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Abstract. The paper examines some properties of the dynamics of entire functions which
extend to general meromorphic functions and also some properties which do not. For a transcen-
dental meromorphic function f(z) whose Fatou set F (f) has a component of connectivity at least
three, it is shown that singleton components are dense in the Julia set J(f) . Some problems
remain open if all components are simply or doubly connected.

Let I(f) denote the set of points whose forward orbits tend to ∞ but never land at ∞ . For
a transcendental meromorphic function f(z) we have J(f) = ∂I(f) , I(f) ∩ J(f) 6= ∅ . However
in contrast to the entire case, the components of I(f) need not be unbounded, even if f(z) has
only one pole.

If f(z) has finitely many poles then, as in the entire case, F (f) has at most one completely
invariant component.

1. Introduction

Let f(z): C → Ĉ denote a meromorphic function, fn , n ∈ N , the nth
iterate of f(z) , and f−n the set of inverse functions of fn .

Let A be the set of poles of f(z) , B =
⋃∞

n=1 f
−n(A) the set of preimages of

∞ , and B′ the derived set of B .
The Fatou set F (f) is defined to be the set of those points z ∈ Ĉ such that

the sequence (fn)n∈N is well defined, is meromorphic, and forms a normal family
in some neighbourhood of z . The complement J(f) of F (f) is called the Julia
set of f(z) .

We define E(f) to be the set of exceptional values of f(z) , that is, the points
whose inverse orbit O−(z) = {w : fn(w) = z for some n ∈ N} is finite. There
can be at most two such points and if ∞ ∈ E(f) then either f(z) is entire or has
a single pole α which is a Picard value of f(z) , so that

(1) f(z) = α+ (z − α)−keg(z),

for some k ∈ N and some entire function g(z) . The meromorphic functions thus
fall into four disjoint classes.
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(i) The rational functions (where we assume the degree to be at least two).

(ii) The class E of transcendental entire functions.

(iii) The class P of transcendental functions of the type (1), self maps of the
punctured plane which have a meromorphic extension to C .

(iv) M , the class called general meromorphic functions in [11], of transcendental
meromorphic functions, for which ∞ /∈ E(f) .

The iteration of the class (i) and (ii) is sufficiently well known. The class P

has been studied in [7], [15], [17], [23]–[25], [32]–[38], [41] and M in [9], [10], [11].
See [14] for a survey of the main results. For the first three classes the iterates
are automatically defined in the plane or punctured plane and the study of the
normality of {fn} is the main feature. For f(z) ∈ M the set B , defined above,
is infinite and it is shown in [9] that J(f) =B = B′ .

Many properties of J(f) and F (f) are much the same for M as for the other
classes but different proofs are needed and some discrepancies arise. We recall (see
e.g. [14]) that for f(z) in any of the four classes:

1. F (f) is open and completely invariant under f(z) , that is, z ∈ F (f) if and
only if f(z) ∈ F (f) .

2. For z0 /∈ E(f) , J(f) ⊂ O−(z0) .

3. Repelling periodic points are dense in J(f) .

4. If U is a periodic component of F (f) of period p , that is if fp(U) ⊂ U , there
are the following possible cases:

– U contains an attracting periodic point z0 of period p . Then fnp(z) →
z0 for z ∈ U as n→ ∞ , and U is called the immediate attractive basin
of z0 .

– ∂U contains a periodic point z0 of period p and fnp(z) → z0 for z ∈ U
as n → ∞ . Then (fp)′(z0) = 1 if z0 ∈ C . (For z0 = ∞ we have
(gp)′(0) = 1 where g(z) = 1/f(1/z) .) In this case, U is called a Leau
domain.

– There exists an analytic homeomorphism ψ: U → D where D is the unit
disc such that ψ

(
fp

(
ψ−1(z)

))
= e2πiαz for some α ∈ R\Q . In this case,

U is called a Siegel disc.

– There exists an analytic homeomorphism ψ: U → A where A is an
annulus A = {z : 1 < |z| < r} , r > 1, such that ψ

(
fp

(
ψ−1(z)

))
= e2πiαz

for some α ∈ R \ Q . In this case, U is called a Herman ring.

– There exists z0 ∈ ∂U such that fnp(z) → z0 , for z ∈ U as n→ ∞ , but
fp(z0) is not defined. In this case, U is called a Baker domain.

5. If p = 1 in 4, that is if U is an invariant component of F (f) , then U has
connectivity 1, 2, or ∞ . If the connectivity is two, then U is a Herman ring.

The purpose of this paper is to examine whether some properties of the sets
J(f) or F (f) , which hold for transcendental entire functions, extend to transcen-
dental meromorphic functions or perhaps at least to transcendental meromorphic
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functions with finitely many poles.
It is known that the Fatou set F (g) of a transcendental entire function g(z)

may have a multiply-connected component U [1], that any such component is
bounded [3], and that gn → ∞ in U so that each gn(U) belongs to a different
component of F (g) . It is a corollary that J(g) is not totally disconnected but a
recent result [20] shows that if U is multiply connected, then singleton components
are everywhere dense in J(g) .

The existence of singleton components of J(f) for transcendental meromor-
phic functions follows from the following general result.

Theorem A. Suppose that f(z) is a transcendental meromorphic function

and that F (f) has a component H of connectivity at least three. Then singleton

components are dense in J(f) .

We note that in [10] there are examples of functions in M with Fatou com-
ponents of any prescribed connectivity.

If R is a doubly-connected component of F (f) , then its complement consists
of two components, one bounded and the other unbounded. The methods used to
prove Theorem A also give Theorem B.

Theorem B. Suppose that f(z) is a transcendental meromorphic function

and that F (f) has three doubly-connected components Ui such that either,

(a) each component lies in the unbounded component of the complement of the

other two or

(b) two of the components U1 , U2 lie in the bounded component of U c
3 but

U1 lies in the unbounded component of U c
2 and U2 lies in the unbounded

component of U c
1 .

Then singleton components are dense in J(f) .

The preceding results show that if for the transcendental meromorphic func-
tion f(z) the Julia set has no singleton components, then any multiply-connected
component of F (f) has connectivity two and moreover, the distribution of these
doubly-connected components is subject to severe restrictions. On the other hand
we have not been able to show that such components cannot occur. For functions
f(z) of class P it is known [7] that F (f) can have at most one multiply-connected
component and the connectivity of such component is 2. Thus J(f) has no sin-
gleton components.

W. Bergweiler in [14, p. 164] mentions the problem of whether a meromor-
phic function f(z) in the special class P can have a Herman ring. This would
necessarily be invariant. The question is answered by the following theorem.

Theorem C. If f(z) ∈ P , then f(z) has no Herman ring.

If we drop the requirement that f(z) is transcendental the rational function
R(z) = z2+λ/z3 , λ > 0, has infinitely many doubly-connected Fatou components,
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while J(R) is a Cantor set of circles and in particular has no singleton components,
see [13, p. 266] for the details.

Theorem D. Let f(z) be a transcendental meromorphic function and sup-

pose that F (f) has multiply-connected components Ai , i ∈ N , all different, such

that each Ai separates 0 , and ∞ and f(Ai) ⊂ Ai+1 for i ∈ N . Then J(f) has

a dense set of singleton components.

There are examples of f(z) ∈ E which satisfy the assumptions of Theorem D
and in this case Ai → ∞ [4], [5]. It is not easy to determine the connectivity
of Ai although examples are known [6] where this is infinite. It seems to be an
open problem as to where the connectivity of Ai can be 2 for f(z) ∈ E . Similar
constructions would give examples of functions in M with a finite number of
poles and Ai which tend to ∞ . More interesting examples can be given by other
methods as shown by Theorem E.

Theorem E. There is a transcendental meromorphic function such that F (f)
has a sequence of multiply-connected components Ai , i ∈ N , all different, such

that each Ai separates 0 and ∞ and f(Ai) ⊂ Ai+1 , i ∈ N . Moreover A2i → ∞
as i→ ∞ and A2i+1 → 0 as i→ ∞ .

It will follow from the later Theorem G that any function which satisfies the
assumption of Theorem E has infinitely many poles.

Functions with finitely many poles. We shall examine whether a num-
ber of results about the dynamics of transcendental entire functions extend to
meromorphic functions with finitely many poles. A useful tool here is a theorem
of H. Bohr (Theorem 5.1) which was used already in dynamics by Pólya [40] to
estimate the growth of composed functions such as iterates. We make a slight
extension of the result in Theorem 5.2. From it we shall deduce the following

Theorem F. If f(z) is a transcendental meromorphic function with finitely

many poles, then there is some S > 0 such that no invariant component G of

F (f) can contain a curve γ which lies in {z : |z| > S} and satisfies n(γ, 0) 6= 0 .

Corollary. If f is a transcendental meromorphic function with finitely many

poles, then J(f) cannot be totally disconnected.

The result is known for f(z) ∈ E [3] but is untrue for meromorphic functions
without restriction to finitely many poles. For example, the function f(z) =
λ tan z , 0 < λ < 1, has a Julia set which is a Cantor subset of the real line,
see [10] and [19]. For f(z) ∈ E any unbounded invariant component is simply
connected. This is no longer true for functions with even one pole. We show

in Section 9 that for ε = 10−2 , f(z) = z + 2 + ez + ε
(
z − (1 + iπ)

)−1
has a

multiply-connected invariant component in which fn(z) → ∞ .
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Orbits which tend to ∞ . For f(z) ∈ E Eremenko [21] studied the set

I(f) = {z ∈ C : fn(z) → ∞ as n→ ∞}.

He proved that for f(z) ∈ E we have (a) I(f) 6= ∅ , (b) J(f) = ∂I(f) ,
(c) I(f) ∩ J(f) 6= ∅ , and (d) the closure I(f) of I(f) has no bounded compo-
nents. It remains open as to whether I(f) itself may have bounded components.
Fatou [27] had already noted that in the examples studied by him, I(f) contains
unbounded analytic curves and asked whether this was a general phenomenon.

For meromorphic functions f(z) we generalise Eremenko’s definition by writ-
ing

I(f) = {z ∈ C : fn(z) → ∞ as n→ ∞ and fn(z) 6= ∞}.

We show in Section 6 that for transcendental meromorphic functions I(f)
has the properties (a), (b), and (c) listed above but (d) does not hold in general,
even for functions with finitely many poles. These results form the following five
theorems.

Theorem G. For a transcendental meromorphic function f(z) with only

finitely many poles the set I(f) is not empty. Indeed for any curve γ with

n(γ, 0) 6= 0 and such that d(0, γ) is sufficiently large we have I(f) ∩ γ 6= ∅ .

Theorem H. For a transcendental meromorphic function f(z) with infinitely

many poles the set I(f) is not-empty. Indeed in any neighbourhood of a pole there

are points of I(f) .

Theorem I. If f(z) is a transcendental meromorphic function, then J(f) =
∂I(f) .

Theorem J. If f(z) is a transcendental meromorphic function, then I(f) ∩
J(f) 6= ∅ .

Theorems G and J follow from the same argument as Theorem F, based on
our extension of Bohr’s theorem. This gives an alternative to Eremenko’s proof
in the special case of entire functions. His proof was based on Wiman–Valiron
theory.

The assertion of Theorem G is not in general true for meromorphic functions
with infinitely many poles. For example, if f(z) = λ tan z , 0 < λ < 1, then
I(f) ⊂ J(f) , and J(f) is a real Cantor set which fails to meet γ = C(0, r) for
many arbitrarily large values of r . However, we shall have I(f) 6= ∅ . Further
(d) fails for this choice of f(z) , since every component of I(f) is bounded. The
example f(z) = λ sin z − ε/(z − π) , ε > 0, 0 < λ < 1, considered in Section 9
shows that if g(z) has even one pole, then I(g) may have bounded components.
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Completely invariant components. For transcendental functions it has
been known since the early work of Fatou and Julia that F (f) can have at most
two completely invariant components. In [8] it was shown that if f(z) ∈ E , then
there is at most one completely invariant component of F (f) . In Section 7 we
show that this last result extends to transcendental meromorphic functions with
finitely many poles.

Theorem K. Let f(z) be a meromorphic function with at most finitely many

poles. Then there is at most one completely invariant Fatou domain.

The theorem fails for functions with infinitely many poles. For example if
f(z) = λ tan z , λ > 1, then F (f) has two completely invariant components
namely the upper and lower half-plane (each of which contains an attracting fixed
point). It is an open problem for general transcendental meromorphic functions as
to whether the Fatou set can have more than two completely invariant components.
However for a transcendental function whose inverse is singular at only finitely
many points the maximum number of completely invariant Fatou components is
two [11].

Functions with one pole. The final section contains two examples. Recall
that for f(z) ∈ E any multiply-connected component G of F (f) is bounded with
fn → ∞ in G . This is no longer true for meromorphic functions with even one
pole.

We show in Example 1 that for ε = 10−2 and a = 1 + iπ the function
f(z) = z + 2 + ez + ε(z − a)−1 has a multiply-connected invariant component in
which fn(z) → ∞ .

In a similar way we show that for 0 < λ < 1 and for sufficiently small positive
ε the function f(z) = λ sin z − ε/(z − π) has a single completely invariant Fatou
component. This is unbounded, multiply connected and the iterates fn converge
to a finite limit (an attracting fixed point) in F (f) . Singleton components of J(f)
are dense in J(f) , which also contains unbounded continua.

We precede the examples by stating some results about the relation between
the orbits of singular points of f−1 and the possible limit functions of iterates.
These are used in the discussion of Example 2.

The author wishes to thank Professor I.N. Baker for many helpful sugges-
tions, CONACyT (Consejo Nacional de Ciencia y Tecnoloǵıa) and Universidad
Autonoma de Puebla for their financial support.

2. Proof of Theorem A

In this section our aim is to prove Theorem A. We shall start this section by
giving the following lemma.
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Lemma 1. If D is a domain in Ĉ whose complement contains at least p
components H1, . . . , Hp , then there are p disjoint simple polygons γi , 0 ≤ i ≤ p ,

in D such that γi separates Hi from the remaining Hj , j 6= i . Thus there is a

component Di of the complement of γi such that Hi ⊂ Di and Di ∩Dj = ∅ for

j 6= i .

A proof may be obtained from results in [39]. Firstly there is a partition of the
complement of D into p disjoint closed sets Fi , such that Hi ⊂ Fi , 1 ≤ i ≤ p . The
method of Theorem 3.1 and Theorem 3.2 in Chapter VI of [39] gives a construction
of a simple polygon γi , uniformly as close as we wish to a subset of Fi which
satisfies the requirements of the lemma.

In order to prove Theorem A we require a result from Ahlfors’ theory of
covering surfaces. If a function g(z) is meromorphic in C and D is a simply-

connected domain in Ĉ , whose boundary is a sectionally analytic Jordan curve
γ , then an island (with respect to g(z)) over D is a bounded component G of
g−1(D) so that g(G) = D and the map g: G → D is a finite branched cover.
Thus we have g(∂G) = γ .

The following result is given as a corollary of Theorem VI.8 in [42]. It also
follows from [30, Theorem 5.5].

Lemma 2. If g(z) is a transcendental and meromorphic function in C , then

given any three simply-connected domains Di , 1 ≤ i ≤ 3 , with sectionally analytic

boundaries, such thatDi are mutually disjoint, there is at least one value of i such

that g(z) has infinitely many simply-connected islands over Di .

Proof of Theorem A. Since the theorem is known for f(z) ∈ E and since
for f(z) ∈ P there are no components of F (f) whose connectivity is greater than
or equal to three, we can suppose that f(z) ∈ M and that F (f) has a component
D whose connectivity is at least three. Thus Dc has at least three components
H1 , H2 , H3 . It follows from Lemma 1 that there are simple polygons γi in D ,
1 ≤ i ≤ 3, and (simply-connected) complementary domains Di of γi such that
Di ∩Dj = ∅ , j 6= i , and each Di contains points of the Julia set.

Now pick any point ξ1 in the Julia set and any open neighbourhood V1 which
contains ξ1 . Then there is some k ∈ N such that fk has a pole β in V1 .

There is a neighbourhood U of β , U ⊂ V1 which is mapped by fk locally
univalently (except perhaps at β ) onto a neighbourhood N of ∞ .

It follows from Lemma 2 that f(z) has a simply-connected island G ⊂ N ∩C ,
which lies over one of the Di , say D1 . The branches of (fk)−1 which take values
in U for z ∈ G are each univalent in G . We take one such branch, say h , which
maps G univalently onto the simply-connected domain V2 ⊂ U \ {β} . Then fk+1

maps V2 onto D1 and since D1 meets J(f) it follows that V2 contains a point
ξ2 of J(f) . From fk+1(∂V2) = γ1 it follows that ∂V2 ⊂ F (f) .

We may now replace V1 by V2 , ξ1 by ξ2 and deduce that V2 contains an
arbitrarily small simply-connected neighbourhood V3 such that V 3 ⊂ V2 , ∂V3 ⊂
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F (f) , and ξ3 ∈ V3 ∩ J(f) 6= ∅ . By continuing inductively we obtain a sequence of
nested simply-connected domains Vn , each of which contains a point ξn ∈ J(f) .
The sets V n may be assumed to shrink to a single point ξ . Then ξ = lim ξn ∈
J(f) . Further ∂Vn is constructed to be in F (f) , and so ξ is a singleton component
of J(f) .

As an application of the preceding theorem we note that for any meromorphic
function f(z) with a completely invariant multiply-connected component G of
F (f) , the connectivity of G is infinite, by item 5 of the introduction, and hence
J(f) has dense singleton components.

Further examples are given by the meromorphic functions constructed in [10]
which have wandering Fatou components of arbitrary finite connectivity.

3. Proofs of Theorems B and C

Proof of Theorem B. We may suppose that f(z) ∈ M since f(z) ∈ P can
have at most one doubly-connected Fatou component.

Let γi , 1 ≤ i ≤ 3, be sectionally analytic curves such that γi ⊂ Ui ⊂ F (f)
and γi cannot be deformed to a point in Ui .

In case (a) we take Di to be the interior of γi , 1 ≤ i ≤ 3, that is, the
bounded component of γc

i . Now γ1 ⊂ F (f) is separated by the boundary of
the unbounded component of U c

1 from γ2 and γ3 . Hence D1,D2,D3 are disjoint
and each Di contains points of J(f) . The proof now proceeds precisely as for
Theorem A but using this interpretation of Di .

In case (b) we take D1 and D2 as in case (a) but take D3 to be the exterior
of γ3 . See Figure 1.

U

γ

γ
U

U

1    

2

1    

2

3

2

1    

γ
3

D

D

D3

Figure 1. The interiors Di , 1 ≤ i ≤ 2 , and the exterior D3 .
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Proof of Theorem C. Suppose that f(z) is a function in P with an invariant
Herman ring R . Thus f(z) has the form (1) for some α and k .

Let γ be the closure of an orbit in R , where we choose γ to avoid the
countable set of algebraic singularities of f−1 . Then γ is an analytic Jordan
curve. Denote the interior of γ by I . We show that I contains the pole α
of f(z) .

Suppose f(z) is analytic in I . Then f(I) is bounded and ∂
(
f(I)

)
⊂ f(∂I) =

f(γ) = γ . It follows that f(I) = I which implies that fn(I) = I and I ⊂ F (f) ,
but I contains points of ∂R by assumption. This contradiction shows that I
contains the pole α .

Now I contains an orbit γ′ of f(z) in R which is different from γ . Hence
f(I) meets I and so I ⊂ f(I) . Hence there is some point β ∈ I such that
f(β) = α ∈ I . This contradicts the assumed form of f(z) and the theorem is
proved.

4. Proofs of Theorems D and E

Proof of Theorem D. The assertion of the Theorem D follows from The-
orem A unless all Ai have connectivity two. The result is already known for
f(z) ∈ E . Further, it is known [7] that if f(z) ∈ P the set F (f) has at most one
multiply-connected component. Thus we may assume that f(z) ∈ M and that Ai

are all bounded doubly-connected domains which separate 0 from ∞ .
Now A1 is a wandering component of F (f) so that the limit functions of

convergent sequences fnj in A1 are necessarily constant [11]. We note that each
Ai is bounded and thus the map f : Ai → Ai+1 is a (possibly branched) covering.
In fact it follows from the Riemann–Hurwitz relation that f(z) is an unbranched
ki to 1 covering map for some ki ∈ N . Thus if the path γ ∈ A1 is a generator
of the homotopy group of A1 the image γn = fn−1(γ) is a path in An which is
not homotopic to a constant. Since all limit functions of subsequences of fn are
constant in A1 , it follows that the spherical diameter of γn → 0 as n → ∞ . For
any convergent subsequence fnj we have either γnj

→ ∞ or γnj
→ 0. Thus at

least one of ∞ or 0 is a singleton component of J(f) cut off from any other point
of J(f) by certain arbitrarily small curves γnj

⊂ Anj
⊂ F (f) . The boundaries of

Anj
are in J(f) and converge to ∞ or 0. If ∞ is a singleton component of J(f) ,

then, since f(z) ∈ M , the preimages of ∞ , which are also singleton components,
are dense in J(f) .

For the remaining case we may assume that no sequence fnj → ∞ in A1 and
hence that the whole sequence fn → 0 in A1 , that is the domains An → 0 as
n → ∞ . Hence 0 ∈ J(f) and therefore An+1 = f(An) → f(0) so that f(0) = 0.
Then f(z) is analytic in some neighbourhood U of 0. Further, An is in U for
n > n0 and An → 0 as n → ∞ . This implies that there is some n > n0 such
that An+1 is inside An , that is, in the component of Ac

n which contains 0. If
αn is the outer boundary of An and I is the component of αc

n which contains
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0, then f(I) is a bounded domain whose boundary belongs to f(αn) ∈ ∂An+1

which is inside I . Thus f(I) ⊂ I and (fn) is analytic and normal in I , but this
contradicts the fact that 0 ∈ J(f) . The proof of Theorem D is complete.

In order to prove Theorem E we need the following results.

Lemma 3 (Runge, see for example [28]). Suppose that K is compact in C

and f(z) is holomorphic on K ; further, let ε > 0 . Let E be a set such that E

meets every component of Ĉ \K . Then there exists a rational function R with

poles in E such that

|f(z) −R(z)| < ε, z ∈ K.

Lemma 4 [10]. Suppose that D is an unbounded plane domain with at least

two finite boundary points and that g is analytic in D and satisfies (i) g(D) ⊂ D
and (ii) gn(z) → ∞ as n→ ∞ , z ∈ D . Then for any z0 in D there is a constant

k > 0 such that

lim sup
1

n
log log |gn(z0)| ≤ k.

Further, there is a path γ in D and a constant A > 1 such that γ leads to

∞ and |z|1/A ≤ |g(z)| ≤ |z|A for all large z on γ .

Proof of Theorem E. Choose ε > 0 so that

3
4
<

∞∏

1

(1 − εn) <
∞∏

1

(1 + εn) < 3
2
,

and a sequence rn , n ≥ 2, so that rn+1 > 16rn , rn+1 > ern and r2 > 16. Thus
the disc D =D(0, 1) and the annuli Bn : 1

3rn ≤ |z| ≤ 3rn , n ≥ 2, are all disjoint.
Then δn = rn/rn+1 , n ≥ 2, satisfies 0 < δn < 1/16 and δn → 0 as n→ ∞ .

Now choose positive numbers ε1 and εn+1 , n ∈ N , so small that

(1 − 6rn+1εn+1δ
−1
n+1)

−1 < (1 + εn)1/2,(2)

rn+2 + ε1 < (1 + εn)1/2rn+2,(3)

(1 + 6rn+1εn+1δ
−1
n+1)

−1 > (1 − εn)1/2,(4)

rn+2 − ε1 > (1 − εn)1/2rn+2,(5)

εn+1 <
1
2εn, ε1 <

1
4 .(6)

Since |(1± εn)1/2 − 1|rn+2 ∼ 1
2ε

nrn+2 → ∞ as n→ ∞ we may choose ε1 to
satisfy (3) and (5). Then we choose εn+1 , n ∈ N , to satisfy (2), (4), and (6).

Now define f1(z) = z−1 . It follows from Lemma 3 that there is a rational
function fn+1 , n ≥ 1, with poles only at 1

4rn+1 and ∞ , such that

(7) |fn+1(z)| < εn+1 in D
(
0, 1

5
rn+1

)
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and

(8) |f1(z) + · · · + fn+1 − δn+1z
−1| < εn+1 in Bn+1.

Then f defined by f(z) =
∑∞

1 fn(z) is meromorphic, by (6) and we have, using
(7) and (8) that

(9) |f(z) − z−1| ≤
∞∑

2

εn < ε1 in D,

(10) |f(z) − δn+1z
−1| ≤

∞∑

j=n+1

εj < 2εn+1 in Bn+1.

Thus if 1 < λ ≤ 3 and rn+1λ
−1 < |z| < λrn+1 , n ∈ N , we have from (9) and

(10) that
f(z) = δn+1z

−1 + ηn, |ηn| < 2εn+1,

so that f(z) ∈ D and

(11) f2(z) =
z

δn+1
(1 + ηnzδ

−1
n+1)

−1 + η′, |η′| < ε1.

So it follows from (2), (3), (4), and (5) that

λ−1rn+1δ
−1
n+1(1 + 2λrn+1εn+1δ

−1
n+1)

−1 − ε1 < |f2(z)|
< λrn+1δ

−1
n+1(1 − 2λrn+1εn+1δ

−1
n+1)

−1 + ε1,

and hence

(12) λ−1rn+2(1 − εn) < |f2(z)| < λrn+2(1 + εn).

Thus if we set A2 =
{
z : 1

2r2 < |z| < 2r2
}
⊂ B2 we find that

3
8
rn+2 <

1
2
rn+2

∞∏

1

(1 − εn) < |f2n(z)| < 2rn+2

∞∏

1

(1 + εn) < 3rn+2.

Hence f2n(z) is in Bn+2 and so f2n(z) → ∞ in A2 . Further, f2n(A2) is in some

component Ã2n+2 of F (f) .
Again, using (2) in (11) we see that for z in Bn+1

f2(z) =
z

δn+1
(1 + µ) + η′
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where

|µ| = |(ηnzδ
−1
n+1)(1 + ηnzδ

−1
n+1)

−1| ≤ |(6rn+1εnδ
−1
n+1)(1 − 6rn+1εnδ

−1
n+1)

−1|
≤ (1 + εn)1/2 − 1

and |η| < ε1 . It follows inductively that each f2n(A2) is a region in Bn+2 which

separates 0 and ∞ . Clearly then Ã2n+2 which contains f2n(A2) is multiply

connected. Also the components Ã2n+2 are all different since otherwise we have
an unbounded component of F (f) which is invariant under f2 in which f2n → ∞ .
It follows from Lemma 4 that there is then a constant K and a curve Γ which tends
to ∞ on which |f2(z)| < |z|K for large z . But in any f2n(A2) we have |z| < 3rn+2

and |f2(z)| > 3
8rn+3 >

3
8e

rn+2 , so no such Γ exists. Finally Ã2n+1 = f(Ã2n) is

multiply connected. Further, Ã2n+1 → 0 and Ã2n+2 → ∞ .

5. Functions with finitely many poles

We will start this section by giving a theorem of H. Bohr.

Theorem 5.1 [18]. If f(z) =
∑∞

n=1 anz
n is analytic in D(0, 1) and for some

̺ , 0 < ̺ < 1 , Mf (̺) = Max {|f(z)| : |z| = ̺} satisfies Mf (̺) > 1 , then f(D)
contains the circle Cr = {z : |z| = r} for some r > C(̺) , where C(̺) is a positive

constant which depends only on ̺ .

We wish to have a similar result to Bohr’s theorem for functions f(z) which
are analytic in 0 < R ≤ |z| <∞ .

Theorem 5.2. If f(z) is analytic in 0 < R ≤ |z| < ∞ and Mf (r) → ∞ as

r → ∞ , then for all sufficiently large ̺ the image f(A̺) of A̺ = {z : R ≤ |z| ≤ ̺}
contains some circle Cr = {z : |z| = r} where r ≥ cMf ( 1

2
̺2) and c is a positive

absolute constant.

We shall use a consequence of Schottky’s theorem, see e.g. [12, Lemma 1].

Lemma 5. If g(z) is regular in the annulus A = {z : α ≤ |z| ≤ β} ,

β/α = γ > 1 , if g(z) takes neither value 0 nor 1 in A , and if for some |z0| =
√
αβ

one has |g(z0)| ≤ µ , then there is a constant K depending only on γ , µ such that

|g(z)| ≤ K uniformly on |z| =
√
αβ .

Proof of Theorem 5.2. I. Let K denote the constant in Lemma 5 when
γ = 4 and µ = 2. Since logMf (r) is a convex function of log r , it follows that
Mf (r) can have at most one minimum in [R,∞) , at s say, and is increasing for
r > s .

Since Mf (r) → ∞ as n → ∞ we see that there is some T ≥ R such that
Mf (r) > Mf (R) for r > T .
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Now choose ε = 1/2(1+3K) . Then there is a positive ̺0 such that for ̺ ≥ ̺0

we have
1
4εMf ( 1

2̺) > Mf (R) and ̺ > 4R.

Suppose that for ̺ ≥ ̺0 and for every r ≥ ( 1
4ε)Mf ( 1

2̺) there is some point
on Cr which is not in f(A̺) . In particular there is w′ with

|w′| = ( 1
4ε)Mf ( 1

2̺)

and w′′ with
|w′′| = ( 1

2
ε)Mf ( 1

2
̺)

such that f(z) 6= w′ , w′′ in A̺ .
There is some r′ in R ≤ r′ < 1

2̺ where Mf (r′) = |w′| and there is some z′

with |z′| = r′ and |f(z′)| = Mf (r′) . The point z′ lies on a level curve

Γ = {z : |f(z)| = |w′|}.

Now Γ cannot meet |z| = R since ( 1
4ε)Mf ( 1

2̺) > Mf (R) . If the component
L of {z : |f(z)| < |w′|} which contains {z : R < |z| < r′} lies inside A̺ , then
we can take Γ to be one of the boundary curves of L which closes in A̺ . Since
arg f(z) is monotone on Γ, it then follows that arg f(z) changes by at least 2π
on Γ, that is f(z) would take every value of modulus |w′| at some point on Γ.
Thus Γ meets {z : |z| = 1

2̺} and there is some point z0 such that |z0| = 1
2̺ and

|f(z0)| = |w′| .
II. Now consider

g(z) =
f(z) − w′

w′′ − w′

which is analytic in {z : 1
4̺ < |z| < ̺} ⊂ A̺ and g(z) 6= 0, 1. Using the results in

I we have

|g(z0)| ≤
|f(z0)| + |w′|
|w′′| − |w′| =

2|w′|
|w′′| − |w′| = 2.

It follows from Lemma 5, with α = 1
4
̺ , β = ̺ , that |g(z)| ≤ K uniformly on

|z| =
√
αβ = 1

2̺ .
But on |z| = 1

2
̺ we have uniformly

|f(z)| ≤ |w′| +K|w′′ − w′| ≤ |w′| +K(|w′′| + |w′|)
= Mf ( 1

2̺)(1 + 3K)( 1
4ε) = 1

8Mf ( 1
2̺)

so that |f(z)| < Mf ( 1
2
̺) , which is a contradiction. Thus the theorem holds with

c = 1
4ε where ε = 1

2(1 + 3K) .

We shall prove Theorem F by using Theorem 5.2.
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Proof of Theorem F. (i) Take R > 0 such that D(0, R) contains the finite
set of poles of f(z) . Choose ̺ so large that ̺ > Mf (R) and that cMf ( 1

2
σ) > 2σ

for every σ ≥ ̺ , where c is the constant of Theorem 5.2. If the theorem is false
there is an invariant component G of F (f) and a curve γ which lies in G ∩ {z :
|z| > ̺} and satisfies n(γ, 0) = 1. Then the annulus A̺ = {z : R ≤ |z| ≤ ̺} is in
the interior of γ .

Let B denote the region between C(0, R) and γ so that A̺ ⊂ B , see Figure 2.

0

R

ρ

γ

B

ρA

Figure 2. B is the region between C(0, R) and γ .

The function f(z) is analytic in B , so

∂f(B) ⊂ f(∂B) = f
(
C(0, R)

)
∪ f(γ)

where f
(
C(0, R)

)
⊂ D(0,Mf (R)) with Mf (R) < ̺ . Since f(A̺) ⊂ f(B) it

follows from Theorem 5.2 that f(B) contains some circle C(0, r) such that r ≥
cMf ( 1

2̺) > 2̺ .
The boundary of f(B) , which is compact in C , contains the boundary of the

unbounded component of the complement of f(B) . Thus the latter, say γ1 is part
of f(γ) and is a continuum which lies in |z| > 2̺ , and belongs to G .

We may now repeat the above argument but with B replaced by the region
between |z| = R and γ1 , say B1 and with ̺ replaced by 2̺ . Thus f(B1) has an
‘outer boundary’ γ2 which is in |z| > 4̺ and belongs to G .

Repeating this argument inductively, there is a simple closed curve γn which
is part of fn(γ) and contains the disc D(0, 2n̺) in its interior. Then there is a
compact K ⊂ γ such that fn(K) ⊂ γn , for n ∈ N , therefore fn → ∞ on K .
Since fn → ∞ at some points of γ , it follows that fn → ∞ in G .

(ii) We may assume without loss of generality that 0 and 1 are not in G . Let

H = Ĉ − {0, 1,∞} , γn be as above and let h = max dG(z, w) <∞ where z ∈ γ ,
w ∈ γ1 , and dG(z, w) denotes the hyperbolic distance in G .
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For any w ∈ γn we have that w = fn(z) for some z ∈ γ therefore

dG

(
w, f(w)

)
= dG

(
fn(z), fn+1(z)

)
≤ dG

(
z, f(z)

)
≤ h.

Now fn(z) → ∞ as n → ∞ , thus for w ∈ γn there is some path δ from w to
f(w) such that

h ≥ dG

(
w, f(w)

)
=

∫

δ

̺G(z) |dz|

where ̺G is the Poincaré density for G1 . Since G ⊂ H we have ̺G ≥ ̺H and
̺H ∼ c′/|z| log |z| for some constant c′ , as z → ∞ . Now

(13) h ≥
∫

δ

c′ |dz|
|z| log |z| ≥ c′

∫ |f(w)|

|w|

d|z|
|z| log |z| = c′

(
log log |f(w)| − log log |w|

)

so

(14) |f(w)| ≤ |w|p, p = eh/c′ .

The inequality (14) holds for w ∈ γn , n large. The function f(z) is analytic
in the annulus R ≤ |z| <∞ , then there are numbers aj , j ∈ Z , such that

f(z) =

∞∑

−∞

ajz
j in R < |z| <∞.

For an integer k > p , the function

F (z) =
f(z)

zk
=

∞∑

−∞

ajz
j−k

is analytic in R ≤ |z| <∞ . It follows from (14) that Sup γn
|F (z)| → 0 as n→ ∞ .

Now the maximum principle implies that F (z) is bounded, say b , thus |F (z)| < b
in a neighbourhood of ∞ (outside γ1 ). Thus ∞ is a removable singularity of
F (z) and a pole of f(z) contrary to the assumption that f(z) is transcendental.

6. Orbits which tend to ∞
Proof of Theorem G. This is just part (i) of the proof of Theorem F. We

note that we do not use the hypothesis that γ ⊂ F (f) , made in Theorem F until
we have proved that fn(γ) contains a simple closed curve γn which winds around
zero and satisfies d(0, γn) → ∞ . Moreover γn+1 ⊂ f(γ) and An = γ ∩ f−n(γn) is
a decreasing family of compact sets whose intersection K is in γ ∩ I(f) .
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Proof of Theorem H. Let p1 be a pole of f(z) of order k and let D1 =
D(p1, r1) , r1 > 0. It is easy to see that f(D1) is a neighbourhood of ∞ . Since
p1 is a k -fold pole of f(z) , for r1 sufficiently small there is a simply-connected
neighbourhood V1 of p1 in D1 which is mapped locally univalently except at p1

onto |f | > R1 , R1 > 1, for some R1 (V 1 to |f | ≥ R1 ). Thus we can find a pole p2

in {|z| > R1} such that |p2| > |p1| , and a disk D2 = D(p2, r2) ⊂ {|z| > R1} , r2
very small. By the preceding argument p2 ∈ V2 , where V2 is a simply-connected
neighbourhood in D2 which is mapped locally univalently by f , except at p2 , to
{|f | > R2} for some R2 > 2R1 . We may take a branch of f−1 analytic in V 2 so
that U1 = f−1(V 2) ⊂V 1 .

Using the same argument we can take a pole p3 in {|z| > R2} and the disk
D3 = D(p3, r3) , r3 very small, such that p3 ∈ V3 where V3 is a simply-connected
neighbourhood in D3 which is mapped locally univalently by f , except at p3 , to
{|f | > R3} where R3 > 2R2 . We take a branch of f−1 analytic in V 3 so that
f−1(V 3) ⊂V 2 .

D

D

D

D V

V

V

I( f )β

3

4

1

2
2

4

p
2

3

4
p

1

V3

p

p
1

-1

f
-1

f

f
-1

|z| =

|z| =

|z| =R

R

R

1

2

3

Figure 3. The process.

Repeating this process, see Figure 3, inductively we have Dn = D(pn, rn) →
∞ and f−n(V n+1) = Un ⊂ V 1 ⊂ D1 , n ∈ N . Then ∩Un 6= ∅ and β ∈ ∩Un

implies fn(β) ∈ Dn+1 . Thus D1 contains β ∈ I(f) . The theorem is proved.

Remark In the above construction we have p3 ∈ V3 so that U2 = f−2(V 3)
contains a point f−2(p3) = f−3(∞) . In general Un contains a preimage f−n(∞) .
We may choose the rn so small that ∩Un is a single point β . Since preimages of
poles are in J(f) we then have β ∈ J(f) .
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In the introduction we defined the set E(f) as the set of exceptional points
of f(z) .

Lemma 6 [9, Lemma 1]. Let f(z) be a transcendental meromorphic function.

For any q ∈ J(f) and any p not in E(f) , q is an accumulation point of O−(p) .

Proof of Theorem I. It follows from Theorem G and H that I(f) 6= 0. It
is easy to see that I(f) is infinite since for any z ∈ I(f) all fn(z) , n ∈ N , are
different and in I(f) . Thus we can choose three different points β , γ , δ in I(f)
such that f(β) = γ and f(γ) = δ . Now take a point α in the Julia set and let V
be a neighbourhood of α . Since there are at most two exceptional points in the
sense of Lemma 6 there exists a pre-image α∗ in V of one of the points β , γ , δ .
The point α∗ belongs to I(f) , so J(f) ⊂ I(f). Now periodic points are dense in
J(f) and do not belong to I(f) . Hence the interior of I(f) belongs to F (f) so
that J(f) ⊂ ∂I(f) .

To prove the opposite inclusion, take a point α ∈ ∂I(f) and suppose that
α ∈ F (f) . Let V ⊂ F (f) be a neighbourhood of α . Then V contains points of
I(f) and all fn are analytic in V and fn → ∞ in V . This implies that V ⊂ I(f)
and contradicts the assumption that α ∈ ∂I(f) .

Proof of Theorem J. (i) First suppose that f(z) has only finitely many
poles. Choose positive ̺ so large that γ = C(0, ̺) satisfies the assumption of
Theorem G. Let γn , An , K be as in the proof of Theorem G, so that K ⊂ I(f) .
If K meets J(f) we are finished, so assume that K ⊂ F (f) . Since K is compact
it is covered by some finite set D1, D2, . . . , Dp of components of F (f) . Since
K =

⋂∞
An with An compact we have An ⊂ ⋃p

i=1Di ⊂ F (f) , n > n0 . But
fn(An) = γn so that γn ⊂ F (f) .

Let Gn denote the component of F (f) which contains γn so that f(Gn) =
Gn+1 , since f(γn) meets γn+1 . If some Gn = Gn+1 , then Gn is an unbounded
invariant component of F (f) which contains arbitrarily large curves γm , m ≥
n > n0 , which wind round zero. By Theorem F this is impossible.

It follows that all Gn are different and hence bounded components of F (f) .
Since d(0, γn) → ∞ as n → ∞ we see that fn → ∞ in each Gk and also that
Gn → ∞ as n → ∞ . But f(∂Gn) = ∂f(Gn) so that each ∂Gk ⊂ I(f) and of
course belongs to J(f) . The proof is complete in this case.

(ii) If f(z) has infinitely many poles the proof follows from the remark at the
end of the proof of Theorem H, where β ∈ I(f) ∩ J(f) .

7. Completely invariant domains

Proof of Theorem K. Suppose that F (f) has two mutually disjoint com-
pletely invariant domains G1 and G2 (possibly others too). Then Gi , 1 ≤ i ≤ 2
are simply connected and infinite [11, Lemma 4.3].
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Take a value α in G1 such that f(z) = α has infinitely many simple roots zi

(f ′(z) = 0 at only countably many z so we have to avoid only countably many
choices of α). All zi are in G1 .

Similarly take β in G2 such that f(z) = β has infinitely many simple roots
z′i in G2 . By Gross’ star theorem [29] we can continue all the regular branches gi

of f−1 such that gi(α) = zi , along almost every ray to ∞ without meeting any
singularity (even algebraic). Thus we can move β ∈ G2 slightly if necessary so
that all gi continue to β analytically along the line l , which joins α and β . The
images gi(l) are disjoint curves joining zi to z′i . Denote gi(l) = γi . Note that γi

is oriented from zi to z′i .
The branches f−1 are univalent so γi are disjoint simple arcs. Different γi

are disjoint since γi meets γj at say w0 only if two different branches of f−1

become equal with values w0 which can occur only if f−1 has branch point at
f(w0) in l , but this does not occur.

Take γ1 and γ2 . Since G1 is a domain we can join z1 to z2 by an arc δ1 in
G1 and similarly z′1 to z′2 by an arc δ′1 in G2 . If δ′1 is oriented from z′1 to z′2 , let
p′ be the point where, for the first time, γ1 meets δ′1 and q′ be the point where,
for the first time, γ2 meets δ′1 . If δ1 is oriented from z1 to z2 , let p be the point
where, for the last time, γ1 meets δ1 and q be the point where, for the last time,
γ2 meets δ1 . These might look like Figure 4.

G1

q’

’

z
1
’

p

G2

γ
1

z
1

δ1

p’

δ
1

γ
2

q

’

2
z’

l

β

2zα

Figure 4. The arcs γ1 , γ2 , δ1 and δ′1 .

Denote by β1 the part of δ1 which joins the points p and q , by β′
1 the part

of δ′1 which joins the points p′ and q′ , by γ̂1 the part of γ1 which joins the points
p and p′ , oriented from p to p′ , and by γ̂2 the part of γ2 which joins the points
q and q′ , oriented from q to q′ . Then γ̂1β

′
1γ̂2

−1β−1
1 is a simple closed curve Γ1

with an interior A1 . We assert that the function f(z) has a pole in A1 .
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Suppose that f(z) is analytic in A1 , then f(A1) is a bounded set and the
frontier of f(A1) is contained in f(Γ1) and hence in f(β1) ∪ f(β′

1) ∪ l .
The the curves f(β1) and f(β′

1) are closed curves lying in G1 and G2 re-
spectively. Thus f(β1) and f(β′

1) are mutually disjoint.
Consider the unbounded component H of the complement of f(β1) ∪ f(β′

1) .
The component H meets l and in fact if a is the last point of intersection of l
with f(β1) and b the first point of the intersection of l with f(β′

1) the segment
ab of l is a cross cut of H whose end points belong to different components of the
frontier of H . It follows that ab does not disconnect H . Now in fact a point w
of ab ( 6= a or b) is the image of f(z) of an interior point z in the arc γ̂1 of Γ1 .
In the neighbourhood of z and inside Γ1 the function takes an open set of values
near w , some of which lie off l and in H \ (ab) . Then since the frontier of A1 is
contained in f(β1) ∪ f(β′

1) ∪ l we see that f(A1) must contain the whole of the
unbounded set H \ (ab) . This contradiction proves that there is a pole in A1 . So
far the argument closely resembles that of [8].

Now for large j , γj does not meet A1 . Pick another pair, say γ3 and γ4 ,
which do not meet A1 ∪ Γ. Thus the points z3 , z4 are in G1 and the points z′3 ,
z′4 are in G2 such that γ3 joins z3 to z′3 , oriented from z3 to z′3 , and γ4 joins z4
to z′4 , oriented fromz4 to z′4 .

It follows from Theorem 7.1 in [39, p. 151] that if z3 , z4 are separated in G1

by Γ1 , then they are separated in G1 by a component of G1 ∩ Γ1 , that is by a
cross cut ̺ , part of Γ1 , in G1 . Thus z3 , z4 belong to different components of
G1 \ ̺ one inside Γ1 , in A1 say P1 , and the other outside Γ1 , say P2 , so we can
take z3 ∈ P1 and z4 ∈ P2 . But z3 is outside A1 by assumption. Hence we may
join z3 to z4 by an arc δ2 in G1 which does not meet Γ1 or A1 . Similarly we
can join z′3 to z′4 by an arc δ′2 in G2 without meeting Γ1 or A1 .

Repeating the argument given before to construct the Jordan curve Γ1 , we
can construct another Jordan curve Γ2 , composed of arcs of γ3, γ4, δ2, δ

′
2 , which

does not meet Γ1 or A1 . Then the interior A2 of Γ2 satisfies A1 ∩ A2 = ∅ and
A2 contains a pole of f(z) .

By induction we can construct a sequence of Jordan curves Γi of the same
type as Γ1 , with interior Ai such that the sets (Γi∪Ai ) are disjoint for different i .
Having constructed Γ1, . . . ,Γi we choose γ2i+1, γ2i+2 disjoint fromA1∪· · ·∪Ai and
can join the ends z2i+1, z2i+2 in G1 without meeting Γ1∪· · ·∪Γi and z′2i+1, z

′
2i+2

in G2 without meeting Γ1 ∪ · · · ∪ Γi . Each Ai contains a pole. Thus if F (f)
contains more than one completely invariant component, then f(z) has infinitely
many poles. The theorem is proved.

8. Singularities of the inverse function of a transcendental

meromorphic function

We recall that the singular values of the inverse f−1 of a meromorphic func-
tion consist of algebraic branch points or critical values together with the asymp-
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totic values along paths which tend to ∞ . The latter are known as transcendental
singularities.

Let Bj = {z : f j is not meromorphic at z} , so that B0 = ∅ , B1 = {∞} , and
Bj = {∞} ∪ f−1(∞) ∪ · · · ∪ f−(j−1)(∞) in general.

Denote En(f) = {singularities of f−n} , n ∈ N , so that E1(f) is the set of
singularities of f−1(z) . Then as shown in [31, Theorem 7.1.2],

fn−1
(
E1(f) \Bn−1

)
⊆ En(f) ⊆

n−1⋃
j=0

f j
(
E1(f) \Bj

)
.

Thus the set E(f) = {w ∈ Ĉ : for some n ∈ N, f−n has a singularity at w} is
given by E(f) =

⋃∞
j=0 f

j
(
E1(f) \Bj

)
.

Define by E′(f) the set of points which are either accumulation points of
E(f) or are singularities of some branch of f−n for infinitely many values of n .

Theorem 8.1 [31, Theorem 7.1.3]. Let f(z) be a meromorphic function. Any

constant limit function of a subsequence of fn in a component of F (f) belongs

to the set E(f) ∪ E′(f) .

For rational functions E(f)∪E′(f) may be replaced by E′(f) . The result was
proved by Fatou [26, Chapter 4, p. 60], for rational maps and modified by Baker [2]
for transcendental entire functions, Bergweiler et al. [16] obtained a stronger result
for entire functions. A more general result, which applies to certain classes of
functions meromorphic outside a compact totally disconnected set of essential
singularities, was proved by Herring [31].

Theorem 8.2 [31, Theorem 7.1.4]. If f(z) is a meromorphic function and

C = {U0, U1, . . .Up−1} is a cycle of Siegel discs or Herman rings of F (f) , then for

each j , ∂Uj ⊂ E(f) ∪ E′(f) . Further, in any attracting or parabolic cycles the

limit functions belong to E′(f) .

This was proved by Fatou [26, §§30–31] for rational functions and the proof
in fact remains valid in our case.

We remark as a corollary (see e.g. [31, Theorem 7.1.7], if E(f)∪E′(f) has an
empty interior and connected complement, then no subsequence of fn can have a
non-constant limit function in any component of F (f) .

As we shall see in the example of the next section, these results can be useful
in proving the non-existence of wandering components of F (f) in cases where the
obvious generalisation of Sullivan’s theorem does not apply.

9. Examples

Example 1. If f ∈ E is such that F (f) has an unbounded component
then every component of F (f) is simply connected and J(f) has no singleton
components. These results no longer hold if f(z) is allowed to have even one pole.
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We show that if ε = 10−2 , a = 1 + iπ , and f(z) = z + 2 + e−z + ε/(z − a) ,
then F (f) has a multiply-connected unbounded invariant component H ′ , which
contains H (to be defined below), in which fn → ∞ .

It follows from [11] that the connectivity of H ′ is infinite and from [20] that
singleton components are everywhere dense in J(f) . We can show explicitly that
for some x0 < 0 the line S = {z : z = x + iπ, −∞ < x ≤ x0} is outside H ′ ,
which verifies the assertion of Theorem F.

Let Vδ = {z : |z−a| ≤ δ} with δ = 0.1 and let G = {z : |Re z| ≥ 1
2
} . We can

define the domain H as follows: H = G∩V c
δ , see Figure 5. Thus H is unbounded

and multiply connected.

Vδ

0

πi

S

0x 1
2
1

a

H

Figure 5. The domain H .

We shall prove that H is an invariant domain, that is, f(H) ⊂ H . Let z be
in H and choose ε = 0.01. If we look at |e−z + ε/(z − a)| we have

(15) |e−z +
ε

z − a
| ≤ |e−z | + | ε

z − a
| ≤ e−1/2 +

ε

δ
.

Thus

Re

{
z+2+e−z +

ε

z − a

}
≥ Re(z+2)−

∣∣∣∣e
−z+

ε

z − a

∣∣∣∣ ≥
1

2
+2−

(
e−1/2+

ε

δ

)
≈ 1.793.

Hence f(H) ⊂ H ⊂ F (f) . By similar arguments we can see that fn → ∞ . Let z
be in H as before and take f(z) − z = 2 + e−z + ε/(z − a) . It follows from (15)
that

Re{f(z) − z} ≥ 2 − e−1/2 − ε

z − a
≈ 1.29 > 1.



246 P. Domı́nguez

Thus Re{fn(z) − z} > n→ ∞ , n ∈ N , and fn(z) → ∞ .
The component H ′ of F (f) which contains H thus has the properties claimed.
Since f(x + iπ) = x + iπ + 2 − e−x + ε/(x− 1) we see that the segment

S = {z : z = x+ iπ, −∞ < x ≤ x0} is invariant under f(z) , for some x0 < −3.
Suppose that z = x′ + iπ ∈ H ′ ∩ S . Then it follows from Lemma 4 that there
is some constant K such that log log |fn(z)| < Kn . For a constant A > e2K we
have |Re f(x+ iπ)| > |x|A for x < x1 < x0 say. Since fn(x′) → ∞ we have for
some p ∈ N that Re f q(x′ + iπ) < −x1 , q ≥ p . It follows that for n > p

|Re fn(x′ + iπ)| > xAn−p

1 > ee(n−p) log A

.

Thus log log |fn(z)| > Kn if n is sufficiently large. This contradiction proves
that H ′ does not meet S .

Example 2. For the function f(z) = λ sin z − ε/(z − π) , 0 < λ < 1, ε > 0,
we wish to show that, for sufficiently small ε , the Fatou set F (f) is a single com-
pletely invariant domain of infinite connectivity. It will follow from Theorem A
that singleton components are everywhere dense in J(f) but that J(f) also con-
tains unbounded continua.

We take λ′ so that λ < λ′ < 1 and α so that 0 < α < 1 and that λ| cos z| < λ′

for z ∈ S = {z : | Im z| < α} .

−λ λ

α

α

π

ρ
T

0

i

-i

Figure 6. T = S ∩ {z : |z − π| > ̺} .

Let ̺ satisfy ̺ < α and assume that ε is so small that λ′α+ ε̺−1 < α . Let
T = S ∩ {z : |z − π| > ̺} , see Figure 6. For z = x+ iy ∈ T we have

|f(z) − λ sinx| ≤ λ| sin z − sinx| + ε

|z − π| ≤ λ′α+ ε̺−1 < α < 1.
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Since λ sinx ∈ I = [−λ, λ] , it follows that f(z) belongs to a compact subset of T .
Thus T belongs to an invariant component H of F (f) in which fn(z) → β where
β is an attracting fixed point of f(z) .

Now we consider the singular points of f−1 . On any path Γ which tends to
∞ , ε(z − π)−1 → 0 and f(z) has a limit l if and only if λ sin z → l . This is
possible only for l = ∞ . Thus apart from ∞ all singularities of f−1 are finite
critical values of f(z) .

If f ′(z) = 0 and |z − π| > t = 1
4π , then

| cos z| < ελ−1t−2 < 2ελ−1, sin z = ±(1 + η)

where |η| < 2ε2λ−2 (if ε was originally chosen small enough). For any such z we
have |f(z) − λ sin z| < 4ε/π and so |f(z) ± λ| < 2ε2λ−1 + 4ε/π . Thus we have
f(z) ∈ T ⊂ H (if ε was chosen small enough).

If f ′(z) = 0 and |z − π| ≤ t = 1
4π , then

ε

(λeπ/4)
≤ |(z − π)2| =

∣∣∣∣
ε

(λ cos z)

∣∣∣∣ ≤
√

2 ε

λ
,

since
| cos z| ≥ | cosx cos hy| ≥ 1/

√
2 and | cos z| < e|y|.

Thus |z − π| < 21/4
√
ε
√

1/λ , | sin z| < 2
√
ε
√

1/λ , ε|z − π|−1 <
√
ε
√
λ e , and

|f(z)| < 2
√
ε
√
λ +

√
ε
√
λ e , so that f(z) ∈ T ⊂ H , provided ε was chosen small

enough.
Thus the set E1(f) of the singularities of f−1(z) consists of a countable

subset of T whose closure is compact in T , together with ∞ . The same is true of
the sets E(f) and E′(f) defined in Section 8 and E(f)∪E′(f) =

⋃∞
0 f j

(
E1(f) \

{∞}
)
∪ {β,∞} . It follows from the results of Section 8 that there are no Siegel

discs or Herman rings. The only cyclic component of F (f) is H .
All singularities (except ∞) of f−1 are contained in H . Take a point z0 in

H and a branch g of f−1 such that g(z0) ∈ H . For any z1 in H and any branch
h of f−1 at z1 we can reach h(z1) by analytic continuation of g along a path γ
from z0 to z1 . Now γ is homotopic to a path from γ in C \ E1(f) to a path γ1

from z0 to z1 , and the continuation of g along γ1 is h at z1 . But g(γ1) ⊂ F (f)
and hence g(γ1) ⊂ H . Thus H is completely invariant.

The only possible constant limits of sequences fnk in Fatou components are β
and ∞ . The only possible components G of F (f) other than H will be wandering
components in which fn → ∞ as n → ∞ . Now we shall show that no such
domains G exist.

If there is such G we may suppose that fn(G) does not meet D(π, ̺) for
any N , since fn(G) → ∞ . We must have Im fn → ∞ in G and hence also
f ′(fn) → ∞ and (fn)′ → ∞ in G . It follows from Bloch’s theorem that fn+1(G)
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contains some discs D(a, 4π) , where | Im a| can be taken arbitrarily large, but
then on the horizontal diameter of D(a, π) , f(z) ∼ 1

2
e−ix+y so that fn+2(G)

contains some real points, which must be in H . This is impossible, so there are
no such domains G .

We have now proved our claim that F (f) = H which is multiply connected,
since π is not in F (f) . Then H must in fact have infinite connectivity and
by Theorem A the singleton components of J(f) are everywhere dense in J(f) .
It follows from the corollary to Theorem F that the Julia set J(f) has some
components which are not singletons. We show that this is true of the component
which contains ∞ that is, there exist unbounded components of J(f) . It follows
from Theorem F that if R is a sufficiently large positive number, then there
is no curve γ in F (f) ∩D(0, R)c which winds round zero. This implies that
the component K of the closed set J(f) ∪D(0, R) , which contains ∞ , is not a
singleton.

If K ⊂ J(f) , then we are finished. If not we can take a point w in K∩D(0, R)
and for each ε = 1/n we may form an ε-chain (in the spherical metric) in the
connected compact set K which starts at ∞ and ends at w . Denote by An

the set
{
zn
1 = {∞}, zn

2 , . . . , z
n
j(n)

}
where zn

j(n)+1 is the first point of the chain

which lies in D(0, R) . Thus An ⊂ J(f) . Since ∞ ∈ lim inf An 6= ∅ , we deduce
that L = lim supAn = {z : a neighbourhood of z meets infinitely many An} is
connected (see e.g. [43]). But L ⊂ J(f) , ∞ ∈ L and L meets C(0, R) . Thus {∞}
is not a singleton component of J(f) , that is, J(f) has an unbounded component.

For g(z) = λ sin z the Julia set contains segments ±{z : z = iy, 0 < y0 < y <
∞} of the imaginary axis. For f(z) one can show by direct discussion that J(f)
contains continua which are ‘close to’ the above segments. We omit the discussion.
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[11] Baker, I.N., J. Kotus, and Lü Yinian: Iterates of meromorphic functions III. Prepe-
riodic domains. - Ergodic Theory Dynamical Systems 11, 1991, 603–618.

[12] Baker, I.N., and L.S.O. Liverpool: Picard sets for entire functions. - Math. Z. 126,
1972, 230–238.

[13] Beardon, A.F.: Iteration of Rational Functions. - Graduate Texts in Math. 132, Springer-
Verlag, New York, 1991.

[14] Bergweiler, W.: Iteration of meromorphic functions. - Bull. Amer. Math. Soc. (N.S.)
29, 1993, 151–188.

[15] Bergweiler, W.: On the Julia set of analytic self-maps of the punctured plane. - Analysis
15, 1995, 251–256.

[16] Bergweiler, W., M. Haruta, H. Kriete, H.-G. Meier, and N. Terglane: On the
limit functions of iterates in wandering domains. - Ann. Acad. Sci. Fenn. Ser. A I
Math. 18, 1993, 369–375.

[17] Bhattacharyya, P.: Iteration of analytic functions. - PhD thesis, University of London,
1969.
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