to-one correspondence between all measurable functions Ω: C → C

and all measurable functions ω: C → ∆.
Thus the proof of Proposition 1 is complete.

Proof of Proposition 2. 1) Consider first the function

(11) ω(b) = inf
1≤a≤b

ϕ(a), b ∈ [1,∞).



On the noncompactness of David classes 195

By the construction, ω is nonincreasing and ω(b) ≤ ϕ(b) for all b ∈ [1,∞) . Hence

(12) H(ω) ⊆ H(ϕ).

On the other hand, every measurable function p: C → [1,∞) satisfying the in-
equality

meas {z ∈ C : p(z) > a} ≤ ϕ(a)

for all a ≥ 1, will, by (11), also satisfy the inequality

meas {z ∈ C : p(z) > b} ≤ ω(b)

for all b ≥ 1, i.e.

(13) H(ϕ) ⊆ H(ω).

Comparing (12) and (13) we have

(14) H(ϕ) = H(ω).

2) Now consider the function

(15) κ(t) = lim
b→t+0

ω(b).

By the construction, this function is continuous from the right, non-increasing and
κ(t) ≤ ω(t) for all t ∈ [1,∞) . Consequently, the inclusion

(16) H(κ) ⊆ H(ω)

holds. Moreover, for every measurable function p: C → [1,∞) ,

meas {z ∈ C : p(z) > t} = lim
n→∞

meas
{

z ∈ C : p(z) > t +
1

n

}

in view of the countable additivity of the Lebesgue measure. Hence

(17) H(ω) ⊆ H(κ).

Comparing (11)–(17) we obtain (8) and (9).

3) Finally, let us prove the uniqueness of the regular change ϕr .
Indeed, let us assume that there exist two different non-increasing functions

ϕ1 and ϕ2: [1,∞) → [0,∞] , which are continuous from the right and such that
(10) holds. Let

Φ2 = ϕ2(t) > ϕ1(t) = Φ1

for some t ∈ [1,∞) and let ∆ = Φ2 − Φ1 > 0. Then there exists τ > t such that
0 < ϕ2(t) − ϕ2(τ) < 1

3∆ and 0 < ϕ1(t) − ϕ1(τ) < 1
3∆. Consider the mapping

f(z) =

{

z|z|τ−1, |z| ≤ ̺,
cz, |z| ≥ ̺,

if ̺ ≥ 1 or f(z)/c if ̺ ≤ 1, where ̺ =
√

ϕ2(τ)/π , c = ̺τ−1 . It has the dilatation

p(z) =

{

τ, |z| < ̺,
1, |z| > ̺,

and thus f or f/c ∈ H(ϕ2) \ H(ϕ1) . This contradicts the assumption (10).
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2. Main results

In view of Proposition 2 on the regular change in the classes H(ϕ) , we may
assume without loss of generality that the functions ϕ: [1,∞) → [0,∞] are non-
increasing and continuous from the right, i.e., they are measure functions. Thus,
the criterion below gives the final solution to the compactness problem for the
classes under consideration.

Theorem 1. Let ϕ: [1,∞) → [0,∞] be an arbitrary measure function. Then

the class H(ϕ) is sequentially compact if and only if ϕ has the form

(18) ϕ(t) =

{

∞, 1 ≤ t < Q,

0, t ≥ Q,

for some Q ∈ [1,∞) .

In other words, there exist no compact classes among the classes H(ϕ),
with the exception of the well-known classes FQ , Q ≥ 1, consisting of all Q -
quasiconformal mappings f :C →C normalized by (3).

Corollary 2. There exist no compact classes among David classes. There

exist no closed classes among David classes.

Indeed, for David classes,

(19) ϕ(t) =

{

∞, 1 ≤ t < T ,
ce−γt, t ≥ T ,

where T ≥ 1, c > 0 and γ > 0. It is easy to see that the given functions are
non-increasing and continuous from the right. By Theorem 1, the classes H(ϕ)
cannot be sequentially compact. Moreover, by David’s theorem, the given classes
of homeomorphisms are locally uniformly bounded and equicontinuous and, con-
sequently, precompact by the Arzela–Ascoli theorem. Thus, the lack of sequential
compactness in these classes is equivalent to the lack of completeness.

Corollary 3. Let ϕ: [1,∞) → [0,∞] be a measure function. Then the class

H(ϕ) is closed if and only if ϕ has the form (18) .

Thus, there exist no closed classes H(ϕ) with the exception of FQ .
To verify this, apply Theorem 1 to the precompact classes H(ϕ) ∩ FK , in

other words, to the classes H(ϕK) ⊆ FK , where for all K > 1

(20) ϕK(t) =

{

ϕ(t), 1 ≤ t < K,
0, t ≥ K.

In this connection, the problem of describing the closure of a class H(ϕ)
arises. The following theorem shows that the problem is nontrivial.
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Theorem 2. Let ϕ: [1,∞) → [0,∞] be a measure function that is exponen-

tially decreasing at ∞ , with the exception of the form (18) . Then

(21) H(ϕ) 6= H(Ψ)

for all functions Ψ: [1,∞) → [0,∞] .

Thus, the closure of a class H(ϕ) cannot be a class of the same type except
for the degenerate cases (18).

With respect to compactness and closure the situation of the classes H(ϕ)
radically differs from that of the classes HΦ of all sense-preserving homeomor-
phisms f :C →C in W 1

1,loc normalized by (3) and satisfying integral restrictions

(22)

∫∫

C

Φ
(

p(z)
)

dx dy ≤ 1.

The classes HΦ have a very strong theory as regards compactness and closure
(see [R4]).

First of all, note that HΦ is nonempty if and only if inf Φ = 0. If the
function Φ has exponential growth at ∞ , i.e., Φ(t) ≥ Beβt , t ≥ T , the existence

theorem holds by David’s theorem because (22) implies (5) under the given growth
condition. Under these conditions HΦ is compact if and only if the function Φ is
non-decreasing, convex and continuous from the left at the point

(23) K = sup{t ∈ [1,∞) : Φ(t) < ∞}.

We note that, for such Φ,

(24) HΦ ⊆ H(ϕ),

where ϕ = 1/Φ. However, as the above criteria for compactness show, the converse
inclusion is valid if and only if ϕ has the form (18). Thus, the classes HΦ and
H(ϕ) practically never coincide.

The closure of HΦ is always a class HΦ0 of a similar type, where Φ0 is the
so-called lower envelope of Φ. More precisely,

(25) Φ0(t) = sup
ω∈Ω

ω(t), t ∈ [1,∞),

where Ω is the family of all continuous non-decreasing convex functions ω: [1,∞) →
[0,∞) such that ω(t) ≤ Φ(t) for all t ∈ [1,∞) . In other words, the lower envelope
of a function Φ: [1,∞) → [0,∞] is the greatest non-decreasing convex function
Φ0: [1,∞) → [0,∞] with its graph lying below the graph of Φ and continuous
from the left at the point (23) (see e.g. [B]).
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3. Main lemma

The construction in the following lemma is due to [R1, p. 9].

Lemma 1. Let t1, t2 ∈ [1, Q] , t1 6= t2 , λ ∈ [0, 1] , be arbitrary numbers.

Then there exists a sequence of Q -quasiconformal mappings fn: C → C , whose

dilatations pn take only two values, t1 and t2 a.e., and which converges locally

uniformly to a Q -quasiconformal mapping f0: C → C with the dilatation

(26) p0(z) ≡ t0 = λt1 + (1 − λ)t2.

Moreover, for every measurable set E ⊆ C with 0 < meas E < ∞ , the limit

relation

(27) lim
n→∞

meas {z ∈ E : pn(z) = t1}

meas E
= λ

holds.

Remark 1. By the construction, f0 will be simply a stretching along an
imaginary axis and fn are obtained by the method of gluing of such stretchings
together.

Proof. First of all, consider Q -quasiconformal affine mappings

ζ = gs(z) = 1
2 (1 + ts)z + 1

2(1 − ts)z̄ = x + iyts

that are stretchings along the y -axis, z = x + iy , with distortion coefficients ts ,
s = 0, 1, 2.

Let us fix a positive integer n ∈ {1, 2, . . . , } and make use of the lines

lmn =
{

x + i
m

2n
: x ∈ R

}

,

where m = 0,±1,±2, . . ., to partition the whole plane C into strips that are
parallel to the real axis. In turn, each such strip is partitioned into two strips by
lines of the form

l∗mn =
{

x + i
( m

2n
+

λ

2n

)

: x ∈ R
}

.

We set fn(z) = g1(z) between the lines l0n and l∗0n . In all the remaining strips
we define fn(z) = gs(z) + Cs

mn , where s = 1 or 2 (we take s = 1 between
the lines lmn and l∗mn , and s = 2 between the lines l∗mn and lm+1,n ) and the
constants Cs

mn are found for every fixed n by induction on m on both sides of
zero (m = 0,±1,±2, . . .) from the gluing condition.

Note that the mappings fn are Q -quasiconformal in view of the removability
of analytic arcs (see e.g. [LV, p. 47]). Moreover, in the strips between the lines



On the noncompactness of David classes 199

lmn and l∗mn , we have pn(z) = t1 , while in the strips between the lines l∗mn and
lm+1,n we have pn(z) = t2 .

Further, when increments of the independent variable ∆zs = ihs , hs > 0,
are purely imaginary, we have purely imaginary increments of the functions

∆gs = ihsts, s = 0, 1, 2.

Thus by the construction fn we obtain

∆fn = i
1

2n
{λt1 + (1 − λ)t2} = i

t0
2n

= ∆g0

for ∆z = i2−n . To verify this, take above h0 = 2−n , h1 = λ2−n , h2 = (1−λ)2−n .
Hence

(28) fn(z) = g0(z)

on the lines lmn , m = 0,±1,±2, . . ., n = 1, 2, . . . in view of the initial date
fn(z) = g1(z) = z = g0(z) on the real axis.

It is thus obvious that on the lines lmn , which constitute a dense set in C ,
the sequence fn(z) converges to the mapping f0(z) ≡ g0(z) and, consequently, it
converges to f0(z) locally uniformly in the whole plane C (see [LV, p. 76]).

Finally, the relation (27) follows immediately from the measure partitioning
among the values t1 and t2 in the dilatations pn .

Corollary 4. For all t1 , t2 ∈ [1, Q] , t1 6= t2 , 1 < Q < ∞ , λ ∈ [0, 1] ,
E ⊂ C with 0 < meas E < ∞ , there exists a sequence of mappings fn ∈ FQ with

dilatations

pn(z) =







t1, z ∈ En,

t2, z ∈ E \ En,

1, z ∈ C \ E,

a.e. where En ⊆ E , such that fn → f0 ∈ FQ locally uniformly,

lim
n→∞

meas En/meas E = λ,

and

p0(z) =

{

t0, z ∈ E,

1, z ∈ C \ E,

where t0 = λt1 + (1 − λ)t2 .

Corollary 4 is immediately obtained from Lemma 1, the sequential compact-
ness of the class FQ and the following comparison lemma (see [GR], [R2]).
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Lemma. Let (fn) and (gn) , n = 1, 2, . . ., be sequences of Q -quasiconformal

mappings with complex dilatations µn and νn that converge locally uniformly

to Q -quasiconformal mappings f0 and g0 with complex dilatations µ0 and ν0 ,

respectively. If E ⊂ C is measurable and

(29) meas {z ∈ E | µn(z) 6= νn(z)} → 0,

then

(30) µ0(z) = ν0(z)

almost everywhere in E .

Here we have to stress that, generally speaking, in spite of (29), µn(z) and
νn(z) may be nonconverging in measure to µ0(z) and ν0(z) , respectively. Further-
more, there exist examples of Q -quasiconformal mappings fn , where the corre-
sponding µn do not converge even weakly to µ0 in Lp

loc , p ≥ 1, although fn → f0

locally uniformly (see [LV, p. 195], [R1, p. 14]).

4. Proof of the compactness criterion

The sufficiency of the condition (18) for the compactness of H(ϕ) is obvious,
because in this case H(ϕ) = FQ . The proof of the necessity of the condition (18)
is reduced to the proof of the following series of simple statements.

Proposition 3. Let ϕ: [1,∞) → [0,∞] be an arbitrary measure function. If

the class H(ϕ) is sequentially compact, then

(31) Q1 = sup
ϕ(t)=∞

t < ∞.

Here the supremum is taken over t ∈ [1,∞) . If there exist no points t ∈ [1,∞)
such that ϕ(t) = ∞ , we let Q1 = 1.

Proposition 4. Let ϕ: [1,∞) → [0,∞] be an arbitrary measure function. If

the class H(ϕ) is sequentially compact, ϕ has the form

(32) ϕ(t) =







∞, t ∈ [1, Q1),
c, t ∈ [Q1, Q2),
0, t ∈ [Q2,∞),

where 0 < c < ∞ , Q1 is given by (31) and

(33) Q2 = inf
ϕ(t)=0

t.

Here the infimum is taken over t ∈ [1,∞) . If there exist no points t ∈ [1,∞)
such that ϕ(t) = 0, we set Q2 = ∞ .
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Proposition 5. Let ϕ: [1,∞) → [0,∞] be an arbitrary measure function. If

the class H(ϕ) is sequentially compact, then

(34) Q1 = Q2

where Q1 and Q2 are given by (31) and (33) , respectively.

Proof of Proposition 3. Let us assume that ϕ ≡ ∞ , t ∈ [1,∞) . Consider the
sequence of quasiconformal mappings

fn(z) = z|z|tn−1 = z(tn+1)/2 z̄(tn−1)/2,

z ∈ C , where tn ∈ [1,∞) is an arbitrary sequence such that tn → ∞ as n ∈ ∞ .
It is easy to see that

µn(z) =
z

z̄

tn − 1

tn + 1
a.e.,

i.e., pn(z) = tn a.e. and fn ∈ H(ϕ) for all n = 1, 2, . . . .
On the other hand, for every fixed |z| > 1 we have

lim
n→∞

|fn(z)| = lim
n→∞

|z|tn = ∞.

Hence there exists no subsequence (fnk
) of (fn) converging locally uniformly to

a mapping f0 ∈ H(ϕ) . This contradicts the sequential compactness of H(ϕ) .

Proof of Proposition 4. If Q1 = Q2 , we automatically have the form (32).
Let Q2 > Q1 . Then, by the definitions of Q1 and Q2 , 0 < ϕ(t) < ∞ for

all t ∈ (Q1, Q2) . We show first that if ϕ(t∗) = c > 0 for some t∗ ∈ (Q1, Q2) ,
then ϕ(t) = c for all t ∈ (t∗, Q2) , too. Since t∗ ∈ (Q1, Q2) is arbitrary, this
immediately leads us to (32).

Set t∗ = supϕ(t)=c t ≥ t∗ and let us assume that t∗ < Q2 . Then there exists
a point τ ∈ (t∗, Q2) where 0 < ϕ(τ) < c . Taking t1 = τ , t2 = t∗ , λ = ϕ(τ)/c
and

E = {z = x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ c − ε},

ε ∈ (0, c) , in Corollary 4, we get a sequence (fn) ⊂ H(ϕ) ∩ Fτ converging locally
uniformly to a mapping f0 ∈ H(ϕ) ∩ Fτ with the dilatation

p0(z) =

{

t0, z ∈ E,
1, z ∈ C \ E,

where t0 = λτ + (1 − λ)t∗ , i.e. t∗ < t0 < τ . Moreover,

meas {z ∈ C : p0(z) = t0} = c − ε.

Thus, for every t ∈ (t∗, t0) , we have the lower bound ϕ(t) ≥ c − ε and, since
ε ∈ (0, c) was arbitrary, ϕ(t) ≥ c = ϕ(t∗) . Since the function ϕ is non-increasing,

ϕ(t) ≡ ϕ(t∗) = c, t ∈ (t∗, t0).

However, the last statement contradicts the definition of the point t∗ . Thus,
the assumption t∗ < Q2 was false and, consequently, ϕ(t) = c in the whole
interval (t∗, Q2) . From this we finally come to the relation (32).
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Proof of Proposition 5. Let us assume that Q2 > Q1 . Then there exists a
point τ ∈ (Q1, Q2) . Letting t1 = τ , t2 = Q1 ,

E = {z = x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ N}, λ =
(c − ε)

N
,

in Corollary 4, where ε ∈ (0, c) and N > c = ϕ(τ) > 0, we get a sequence
(fn) ⊂ H(ϕ) ∩ Fτ converging locally uniformly to some mapping f0 ∈ H(ϕ) ∩ Fτ

with the dilatation

p0(z) =

{

t0, z ∈ E,
1, z ∈ C \ E,

where t0 = λτ +(1−λ)Q1 . Hence Q1 < t0 < τ < Q2 . Moreover, for t ∈ (Q1, t0) ,

ϕ(t) ≥ meas {z ∈ C : p0(z) = t0} = N > c = ϕ(τ).

This, however, contradicts (32). Thus, the above assumption was false.

5. Proof of the closure theorem

By the David theorem, the class H(ϕ) and, consequently, also H(ϕ) is locally
bounded and locally equicontinuous. Hence H(ϕ) is precompact by the Arzela–
Ascoli theorem. Since the class H(ϕ) is closed, it is sequentially compact.

By Theorem 1 the equality

(35) H(ϕ) = H(Ψ)

would hold only for the function Ψ of the form

Ψ(t) =

{

∞, 1 ≤ t < Q,
0, t ≥ Q,

for some Q ∈ [1,∞) .
Since (35) implies the inclusion H(ϕ) ⊆ H(Ψ) = FQ , it is clear that

infϕ(t)=0 t ≤ Q . Moreover,

(36) ϕ(Q − 0) < ∞,

because ϕ(t) is not of the form (18).
Consider the mapping f ∈ H(Ψ),

f(z) =
z + qz̄

1 + q
,

where q = (Q − 1)/(Q + 1). By (35) there exists a sequence (fn) ⊂ H(ϕ) such
that fn → f locally uniformly as n → ∞ .
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By the convergence theorem in [R3],

(37) lim inf
n→∞

∫∫

E

pn(z) dx dy ≥

∫∫

E

p(z) dx dy

for every measurable set E ⊂ C with 0 < meas E < ∞ ; here pn and p are
the dilatations of fn and f , respectively. However, p(z) ≡ Q and, by (36),
ϕ(t) ≤ c < ∞ for some ε > 0 and c > 0 and all t ∈ [Q − ε, Q] . Choosing

E = ∆r = {z ∈ C : |z| < r},

where

r =

√

α

π
, α =

2cQ

ε
,

we obtain

lim sup
n→∞

∫∫

E

pn(z) dx dy ≤ (Q − ε)α + Qc = Qα − Qc < Qα =

∫∫

E

p(z) dx dy,

i.e., a contradiction with inequality (37).
Thus (35) is impossible and the proof of Theorem 2 is complete.
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