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Abstract. A result of Hardy and Littlewood relates Hölder continuity of analytic functions
in the unit disk with a bound on the derivative. Gehring and Martio extended this result to the
class of uniform domains. We further extend this result to the class of John domains.

1. Introduction

The research in this paper stems from two elements of classical function the-
ory. The first is a criterion due to Hardy and Littlewood for a function to be
Hölder continuous in the unit disk B ⊂ C . The second is a class of domains
first considered by Fritz John in his studies of plane elasticity and rigidity of local
quasi-isometries.

Suppose that f is a function analytic in the unit disk B ⊂ C and that
0 < α ≤ 1. Then the theorem of Hardy and Littlewood mentioned above asserts
that

(1.1) |f ′(z)| ≤ m dist(z, ∂B)α−1

for all z ∈ B if and only if

(1.2) |f(z1) − f(z2)| ≤
M

α
|z1 − z2|

α

for all z1, z2 ∈ B , where m and M depend only on each other [HL]. By integration
along hyperbolic geodesics and by using the Cauchy integeral formula, we obtain
extensions of this result to the cases when α = 0 and α < 0 in (1.1) above. If
α = 0, then (1.2) becomes

|f(z1) − f(z2)| ≤ m log

(

1 +
2|z1 − z2|

dist(z2, ∂B)

)

≤ 2m log

(

1 +
|z1 − z2|

dist(z2, ∂B)

)

.

If α < 0, then (1.2) becomes

|f(z1) − f(z2)| ≤ M
(

min
j=1,2

dist(zj , ∂B)
)α

.

The goal of this paper is to find geometric criteria for the validity of these exten-
sions of the theorem of Hardy and Littlewood in a simply-connected plane domain.
This goal is achieved by the following two main results, proved in Section 4.
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Theorem 1.1. If D ⊂ C is simply-connected, then D is a b -John domain

if and only if f analytic and satisfying

|f ′(z)| ≤ dist(z, ∂D)−1

in D implies

|f(z1) − f(z2)| ≤ a log
(

1 +
λD(z1, z2)

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D where a is a constant which depends only on the constant b .

Theorem 1.2. If D ⊂ C is bounded and simply-connected, then D is a

b -John domain if and only if f analytic and satisfying

|f ′(z)| ≤ dist(z, ∂D)α−1

in D implies f is in Ordα(D) with

|f(z1) − f(z2)| ≤ c
(

min
j=1,2

dist(zj , ∂D)
)α

for all z1, z2 ∈ D where α < 0 and c is a constant which depends only on the

constants b and α .

A domain D ⊂ Rn is a b-John domain if each pair of points x1, x2 ∈ D can
be joined by an arc γ ⊂ D for which

min
j=1,2

l
(

γ(xj, y)
)

≤ b dist(y, ∂D)

for all y ∈ γ , where γ(xj, y) is the subarc of γ with endpoints xj and y . A
domain is John if it is b -John for some constant b . John domains appear naturally
in many areas of analysis, including complex dynamics, approximation theory, and
elasticity. (See [NV], [MS].)

I would like to thank the referee for a careful reading and for several helpful
comments which greatly improved this paper.

2. Preliminary results

We let dist(A, B) denote the euclidean distance from a set A ⊂ Rn to a set
B ⊂ Rn . The euclidean distance between two points x, y ∈ Rn is denoted by
|x − y| . Also, l(α) denotes the euclidean length of a rectifiable path α .

For x ∈ Rn and r > 0, Bn(x, r) denotes the ball centered at x of radius r .
The unit disk in C , {z : |z| < 1} , is denoted by B .
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Unless stated otherwise, D will always be a simply-connected domain in Rn

with at least two boundary points taken with respect to the usual topology in Rn ,
and D∗ = Rn \D is the exterior of D . A domain D ⊂C is a conformal disk if it
is conformally equivalent to B ; i.e., D is a conformal disk if and only if ∂D is a
non-degenerate continuum.

If c is a constant depending only on another constant b , we write “c = c(b)”.
For α < 1, we define the α-quasihyperbolic metric kα

D in a domain D ⊂ Rn

by

(2.1) kα
D(x1, x2) = inf

γ

∫

γ

ds

dist(x, ∂D)1−α

where the infimum is taken over all rectifiable arcs γ joining x1 and x2 in D .
When α = 0, we have k0

D = kD , the usual quasihyperbolic metric (see [GO], e.g.).
We define the inner metric λD in a domain D by

λD(x1, x2) = inf
β

l(β)

where β is any path joining x1 , x2 in D .
We say that D is a b-John domain, 1 ≤ b < ∞ , if each pair of points

x1, x2 ∈ D can be joined by an arc γ ⊂ D for which

(2.2) min
j=1,2

l
(

γ(xj, y)
)

≤ b dist(y, ∂D)

for all y ∈ γ . Here γ(xj, y) denotes the part of γ between xj and y . We say
that D is John if it is b -John for some b . It follows that a bounded domain D is
a John domain if there exists a point x0 ∈ D such that each point x ∈ D can be
joined to x0 by an arc γ ⊂ D for which

(2.3) l
(

γ(x, y)
)

≤ b dist(y, ∂D)

for all y ∈ γ . The point x0 is called a John center ; we can take x0 such that
dist(x0, ∂D) = supx∈D dist(x, ∂D) . Finally when a John domain D is also a
conformal disk, we say that D is a John disk. (See [NV].)

An arc satisfying (2.2) is called a double b-cone arc. An arc satisfying (2.3)
is called a b-cone arc. Quasihyperbolic and hyperbolic geodesics in b -John disks
are double b1 -cone arcs, where b1 = b1(b) [GHM], [NV].

A domain D is said to be b-uniform, 1 ≤ b < ∞ , if each pair of points x1 ,
x2 in D \ ∞ can be joined by a rectifiable arc γ ⊂ D which in addition to (2.2)
satisfies

l(γ) ≤ b|x1 − x2|.

We say that D is uniform if it is b -uniform for some b . Since uniform domains
satisfy (2.2), a uniform domain is a John domain. (See [G2], e.g.)
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Given a set A in Rn , we let Lipα(A) , 0 < α ≤ 1, denote the Lipschitz class
of mappings f : A → Rp satisfying for some m < ∞

(2.4) |f(x1) − f(x2)| ≤ m|x1 − x2|
α

for all x1 , x2 in A . If D is a domain in Rn , then f : D → Rp belongs to the
local Lipschitz class loc Lipα(D) if there exists a constant m < ∞ such that (2.4)
holds whenever x1 and x2 lie in any open ball B which is contained in D .

In Lipα(D) and loc Lipα(D) we shall use the seminorms ‖f‖α and ‖f‖loc
α ,

respectively,

‖f‖α = inf{m : |f(x1) − f(x2)| ≤ m|x1 − x2|
α, x1, x2 ∈ D}

‖f‖loc
α = inf{m : |f(x1) − f(x2)| ≤ m|x1 − x2|

α, x1, x2 ∈ B ⊂ D},

where B ranges over all balls contained in D .
Given a set A in Rn , we let Ordα(A) , α < 0, denote the class of mappings

f : A → Rp satisfying for some m < ∞

(2.5) |f(x1) − f(x2)| ≤ m
(

min
j=1,2

dist(xj , ∂A)
)α

for all x1 , x2 in A . We use this notation to parallel that of Lipα , and because
we are examining the order of growth of f(x) as x → ∂D . If D is a domain in
Rn , then f : D → Rp belongs to the class loc Ordα(D) if there exists a constant
m < ∞ such that (2.5) holds whenever x1 and x2 lie in any open ball which is
contained in D .

In Ordα(D) and loc Ordα(D) we shall use the seminorms ‖f‖∗α and ‖f‖∗ loc
α ,

respectively,

‖f‖∗α = inf

{

m : |f(x1) − f(x2)| ≤ m
(

min
j=1,2

dist(xj , ∂D)
)α

, x1, x2 ∈ D

}

‖f‖∗ loc
α = inf

{

m : |f(x1) − f(x2)| ≤ m
(

min
j=1,2

dist(xj , ∂D)
)α

, x1, x2 ∈ B ⊂ D
}

,

where B ranges over all balls in D .

3. John domains and the quasihyperbolic metric

Gehring and Osgood essentially showed (up to an additive constant) that a
domain D is uniform if and only if it satisfies

kD(x1, x2) ≤ cjD(x1, x2)

for all x1, x2 ∈ D and some constant c , where

jD(x1, x2) =
1

2
log

(

|x1 − x2|

dist(x1, ∂D)
+ 1

)(

|x1 − x2|

dist(x2, ∂D)
+ 1

)

.

(See [GO], [G2, p. 97].) We define a similar metric j′D by

j′D(x1, x2) =
1

2
log

(

λD(x1, x2)

dist(x1, ∂D)
+ 1

)(

λD(x1, x2)

dist(x2, ∂D)
+ 1

)

.

We find that kD and j′D are related in John disks.
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Theorem 3.1. A simply-connected proper subdomain D ⊂ C is a b -John

disk if and only if there exists a constant c such that

kD(z1, z2) ≤ cj′D(z1, z2)

for all z1, z2 ∈ D , with c = c(b) and b = b(c) .

This result is a planar version of [KL, Theorem 4.1].

4. Domains in the plane

Throughout this section, we will take D ⊂ C .
In the previous section, we discussed analytic functions in the unit disk with

various bounds on the derivative. The result of Hardy and Littlewood mentioned at
the beginning of the section can be generalized to certain domains in C . Gehring
and Martio extended this result to uniform domains [GM1, Corollary 2.2], and
called the property that (1.1) implies (1.2) in D for every 0 < α ≤ 1 the Hardy–

Littlewood property. This property does not characterize uniform domains; a more
general geometric condition than uniformity which implies the Hardy–Littlewood
property was introduced in [L]. The Hardy–Littlewood property was further stud-
ied by Astala, K. Hag, P. Hag, and Lappalainen [AHHL], in which the relationship
between several types of domains with various geometric and extension properties
was established. They called the property that (1.1) implies (1.2) in D for some
α , 0 < α ≤ 1, the Hardy–Littlewood property of order α .

Gehring and Martio did find that a simply-connected domain D ⊂ C has the
Hardy–Littlewood property of order α for some 0 < α ≤ 1 only if D is LLC1

(see (5.1.i)).
We will repeatedly use a generalization of a result by Kaufman and Wu [KW].

The proof is essentially identical, so we omit it here. We first introduce an ex-
tension of a distance function used by Kaufman and Wu. We define the distance
function δα

D on a domain D ⊂C for α ≤ 1 by

δα
D(z1, z2) = sup |f(z1) − f(z2)|

where the supremum is taken over all analytic functions f on D with

(4.1) |f ′(z)| ≤ dist(z, ∂D)α−1.

We see that δα
D is connected to the metric kα

D , introduced in Section 2 and defined
in (2.1).

Lemma 4.1 (See [KW, Theorem 1]). In a conformal disk D in C ,

kα
D(z1, z2) ≤ bαδα

D(z1, z2)

for all z1, z2 ∈ D , where bα is a constant depending only on α .
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First, we examine the Hardy–Littlewood property, and some analogues, in
John disks.

Theorem 4.2 ([GM1, Theorem 2.1]. If D is uniform and if f is defined and

satisfies

|∂f(z)| = lim sup
|h|→0

|f(z + h) − f(z)|

|h|
≤ mdist(z, ∂D)α−1

in D , for some 0 < α ≤ 1 , then f is in Lipα(D) with

‖f‖α ≤
cm

α

where c is a constant which depends only on the uniformity constant b .

This implies that a uniform domain has the Hardy–Littlewood property with
constant depending only on b . The same is not true for John domains, as the
following example shows.

Example 4.3. Let D = B\(−1, 0]. Then D is a John disk, but D does not
have the Hardy–Littlewood property. For let

f(z) = z1/2, zn = 1
4
eiπn/(n+1), wn = 1

4
e−iπn/(n+1),

n = 1, 2, . . . . Then f is analytic and

|f ′(z)| = 1
2
|z−1/2| ≤ 1

2
dist(z, ∂D)(1/2)−1

in D , since 0 ∈ ∂D , but

lim
n→∞

|f(zn) − f(wn)| = 1
2 + 1

2 = 1

while
lim

n→∞
|zn − wn|

1/2 = 0.

If we take f(z) = zα for any α ∈ (0, 1), we will have

|f ′(z)| = α|zα−1| ≤ α dist(z, ∂D)α−1

in D , but
lim

n→∞
|f(zn) − f(wn)| > 0

while
lim

n→∞
|zn − wn|

α = 0.

An analogue of the Hardy–Littlewood property does hold in John disks, how-
ever. If we replace the euclidean metric with the inner metric, we get the following
result.
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Theorem 4.4. If D is a b -John disk and if f is defined and satisfies

(4.2) |∂f(z)| ≤ mdist(z, ∂D)α−1

in D for some 0 < α ≤ 1 , then

|f(z1) − f(z2)| ≤
cm

α
λD(z1, z2)

α,

where c is a constant which depends only on b .

Proof. Fix z1, z2 ∈ D and let γ be the hyperbolic geodesic joining z1, z2

in D . Next let s denote arclength measured along γ from z1 , let l = l(γ) , and
let z(s) denote the corresponding representation for γ .

Set g(s) = f
(

z(s)
)

. Then

|∂g(s)| = lim sup
h→0

|g(s + h) − g(s)|

|h|
≤

∣

∣∂f
(

z(s)
)
∣

∣.

Since D is a b -John disk,

min(s, l − s) ≤ b1 dist
(

z(s), ∂D
)

,

b1 = b1(b) . Thus by (4.2),

|∂g(s)| ≤ mdist
(

z(s), ∂D
)α−1

≤ m
(min(s, l − s)

b1

)α−1

for 0 < s < l , and g is absolutely continuous. The Gehring–Hayman inequality
gives a constant c0 > 0 such that any curve δ ⊂ D with endpoints z1 , z2 satisfies

l(γ) ≤ c0l(δ)

[GH, Theorem 2], [Ja]. So we have

|f(z1) − f(z2)| ≤

∫ l

0

|∂g(s)| ds ≤ 2mb1
1−α

∫ l/2

0

sα−1 ds

≤
2b1

(1−α)m

α

(c0 λD(z1, z2)

2

)
α

≤
cm

α
λD(z1, z2)

α,

c = c(b) .

We now have
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Corollary 4.5. If D is a b -John disk and if f is analytic and satisfies

|f ′(z)| ≤ mdist(z, ∂D)α−1

for z in D , then

|f(z1) − f(z2)| ≤
cm

α
λD(z1, z2)

α,

for all z1 , z2 in D , where c is a constant which depends only on b .

Next, we examine the case α = 0.

Theorem 4.6. A conformal disk D ⊂ C is b -uniform if and only if f analytic

and satisfying

(4.3) |f ′(z)| ≤ dist(z, ∂D)−1

in D implies

(4.4) |f(z1) − f(z2)| ≤ a log

(

1 +
|z1 − z2|

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D where a is a constant which depends only on the constant b .

Proof. First, suppose D is b -uniform. Then by (3.1),

kD(z1, z2) ≤ c log

(

1 +
|z1 − z2|

dist(z1, ∂D)

)(

1 +
|z1 − z2|

dist(z2, ∂D)

)

≤ a log

(

1 +
|z1 − z2|

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D , where a depends only on b . If f is analytic and satisfies (4.3)
in D , then

|f(z1) − f(z2)| ≤ kD(z1, z2) ≤ a log

(

1 +
|z1 − z2|

minj=1,2 dist(zj , ∂D)

)

as desired.
Now suppose that every f analytic and satisfying (4.3) in D also satis-

fies (4.4). By Lemma 4.1,

kD(z1, z2) = k0
D(z1, z2) ≤ c0δ

0
D(z1, z2) ≤ a log

(

1 +
|z1 − z2|

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D . So by (3.1), D is uniform.
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Theorem 4.7. A conformal disk D ⊂ C is b -John if and only if f analytic

and satisfying

(4.5) |f ′(z)| ≤ dist(z, ∂D)−1

in D implies

(4.6) |f(z1) − f(z2)| ≤ a log

(

1 +
λD(z1, z2)

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D where a is a constant which depends only on the constant b .

Proof. First, suppose D is b -John. Then by Theorem 3.1,

kD(z1, z2) ≤ a log

(

1 +
λD(z1, z2)

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D , where a depends only on b . If f is analytic and satisfies (4.5)
in D , then

|f(z1) − f(z2)| ≤ kD(z1, z2) ≤ a log

(

1 +
λD(z1, z2)

minj=1,2 dist(zj , ∂D)

)

as desired.
Now suppose that every f analytic and satisfying (4.5) in D also satis-

fies (4.6). By Lemma 4.1,

kD(z1, z2) = k0
D(z1, z2) ≤ c0δ

0
D(z1, z2) ≤ a log

(

1 +
λD(z1, z2)

minj=1,2 dist(zj , ∂D)

)

for all z1, z2 ∈ D . So by Theorem 3.1, D is John.

Finally, we examine the case α < 0.

Theorem 4.8. If D ⊂ C is bounded and simply-connected, then D is a

b -John disk if and only if f analytic and satisfying

(4.7) |f ′(z)| ≤ dist(z, ∂D)α−1

in D implies f is in Ordα(D) with

‖f‖∗α ≤ c

where α < 0 and c is a constant which depends only on the constants b and α .

Proof. First suppose D is a b -John disk, and let f be analytic and satisfying
(4.7) in D . Then by integration over double b -cone arcs and by the Cauchy
integral formula, f is in Ordα(D) .

Now suppose that whenever f is a function analytic in D satisfying (4.7),
then f is in Ordα(D) . Then, by Lemma 4.1,

kα
D(z1, z2) ≤ bαδα

D(z1, z2) = bα sup |f(z1) − f(z2)| ≤ bαc
(

min
j=1,2

dist(zj , ∂D)
)α

where the supremum is taken over all analytic functions f on D satisfying (4.7).
Theorem 6.5 now implies that D is a John domain.
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5. Geometric properties and extension properties

Recall that a simply-connected domain D ⊂C is a K -quasidisk if and only
if it is uniform with constant b , K = K(b) , b = b(K) [MS]. We say an arbitrary
set E ⊂C is c-linearly locally connected (c − LLC), c a constant, if for z0 ∈ C

and 0 < r < ∞ ,

(5.1)
(i) points in E ∩B(z0, r) can be joined in E ∩B(z0, cr); and

(ii) points in E \B(z0, r) can be joined in E \B(z0, r/c).

The set E is c− LLC1 if it satisfies (5.1.i), and c− LLC2 if it satisfies (5.1.ii). A
simply-connected domain D is a K -quasidisk if and only if it is c-linearly locally
connected, K = K(c) , c = c(K) [G1], and D is a b -John disk if and only if it
satisfies (5.1.ii), b = b(c) , c = c(b) [NV, 4.6].

Gehring and Martio found that the geometric property (5.1.i) is necessary
for the Hardy–Littlewood property of order α , 0 < α < 1, in simply-connected
domains D ⊂ C [GM1, Theorem 3.3]. They go on to use the Hardy–Littlewood
property to characterize quasidisks with ∞ in the boundary [GM1, Theorem 4.2].
Combining these results with the work in this paper yields the following corollary.

Corollary 5.1. Suppose that D ⊂ C is bounded and simply-connected.

Then D is a quasidisk if and only if for some α1 < 0 , 0 < α2 < 1 ,

(5.2) |f ′(z)| ≤ dist(z, ∂D)α1−1

in D implies f ∈ Ordα1
(D) and

(5.3) |f ′(z)| ≤ dist(z, ∂D)α2−1

in D implies f ∈ Lipα2
(D) .

Proof. First, suppose D is a quasidisk. Then D is a John disk, so by
Theorem 4.8 (5.2) implies f ∈ Ordα(D) for all α < 0. Also, D is uniform, and
so it has the Hardy–Littlewood property, i.e. (5.3) implies f ∈ Lipα(D) for all
0 < α < 1.

Now suppose that for some α1 < 0, 0 < α2 < 1, (5.2) implies f ∈ Ordα1
(D)

in D and (5.3) implies f ∈ Lipα2
(D) in D . By Theorem 4.8 D is a John disk,

and thus satisfies (5.1.ii). By [GM1, Theorem 3.3], D satisfies (5.1.i). Therefore,
D is a quasidisk.
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6. Domains in Rn

The Hardy–Littlewood property can be extended to higher dimensions by
using the concept of loc Lipα , introduced in Section 2. Recall that a function
f : D → Rp belongs to the local Lipschitz class loc Lipα(D) , 0 < α ≤ 1, if there
exists a constant m < ∞ such that (2.4) holds whenever x1 and x2 lie in any
open ball B which is contained in D . For functions analytic in a domain D ⊂ C ,
this is equivalent to the bound on the derivative

|f ′(z)| ≤ mdist(z, ∂D)α−1.

This extension to Rn was done by Gehring and Martio in the following way. A
domain D ⊂ Rn is called a Lipα -extension domain if there exists a constant a
depending only on D and α such that f ∈ loc Lipα(D) implies f ∈ Lipα(D) with

‖f‖α ≤ a‖f‖loc
α

(see [GM2]).
Gehring and Martio, in their examination of Lipα -extension domains, first

showed that this extension property is equivalent to a geometric condition. They
then used this condition to get subsequent necessary and sufficient conditions for
D to be a Lipα -extension domain. Our work in this section parallels the work of
Gehring and Martio on Lipα -extension domains, 0 < α ≤ 1, in a way analogous
to the preceding sections. We find local properties which for functions analytic in
a domain D ⊂ C are equivalent to the bound on the derivative

|f ′(z)| ≤ mdist(z, ∂D)α−1,

for α = 0 and α < 0. We then define and examine extension domains for these
properties.

We first examine Bloch-extension domains.

Theorem 6.1. A domain D ⊂ Rn is a uniform domain if and only if

(6.1) |f(x1) − f(x2)| ≤ log

(

1 +
|x1 − x2|

minj=1,2 dist(xj , ∂D)

)

for all x1, x2 ∈ D with |x1 − x2| < dist(x1, ∂D) implies

(6.2) |f(x1) − f(x2)| ≤ a log

(

1 +
|x1 − x2|

minj=1,2 dist(xj , ∂D)

)

for all x1, x2 ∈ D .
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Proof. Suppose D is uniform. Then by (3.1),

kD(x1, x2) ≤ a1 log

(

1 +
|x1 − x2|

minj=1,2 dist(xj, ∂D)

)

for all x1, x2 ∈ D . Let f satisfy (6.1). Fix x1, x2 ∈ D and let γ ⊂ D be the
quasihyperbolic geodesic with endpoints x1 and x2 . Let γ(s) be the parameteri-
zation of γ with respect to arc length measured from x1 , l = l(γ) . Let y1 = x1 .
We choose positive numbers ri and li , and points yi ∈ γ as follows:

r1 = 1
2dist(y1, ∂D),

r2 = 1
2
dist(y2, ∂D),

l1 = max{s : γ(s) ∈Bn(y1, r1)},

l2 = max{s : γ(s) ∈Bn(y2, r2)},

y2 = γ(l1);

y3 = γ(l2);

and so on. After a finite number of steps, N , say, lN = l and the process stops.
Let yN+1 = x2 . So by [GHM, Lemma 2.6],

|f(x1) − f(x2)| ≤

N
∑

i=1

a2 log

(

1 +
|yi − yi+1|

dist(yj+1, ∂D)

)

≤ a2

n
∑

i=1

kD

(

γ(yi, yi+1)
)

≤ a log

(

1 +
|x1 − x2|

minj=1,2 dist(xj , ∂D)

)

as desired.
Now suppose (6.1) implies (6.2) in D . Fix x0 ∈ D . Let

f(x) = kD(x, x0).

If x1, x2 ∈ B ⊂ D , B an open ball, then

|f(x1) − f(x2)| ≤ kD(x1, x2).

Let γ ⊂ B be the segment of the circle through x1 , x2 perpendicular to ∂B with
endpoints x1 , x2 . Then

l(γ) ≤ π|x1 − x2|

and
min
j=1,2

l
(

γ(x, xj)
)

≤ π dist(x, ∂B) ≤ π dist(x, ∂D)

for all x ∈ γ . Following the same argument used in the proof of [KL, Theorem 4.1]
we get

kD(x1, x2) ≤

∫

γ

ds

dist(x, ∂D)
≤ c log

(

1 +
|x1 − x2|

minj=1,2 dist(xj , ∂D)

)

where c is independent of x0 and B , i.e. (6.1) holds. So

kD(x, x0) ≤ a1 log

(

1 +
|x − x0|

min{dist(x, ∂D), dist(x0, ∂D)}

)

for all x ∈ D , where a1 is independent of x0 . Thus

kD(x1, x2) ≤ a1 log

(

1 +
|x1 − x2|

minj=1,2 dist(xj, ∂D)

)

for all x1, x2 ∈ D , and hence D is uniform by (3.1).
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A domain D ⊂ Rn is called an Ordα -extension domain, α < 0, if there
exists a constant a depending only on D and α such that f ∈ loc Ordα(D)
implies f ∈ Ordα(D) with

‖f‖∗α ≤ a‖f‖∗ loc
α .

Theorem 6.2. Let α < 0 . A domain D ⊂ Rn is an Ordα -extension domain

if and only if there is a constant M < ∞ such that each x1, x2 ∈ D can be joined

by a rectifiable curve γ ⊂ D with

(6.3)

∫

γ

ds

dist(x, ∂D)1−α
≤ M

(

min
j=1,2

dist(xj, ∂D)
)α

.

Proof. First, suppose D is an Ordα -extension domain. So there is a constant
c > 0 such that f ∈ loc Ordα(D) implies f ∈ Ordα(D) with

‖f‖∗α ≤ c‖f‖∗ loc
α .

Fix x0 ∈ D and define a function f by

f(x) = kα
D(x0, x) = inf

γ

∫

γ

ds

dist(y, ∂D)1−α

where the infimum is taken over all rectifiable arcs γ joining x0 and x in D . By
the triangle inequality,

(6.4) |f(x1) − f(x2)| ≤ kα
D(x1, x2)

for all x1, x2 ∈ D .
Assume that x1 , x2 belong to an open ball B which is contained in D . Let

γ be the subarc between x1 and x2 of the circle through x1 , x2 perpendicular
to ∂B . For x ∈ γ ,

min
j=1,2

l
(

γ(xj, x)
)

≤ 1
2
π dist(x, ∂B) ≤ 1

2
π dist(x, ∂D).

We then parameterize γ with respect to arc-length measured from x1 and let
dj = dist(xj, ∂D) , j = 1, 2. Then

∫

γ

ds

dist(x, ∂D)1−α
≤

(
∫ d1/2

0

+

∫ l

l−d2/2

+

∫ l−d2/2

d1/2

)

ds

dist
(

γ(s), ∂D
)1−α

≤
dα
1

2α
+

dα
2

2α
+

∫ l−(d2/2)

d1/2

(π/2)1−α ds

(min{s, l − s})1−α

≤ m
(

min
j=1,2

dist(xj , ∂D)
)α

,
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where m depends only on α . Together with (6.4) this gives

|f(x1) − f(x2)| ≤ m
(

min
j=1,2

dist(xj , ∂D)
)α

and so f ∈ loc Ordα(D) . By the assumption, f ∈ Ordα(D) and ‖f‖∗α has an
upper bound which is independent of x0 . The definition of f now yields (6.3).

Now suppose that D satisfies the condition (6.3). Let f be a function with

(6.5) |f(x1) − f(x2)| ≤ dist(x1, ∂D)α

whenever x1, x2 ∈ D with |x1−x2| ≤
1
2 dist(x1, ∂D) . Note that if f ∈ loc Ordα(D) ,

then f satisfies (6.5) up to a constant.
Fix x1 and x2 in D . We can find a rectifiable arc γ ⊂ D joining x1 and x2

such that

(6.6)

∫

γ

ds

dist(y, ∂D)1−α
≤ M

(

min
j=1,2

dist(xj , ∂D)
)α

.

Let γ(s) be the parameterization of γ with respect to arc length measured from
x1 , l = l(γ) . Let y1 = x1 . We choose positive numbers ri and li , and points
yi ∈ γ as follows:

r1 = 1
4dist(y1, ∂D),

r2 = 1
4dist(y2, ∂D),

l1 = max{s : γ(s) ∈Bn(y1, r1)},

l2 = max{s : γ(s) ∈Bn(y2, r2)},

y2 = γ(l1);

y3 = γ(l2);

and so on. After a finite number of steps, N , say, lN = l and the process stops.
Let yN+1 = x2 . We now have

(6.7) |f(x1) − f(x2)| ≤
N

∑

i=1

|f(yi) − f(yi+1)| ≤ cα

N
∑

i=1

dist(yi, ∂D)α.

Let l0 = 0 and for each i = 1, 2, . . . , N − 1, let

Ai = {s ∈ [li−1, li] : γ(s) ∈Bn(yi, ri)}.

Then Ai is closed, and

(6.8) h1(Ai) ≥ ri = |yi − yi+1| = 1
4
dist(yi, ∂D)

where h1 is 1-dimensional Hausdorff measure. Moreover, for s ∈ Ai ,

dist
(

γ(s), ∂D
)

≤ |γ(s) − yi| + dist(yi, ∂D) ≤ 5ri,
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and hence
dist

(

γ(s), ∂D
)1−α

≤ 51−αri
1−α.

Together with (6.8) this yields

(6.9)

∫

γ

ds

dist(y, ∂D)1−α
≥

N−1
∑

i=1

∫

Ai

ds

dist(γ(s), ∂D)1−α

≥ cα

N−1
∑

i=1

ri
−(1−α)h1(Ai) = cα

N−1
∑

i=1

dist(yi, ∂D)α.

Also, x2 ∈Bn
(

yN , 1
4 dist(yN , ∂D)

)

, and so

(6.10) dist(x2, ∂D) ≤ 5
4 dist(yN , ∂D).

Then combining (6.7), (6.9), (6.10), and (6.9) yields

|f(x1) − f(x2)| ≤ cα

∫

γ

ds

dist(y, ∂D)1−α
+ cα

(

5
4

dist(x2, ∂D)
)α

≤ cα

(

min
j=1,2

dist(xj , ∂D)
)α

.

Thus f ∈ Ordα(D) with ‖f‖∗α depending only on α , and D is an Ordα -extension
domain.

We will need a characterization of John domains in Rn , the proof of which
requires two lemmas.

Lemma 6.3. If there exists an arc γ ⊂ D joining x1 and x2 in D with

∫

γ

ds

dist(x, ∂D)1−α
≤ M

(

min
j=1,2

dist(xj, ∂D)
)α

,

then there is a number a = a(M, α) with

dist(y, ∂D) ≥ a
(

min
j=1,2

dist(xj, ∂D)
)

for all y ∈ γ .

Proof. We may assume that dist(x1, ∂D) ≤ dist(x2, ∂D) . Fix y ∈ γ . If
x1 ∈Bn

(

y, dist(y, ∂D)
)

, then

dist(x1, ∂D) ≤ |x1 − y| + dist(y, ∂D) ≤ 2 dist(y, ∂D)

and so dist(y, ∂D) ≥ 1
2

dist(x1, ∂D) . Likewise, if x2 ∈Bn
(

y, dist(y, ∂D)
)

, then

dist(y, ∂D) ≥ 1
2

dist(x2, ∂D) ≥ 1
2

dist(x1, ∂D).
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Now assume x1, x2 /∈Bn(y, dist
(

y, ∂D)
)

. Let

a = min

{

1

2
,

(

21+α−2

αM

)−1/α}

so that
−2

α
(1 − 2α)aα ≥ M.

Then if dist(y, ∂D) < a dist(x1, ∂D) , we get

∫

γ

ds

dist(x, ∂D)1−α
≥ 2

∫ dist(y,∂D)

0

dt
(

t + dist(y, ∂D)
)1−α > Mdist(x1, ∂D)

α
,

a contradiction. Therefore, dist(y, ∂D) ≥ a dist(x1, ∂D) for all y ∈ γ .

Lemma 6.4. Let x1 , x2 , and γ all be as in Lemma 6.3 above. Then, for

δ ∈ (0,∞) ,

h1{y ∈ γ : dist(y, ∂D) ≤ δ} ≤ δ1−αM
(

min
j=1,2

dist(xj , ∂D)
)α

where h1 is 1 -dimensional Hausdorff measure.

Proof. Fix a δ , and let γ′ = {y ∈ γ : dist(y, ∂D) ≤ δ} . Then

∫

γ′

ds

dist(x, ∂D)1−α
≥

h1(γ
′)

δ1−α
,

and
∫

γ′

ds

dist(x, ∂D)1−α
≤

∫

γ

ds

dist(x, ∂D)1−α
.

Thus, by our hypothesis,

h1(γ
′)

δ1−α
≤ M

(

min
j=1,2

dist(xj , ∂D)
)α

which gives the desired result.

Theorem 6.5. A bounded domain D is a b -John domain if and only if there

is a constant M < ∞ and α < 0 such that each x1, x2 ∈ D can be joined by a

rectifiable curve γ ⊂ D with

(6.11)

∫

γ

ds

dist(x, ∂D)1−α
≤ M

(

min
j=1,2

dist(xj, ∂D)
)α

.
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Proof. First, suppose D is a b -John domain. So for any pair of points
x1, x2 ∈ D , we can find an arc γ ⊂ D joining x1 and x2 with

min
j=1,2

l
(

γ(y, xj)
)

≤ b dist(y, ∂D)

for all y ∈ γ . We may assume dist(x1, ∂D) ≤ dist(x2, ∂D) . Let γ(s) be the
parameterization of γ with respect to arc-length measured from x1 and let dj =
dist(xj , ∂D) , j = 1, 2.

If l(γ) = l ≥ dist(x1, ∂D) , we have the following:

kα
D(x1, x2) ≤

∫ l

0

ds

dist
(

γ(s), ∂D
)1−α

≤
dα
1

2α
+

dα
2

2α
+

∫ l−(d2/2)

d1/2

b1−αds

(min{s, l − s})1−α
≤ c1

(

min
j=1,2

dist(xj , ∂D)
)α

where c1 depends only on α and b .
If l < dist(x1, ∂D) , then x2 ∈ Bn

(

x1, dist(x1, ∂D)
)

and there is a universal
constant c such that dist(y, ∂D) ≥ c dist(x1, ∂D) for all y in [x1, x2] . So

kα
D(x1, x2) ≤

∫

[x1,x2]

ds

dist(y, ∂D)1−α
≤ c1−α dist(x1, ∂D)α.

Let M = sup{c1, c
1−α} .

For the converse, fix x0 ∈ D with

dist(x0, ∂D) = max
x∈γ

dist(x, ∂D) = d0.

Fix x1 ∈ D and let γ1 be a rectifiable curve joining x1 and x0 in D satisfying

(6.12)

∫

γ1

ds

dist(y, ∂D)1−α
≤ M dist(x1, ∂D)α.

We will construct a rectifiable curve γ ⊂ D joining x1 and x0 satisfying

l
(

γ(y, x1)
)

≤ b dist(y, ∂D)

for all y ∈ γ , where b depends only on α . This will imply that D is John.
Let y1 = x1 .
If 2 dist(x1, ∂D) ≥ d0 , then

dist(y, ∂D) ≤ d0 ≤ 2 dist(x1, ∂D)
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for all y ∈ γ1 , and so by Lemma 6.4

l(γ1) = h1{y ∈ γ1 : dist(y, ∂D) ≤ 2 dist(x1, ∂D)} ≤ 21−αM dist(x1, ∂D)

and by Lemma 6.3
dist(y, ∂D) ≥ a dist(x1, ∂D)

for all y ∈ γ1 . Then we let y2 = x0 , and we stop.
If 2 dist(x1, ∂D) < d0 , then by Lemma 6.4,

h1{y ∈ γ1 : dist(y, ∂D) ≤ 2 dist(x1, ∂D)} ≤
(

2 dist(x1, ∂D)
)1−α

M dist(x1, ∂D)α

= 21−αM dist(x1, ∂D).

So we can find y2 ∈ γ1 with dist(y2, ∂D) = 2 dist(x1, ∂D) and l
(

γ1(y1, y2)
)

≤
21−αM dist(x1, ∂D) . By Lemma 6.3,

dist(y, ∂D) ≥ a dist(x1, ∂D)

for all y ∈ γ1(y1, y2) . Let γ2 be a rectifiable curve joining y2 and x0 in D with

∫

γ2

ds

dist(y, ∂D)1−α
≤ M dist(y2, ∂D)α = M2α dist(x1, ∂D)α.

Once again, if 4 dist(x1, ∂D) ≥ d0 , then

dist(y, ∂D) ≤ d0 ≤ 4 dist(x1, ∂D) for all y ∈ γ1(y2, x0),

l(γ2) ≤ 22−αM dist(x1, ∂D),

dist(y, ∂D) ≥ 2a dist(x1, ∂D) for all y ∈ γ2.

Then we let y3 = x0 , and we stop. Otherwise, we find y3 ∈ γ2 with dist(y3, ∂D) =
4 dist(x1, ∂D) and l

(

γ2(y2, y3)
)

≤ 22−αM dist(x1, ∂D) , as above. By Lemma 6.3,

dist(y, ∂D) ≥ 2a dist(x1, ∂D)

for all y ∈ γ2(y2, y3) .
Continue this process to get points yj ∈ B and curves γj(yj , yj+1) ⊂ D ,

j = 1, . . . , m such that letting ym+1 = x0 yields

(6.13)
dist(yj, ∂D) = 2j−1 dist(x1, ∂D),

l
(

γj(yj , yj+1)
)

≤ 2j−αM dist(x1, ∂D),

and if y ∈ γj(yj, yj+1) , we have

(6.14) dist(y, ∂D) ≥ 2j−1a dist(x1, ∂D)
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for j = 1, . . . , m . Let

γ =
m
⋃

j=1
γj(yj, yj+1).

For any y ∈ γ , there is an N such that y ∈ γN [yN , yN+1) , and so by (6.13)

(6.15) l
(

γ(x1, y)
)

≤
N

∑

j=1

2j−αM dist(x1, ∂D) = (2N − 1)21−αM dist(x1, ∂D)

and (6.14) implies

(6.16) dist(y, ∂D) ≥ 2N−1a dist(x1, ∂D).

Combining (6.15) and (6.16), we get

22−αM

a
dist(y, ∂D) ≥

(2N − 1)21−αM

2N−1a
dist(y, ∂D) ≥ l

(

γ(x1, y)
)

for all y ∈ γ . Thus D is a John domain.

Combining Theorem 6.5 and Theorem 6.2 yields our main result, Theorem 6.6.

Theorem 6.6. A bounded domain D is a b -John domain if and only if D
is an Ordα -extension domain for some α < 0 .

Remark. Note that in the proof of Theorem 6.5, we have in fact shown that
in a bounded b -John domain,

kα
D(x1, x2) ≤ M

(

min
j=1,2

dist(xj , ∂D)
)α

in D for every α < 0 (here M varies with α). So such a John domain is an Ordα -
extension domain for every α < 0. In addition, we get the following corollary.

Corollary 6.8. A bounded domain D is an Ordα -extension domain for some

α < 0 if and only if D is an Ordα -extension domain for all α < 0 .
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