MAPPING PROPERTIES OF FATOU COMPONENTS

M.E. Herring

Imperial College of Science, Technology and Medicine, Department of Mathematics London SW7 2BZ, United Kingdom

Abstract. If f(z) is meromorphic in **C** and N_1 and N_2 are components of the Fatou set of f(z) such that $f(z): N_1 \to N_2$, it is shown that $D = N_2 \setminus f(N_1)$ is a set which contains at most two points. If f(z) is entire then D contains at most one point. Examples show that these results are sharp and also that the points of D are in general neither Picard exceptional nor Nevanlinna deficient.

1. Introduction

Let $f(z): \mathbf{C}$ (or $\widehat{\mathbf{C}}$) $\to \widehat{\mathbf{C}}$ be a non-constant meromorphic function which is not a Möbius transformation. We define the n^{th} iterate of f(z) at z as $f^n(z)$, where $f^1 = f(z)$ and $f^{n+1}(z) = f(f^n(z))$. The subset of the sphere such that $\{f^n\}, n \in \mathbf{N}$, is defined meromorphically on some open neighbourhood, U of z and forms a normal family in U is termed the Fatou set of f(z), F(f), and consists of a countable union of connected open components. The complement of F(f) in $\widehat{\mathbf{C}}, J(f)$ is termed the Julia set of f(z) and is non-empty and perfect.

Non-rational functions are not defined continuously at transcendental singularities and so these points must lie in J(f).

The Fatou set has the property of complete invariance, that is $z \in F(f)$ if and only if $f(z) \in F(f)$; for rational f(z), J(f) has this property whilst for non-rational f(z), $z \in J(f) \setminus \{\infty\}$ if and only if $f(z) \in J(f)$.

Let N_1 be any component of F(f). Then $f(N_1)$ is a connected subset of F(f) and so lies inside some component of F(f), say N_2 .

If f(z) is rational then there are at worst finitely many algebraic singularities of f^{-1} in N_2 , and so $f(z): N_1 \to N_2$ is a finite branched cover. However this need not be the case if f(z) is non-rational. For instance, consider the function $f(z) = e^z - 1$. Let $H = \{z : \operatorname{Re}(z) < 0\}$. Then $f(H) \subset H$ and so by Montel's theorem $\{f^n\}, n \in \mathbb{N}$, forms a normal family in H which is then contained in some (forward invariant) component of F(f), say N. Now $-1 \in H$ but -1 is a Picard omitted value of f(z) and so $F(N) \subset N$ but -1 is not in f(N).

It is already known (e.g. [4]) that if $f(z): N_1 \to N_2$, then $f(N_1)$ is open and dense in N_2 , but nothing further seems to be known about the set $N_2 \setminus f(N_1)$. Our main result is

¹⁹⁹¹ Mathematics Subject Classification: Primary 30D05, 58F08.

Theorem 1. If f(z) is meromorphic in **C** and $f(z): N_1 \to N_2$, where N_i are components of F(f), then $|N_2 \setminus f(N_1)| \leq 2$.

Theorem 2. If $a \in N_2 \setminus f(N_1)$, then a is admitted as an asymptotic value of f(z) along some path $\gamma \subset N_1$ which runs to ∞ .

We then have two obvious corollaries.

Corollary 1. If N_1 is bounded, then $f(z): N_1 \to N_2$ is a finite branched cover.

Corollary 2. If f(z) does not admit asymptotic values, then for all components N_1 of F(f), $f(z): N_1 \to N_2$ is surjective.

In [7, pp. 7–11], a family of meromorphic functions which do not admit asymptotic values is introduced.

Theorem 3. If f(z) is transcendental and F(f) is connected, then each point of $F(f) \setminus f(F(f))$ is a Picard exceptional value of f(z), and so the latter set contains at most two points.

We are able to prove more under assumptions on the structure of N_1 :

Theorem 4. Let f(z) be transcendental meromorphic in \mathbb{C} such that F(f) contains at least two components, with N_1 unbounded and let Γ be the component of ∂N_1 which contains ∞ . Then if $\partial N_1 \setminus \Gamma$ is bounded in \mathbb{C} , $|N_2 \setminus f(N_1)| \leq 1$.

Corollary 3. If f(z) is transcendental entire and N_1 is unbounded, then N_1 and N_2 are simply-connected and $|N_2 \setminus f(N_1)| \leq 1$.

Corollary 4. If f(z) is a non-entire transcendental meromorphic function, and N_1 is of finite connectivity ≥ 2 , then $|N_2 \setminus f(N_1)| \leq 1$.

It has been shown in [5] that for non-entire meromorphic functions F(f) may have unbounded components of arbitrary connectivity.

Theorem 5. Let f(z) be a non-entire transcendental meromorphic function, with N_1 of connectivity at most two. Then if N_2 is simply-connected, $|N_2 \setminus f(N_1)| \leq 1$ whilst if N_2 is multiply-connected then $f(N_1) = N_2$.

We may also investigate this problem for holomorphic self maps of the punctured plane. We need only consider transcendental non-entire functions which as in [3] are conjugate to

$$f(z) = z^k \exp\left(g(z) + h\left(\frac{1}{z}\right)\right)$$

where g, h are entire, $k \in \mathbb{Z}$ (if k is non-negative, then h is non-constant). It is shown in the same paper that then the connectivity of any component of F(f) is at most two, there being at most one multiply-connected component.

We then have:

Theorem 6. Let f(z) be a transcendental non-entire self map of $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$ and $f(z): N_1 \to N_2$ where N_1 is a component of F(f). Then if N_2 is simply-connected $|N_2 \setminus f(N_1)| \leq 1$ whilst if N_2 is multiply-connected (doubly) then $f(N_1) = N_2$.

Note that if f(z) is as above and F(f) consists of a single component, then by Theorem 3, $f(z): F(f) \to F(f)$ must be surjective as the two Picard exceptional values of f(z) lie in J(f).

In Section 4 we shall give various examples to show the sharpness of Theorems 1, 3, and 4 (with its corollaries). The obvious way to construct examples is by using functions, such as $\tan z$, which have Picard exceptional values. We shall show, however, that a value in $N_2 \setminus f(N_1)$, although asymptotic need not be a Picard exceptional value, nor even Nevanlinna deficient. In particular, in Section 4, Example 4 for the entire function

$$f(z) = \int_0^z \exp(-e^t) \, dt,$$

F(f) contains a sequence of different components N_i , $i = 1, 2, \ldots$, such that $f(N_i) \subset N_i$, and each $N_i \setminus f(N_i)$ is a singleton $\{a_i\}$, where the value a_i has Nevanlinna deficiency $\delta(a_i, f) = 0$.

2. Results needed for the proofs

Consider a domain D and let f(z) be a function single valued and meromorphic in D, where we assume that the complement of D in $\widehat{\mathbf{C}}$ has non-empty interior. By a spherical rotation, this is equivalent to supposing that D is bounded. When we refer to the capacity of a given set this should always be taken to mean the logarithmic capacity. For a non-isolated point z_0 of $\partial D = \Gamma$ we define

$$C_D(f, z_0) = \{ \alpha : \exists z_n \in D, \ z_n \to z_0, \ f(z_n) \to \alpha \}.$$

Suppose further that E is a closed subset of Γ of capacity zero and $z_0 \in E$ is a limit point of $\Gamma \setminus E$. We define

$$C_{\Gamma \setminus E}(f, z_0) = \bigcap_{r > 0} \, \overline{\bigcup_{z \in \Gamma \cap D_r, \, z \notin E} C_D(f, z)},$$

where D_r is a disc of spherical radius r centred at z_0 . We denote by $\Omega_{D,E}(f, z_0)$ the open set

$$C_D(f, z_0) \setminus C_{\Gamma \setminus E}(f, z_0).$$

With these assumptions we have:

Lemma 1 [14, Theorem VIII.39, p. 332]. If $z_0 \in E$, then $\partial C_D(f, z_0) \subset C_{\Gamma \setminus E}(f, z_0)$.

Lemma 2 [14, Theorem VIII.41, p. 335]. Let Ω be a connected component of $\Omega_{D,E}(f, z_0)$, where $z_0 \in E$. Then in any neighbourhood of z_0 in D, f(z)takes any value of Ω infinitely often with the possible exception of at most a set of capacity zero. If the set $E = \{z_0\}$, then the exceptional set above contains at most two points.

Lemma 3 [12, Theorem 10, p. 25]. Let D be a simply-connected domain which is of hyperbolic type and $z_0 \in E$ as above. If $C_D(f, z_0)$ is not the entire sphere then for any connected component Ω of $\Omega_{D,E}(f, z_0)$, f(z) takes any value of Ω infinitely often in a neighbourhood of z_0 with at most one exception.

Lemma 4 [8, Theorem 3.5, p. 56]. Let w = f(z) be analytic and univalent in the disc D. Then the radial limits $f(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$ exist on ∂D outside a set of capacity zero, and can be constant only on sets of capacity zero.

Lemma 5 [8, Theorem 5.14, p. 109]. Let w = f(z) be analytic and bounded, |w| < 1 in |z| < 1 and suppose that

$$\lim_{r \to 1^-} |f(re^{i\theta})| = 1$$

outside a set of capacity zero. Then either f(z) reduces to a finite Blaschke product or f(z) assumes every value in |w| < 1 infinitely often with at most one exception.

Lemma 6. If N is a simply or doubly-connected domain, D is the unit disc and $\Phi: D \to N$ is the uniformizing map then $\Phi(e^{i\theta}) = \lim_{r \to 1^-} \Phi(re^{i\theta})$ exists outside a set of capacity zero on ∂D . Given a value α , then $\Phi(e^{i\theta})$ takes the value α at most on a set of capacity zero.

Proof. Because of Lemma 4 we may assume that N is doubly-connected. Let α , β be finite values which lie in different components of ∂N and put

$$\Psi = \log \frac{\Phi - \alpha}{\Phi - \beta} \colon D \to \mathbf{C},$$

where we begin by choosing some $z \in D$ and some branch of $\log\{(\Phi(z) - \alpha)/(\Phi(z) - \beta)\}$. By the monodromy theorem the continuation of this branch gives a single-valued analytic function Ψ in D. In fact, Φ gives a conformal map of Dto the universal cover of N and the log maps this universal cover univalently to a simply-connected region B. Thus $\Psi: D \to B$ is univalent. Hence by Lemma 4 the radial limit $\Psi(e^{i\theta})$ exists except for a set E of capacity zero, and for any $c \in \widehat{\mathbf{C}}$, $E_c = \{e^{i\theta}: \Psi(e^{i\theta}) \text{ exists and } = c\}$ is a set of capacity zero for $e^{i\theta} \notin E \cup E_{\infty}$, $e^{i\theta}$ lies in E_c for some finite c which implies that $\Phi(e^{i\theta}) = T(e^c) \neq \alpha, \beta$, where $T(w) = (\alpha - \beta w)/(1 - w)$, and thus $e^c \neq 0, \infty$.

For a given u the set $\{e^{i\theta} : \Phi(e^{i\theta}) = u\}$ is a subset of $\cup E_{c_n} \cup E \cup E_{\infty}$, where $e^{c_n} = T^{-1}(u)$, which is a union of countably many sets of capacity zero and hence has capacity zero.

3. Proofs

Proof of Theorem 2. (See [4, p. 242]). A brief sketch may be useful. This follows from the Star theorem of Gross (see e.g. [11, p. 287]). If $z_0 \in N_1$, $w_0 = f(z_0) \in N_2$ and g is the branch of f^{-1} such that $g(w_0) = z_0$, the Star theorem ensures that we can continue g analytically along some polygonal path δ in N_2 up to a point $\beta \in D(\alpha, \epsilon) \subset N_2$ and then along some circular arc δ' in $D(\alpha, \epsilon)$ which goes from β up to α . Then $g(\delta \cup \delta') = \gamma$ is in N_1 by the complete invariance of F(f) and γ goes to ∞ since $\alpha \notin f(N_1)$. i.e. the continuation is not possible over α .

Proof of Theorem 3. Suppose that F(f) is a single connected component. Then if $U_r = \{z : r < |z| < \infty\}$, by Picard's theorem $f(U_r)$ covers each point of the complex sphere infinitely often with the exception of at most two points. By the complete invariance of F(f), $f(U_r \cap F(f))$ then covers each point of F(f) infinitely often with at most two exceptions and the result follows.

Proof of Theorem 1. Since Theorem 3 already covers the case when F(f) has a single component we assume that there are at least two components. Thus the complement of N_1 has a non-empty interior and we may apply Lemmas 1 and 2 with $D = N_1$.

Suppose that $\alpha \in N_2 \setminus f(N_1)$. Then α is admitted as an asymptotic value of f(z) along a path γ to ∞ in N_1 . Thus $\alpha \in C_{N_1}(f, \infty)$. Now

$$C_{\partial N_1 \setminus \{\infty\}}(f, \infty) = \bigcap_{r>0} \overline{\bigcup_{v \in \partial N_1 \cap D_r, v \neq \infty} C_{N_1}(f, v)}, \ D_r = \{z : |z| > r\}$$
$$= \bigcap_{r>0} \overline{\bigcup_{v \in \partial N_1 \cap D_r, v \neq \infty} f(v)},$$

which is contained in ∂N_2 . Thus

$$\Omega_{N_1,\infty}(f,\infty) = C_{N_1}(f,\infty) \setminus C_{\partial N_1 \setminus \{\infty\}}(f,\infty)$$

is non-empty since it contains $\alpha \in N_2$. From Lemma 1

$$\partial C_{N_1}(f,\infty) \subset C_{\partial N_1 \setminus \{\infty\}}(f,\infty) \subset J(f)$$

and so there must be a connected component Ω of $\Omega_{N_1,\{\infty\}}(f,\infty)$ which contains N_2 . From the second part of Lemma 2 we see that each point of Ω is assumed infinitely often by f(z) in N_1 with at most two exceptions. Thus $|N_2 \setminus f(N_1)| \leq 2$ as claimed.

Proof of Theorem 4. Let Γ be the component of ∂N_1 which contains ∞ . If Γ were a point then it would have to be a limit point of bounded components of ∂N_1 , which contradicts the hypothesis, and so Γ must be a non-degenerate continuum. If we let M be the component of $\widehat{\mathbf{C}} \setminus \Gamma$ which contains N_1 , then Mmust be simply-connected, and as J(f) is infinite M must be of hyperbolic type.

Suppose that $\alpha \in N_2 \setminus f(N_1)$, which is then admitted as an asymptotic value on some path to ∞ in N_1 , say γ . Then $\alpha \in C_M(f, \infty)$. As in the previous proof we see that $C_{\Gamma \setminus \{\infty\}}(f, \infty) \subset \partial N_2$, and $\partial C_M(f, \infty) \subset C_{\Gamma \setminus \{\infty\}}(f, \infty)$ so that $\Omega_{M,\{\infty\}}(f, \infty)$ contains α and has a connected component Ω which must contain N_2 .

Now $C_M(f,\infty) \subset \overline{N_2} \neq \widehat{\mathbf{C}}$. By using Lemma 3 we see that with the possible exception of a singleton, each value in Ω is taken infinitely often by f(z) in any neighbourhood of ∞ in M. Under the hypothesis we may choose such a neighbourhood which lies entirely within N_1 and so $|N_2 \setminus f(N_1)| \leq 1$.

Proof of Corollary 3. If f(z) is transcendental entire and F(f) is connected, then this follows from Theorem 3. Otherwise F(f) has at least two components, N_1 is unbounded and so is simply-connected (cf. [1]), in which case $\partial N_1 \setminus \Gamma$ is empty and the result follows from Theorem 4. Note that if N_2 were multiply-connected then by [2, Theorem 3.1] N_1 would be bounded which is a contradiction.

Proof of Corollary 4. If N_1 is of finite connectivity ≥ 2 then by [6, Theorem 3.1] N_1 is not completely invariant and so there must be other components of F(f). The result then follows directly from Theorem 4.

Proof of Theorem 5. Let $\psi_i: D \to N_i$ be the uniformizing maps of N_1 , N_2 ; then by Lemma 6, $\psi_1(e^{i\theta})$ exists and is finite outside a set E of capacity zero. Pick $e^{i\theta} \notin E$, then $\psi_1(e^{i\theta}) = \alpha \in \partial N_1 \setminus \{\infty\}$ and $f\psi_1(e^{i\theta}) = f(\alpha) \in \partial N_2$. If λ is any branch of ψ_2^{-1} then we may continue $F = \lambda f \psi_1$ to an analytic function in D, and by the properties of the map ψ_2 we see that $|F(re^{i\theta})| \to 1$ as $r \to 1^-$. Then by Lemma 5 we see that F is either a finite Blaschke product, in which case F(D) = D and $f(N_1) = N_2$, or F(z) takes every value D infinitely often with at most one exceptional point, so that $N_2 \setminus f(N_1)$ is at most a singleton. If however N_2 is multiply-connected then given any $w \in N_2$, there are infinitely many points p_n such that $\psi_2(p_n) = w$ with at most one of the p_n not taken by F(z), so that $f(N_1) = N_2$.

Proof of Theorem 6. If f(z) is a self map of the punctured plane then the components of F(f) are of connectivity at most two and so we may use the proof of Theorem 5 to show the claim.

This concludes the proofs of the theorems. There now follows a series of examples which demonstrate the sharpness of Theorem 3 and Corollaries 3 and 4.

4. Examples

Example 1. Consider the meromorphic function $f(z) = \tan z$. Then from [9, p. 61] we see that $J(f) = \mathbf{R} \cup \{\infty\}$ and F(f) consists of two completely invariant components H^+ and H^- , the upper and the lower planes respectively. Now $f(z) \neq \pm i$ in \mathbf{C} and so $H^+ \setminus f(H^+) = \{i\}$ and so the bound in Corollary 4 is sharp.

Example 2. Consider $f(z) = \frac{1}{2} \tan z$. From [9, pp. 62–63] we see that J(f) is an unbounded totally disconnected subset of **R**, so F(f) is a single component. Also $f(z) \neq \pm \frac{1}{2}i$ in **C**, so that $F(f) \setminus f(F(f)) = \{\pm \frac{1}{2}i\}$ and the bounds in Theorems 1 and 3 are sharp.

The question of whether the case $|N_2 \setminus f(N_1)| = 2$ can occur when F(f) is not connected remains open.

Example 3. Consider

(1)
$$f_p(z) = \int_0^z e^{-t^p} dt = z - \frac{z^{p+1}}{p+1} + \cdots, \qquad p \ge 2.$$

From (1), zero is a parabolic fixed point of f with multiplicity $p + 1 \ge 3$. It is then easy to see that for $x \in \mathbf{R}^+$, $z \in \mathbf{C}$ the following properties of f_p hold:

(2)
$$f_p(e^{2\pi \upsilon i z/p}) = e^{2\pi \upsilon i/p} f_p(z), \quad \upsilon = 1, 2, \dots, p,$$

(3)
$$f_p(x) \le x,$$

(4)
$$f_p(\mathbf{R}^+) \subseteq \mathbf{R}^+$$

Note also that $f'(z) = e^{-z^p}$ which is non-zero in the finite plane, so that f^{-1} has no finite branch points.

Define sets A_v , $v = 1, 2, \ldots, p$, by

$$A_{\upsilon} = \left\{ z : \left| \arg z - \frac{2\upsilon\pi}{p} \right| \le \frac{\pi}{2p} \right\},\,$$

and non-zero constants

$$\alpha_{\upsilon} = e^{2\pi \upsilon i/p} \int_0^\infty \exp(-r^p) \, dr.$$

Then by [11, p. 267] we have that as $z \to \infty$, $z \in A_v$, $f_p(z) \to \alpha_v$ whilst as $z \to \infty$ in the rest of the plane |f(z)| is unbounded, so the only finite transcendental singularities of f_p^{-1} are $\alpha_1, \ldots, \alpha_p$.

The points ∞ and α_v have Nevanlinna deficiencies $\delta(\infty) = 1$ and $\delta(\alpha_v) = 1/p$, so that each α_v is non-Picard exceptional.

We now claim that there are p disjoint, simply-connected components of $F(f_p)$, say N_v , v = 1, 2, ..., p, such that:

$$f(N_v) \subseteq N_v, \qquad e^{2\pi v i/p} \mathbf{R}^+ \subseteq N_v.$$

For, by using the Leau–Fatou Flower Theorem (cf. [10, Theorem 7.2, p. 45] we see that there are p disjoint forward invariant components N_v of F(f) such that zero lies in each ∂N_v and that a segment $[0, \epsilon]$, $\epsilon > 0$ of \mathbf{R}^+ lies in one N_v , say N_p . From (3) and (4) we then see that $f_p^n|_{\mathbf{R}^+} \to 0$ as $n \to \infty$ and \mathbf{R}^+ is contained in N_p . Using this fact and (2) we may label each N_v so that N_v contains $e^{2\pi v i/p} \mathbf{R}^+$, which is then unbounded and so simply-connected (cf. [1]).

Now each $\alpha_{\upsilon} \in e^{2\pi \upsilon i/p} \mathbf{R}^+ \subset N_{\upsilon}$. Suppose that $\alpha_{\upsilon} \in f_p(N_{\upsilon})$. Then there exists some $\beta \in N_{\upsilon}$ with $f_p(\beta) = \alpha_{\upsilon}$ and some branch g of f_p^{-1} defined analytically on some open neighbourhood of β with $g(\alpha_{\upsilon}) = \beta$.

Continuation of g along any path γ in N_v which does not return to α is clearly possible. If $U = D(\alpha_v, r) \subset N_v$ so that g is analytic in U, suppose γ leaves \overline{U} at z_1 and returns a first time to \overline{U} at z_2 . If σ is the circumference of U and τ is the arc from z_1 to z_2 on ∂U then γ is homotopic in $N_v \setminus \{\alpha_v\}$ with fixed ends z_1, z_2 to $\tau \sigma^n$ for some integer n. Thus on analytic continuation on γ , g returns to the same branch and remains analytic at α_v . But this is impossible, since in a parabolic basin such as N_v the function f_p cannot be univalent.

So $\alpha_v \notin f(N_v)$, and we have a function f_p demonstrating the sharpness of Corollary 3. Further the exceptional points of α_v are not Picard exceptional.

We now show that exceptional points do not have to be even Nevanlinna exceptional.

Example 4. Consider the transcendental entire function f(z) defined as

(6)
$$f(z) = \int_0^z \exp(-e^t) dt = \int_0^z \sum_{n=0}^\infty \frac{(-1)^n}{n!} e^{nt} dt = z + \sum_{n=1}^\infty \frac{(-1)^n}{n!n} (e^{nz} - 1).$$

From (6), we see that for all $z \in \mathbf{C}$

$$f(z+2\pi i) = f(z) + 2\pi i,$$

and so in particular, $f(2k\pi i) = 2k\pi i + f(0) = 2k\pi i$, $k \in \mathbb{Z}$. Thus each point $2k\pi i$ is a fixed point of f(z), and as $f'(z) = \exp(-e^z)$, $f'(2k\pi i) = e^{-1} < 1$, it is actually an attracting fixed point of f(z). As such, each $2k\pi i$ lies in F(f).

Suppose that z = x + iy, x > 0, $|y| \le \frac{1}{2}\pi$. Evaluating f(z) along the paths $\gamma_1 : \text{Im } z = 0$, $\text{Re } z = t \in [0, x]$; $\gamma_2 : \text{Re } z = x$, $\text{Im } z = t \in [0, y]$ we get

$$f(z) = \int_0^x \exp(-e^t) \, dt + \int_0^y i \exp(-e^{x+it}) \, dt.$$

270

As x > 0 we have that

$$\alpha(x) = \int_0^x \exp(-e^t) \, dt < \int_0^x e^{-t} \, dt,$$

so that $\alpha(x) \to \alpha \in [0,1]$ as $x \to \infty$. As $|y| \le \frac{1}{2}\pi$, if $0 \le t \le |y|$, then $\sin \ge 2t/\pi$, so that

$$\begin{aligned} \left| \int_{0}^{y} i \exp(-e^{x+it}) \, dt \right| &\leq \left| \int_{0}^{y} \exp(-e^{x \cos t}) \, |dt| \right| = \int_{0}^{|y|} \exp(-e^{x \cos t}) \, dt \\ &\leq \int_{0}^{\pi/2} \exp(-e^{x \cos t}) \, dt = \int_{0}^{\pi/2} \exp(-e^{x \sin s}) \, ds \\ &\leq \int_{0}^{\pi/2} \exp\left(\frac{-2t}{\pi}e^{x}\right) dt \\ &= \frac{1}{2}\pi(e^{-x} - e^{-x}e^{-e^{x}}) \to 0 \quad \text{as } x \to \infty. \end{aligned}$$

Thus if $x \to \infty$, $|y| \le \frac{1}{2}\pi$ then

$$f(z) = f(x+iy) \rightarrow \int_0^\infty \exp(-e^t) dt = \alpha \ (\neq 0), \text{ say.}$$

Now for $k \in \mathbf{Z}$, set

$$A_k = \{ z : \operatorname{Re} z > 0, \ |\operatorname{Im} z - 2k\pi| \le \frac{1}{2}\pi \}.$$

We have from (7) that as $z \to \infty$, with z lying in some A_k , that

$$f(z) \to \alpha + 2k\pi i = \alpha_k$$
, say

We claim that |f(z)| is unbounded as $z \to \infty$ on the following paths:

- (8) $\gamma_k : \mathbf{R}^+ + (2k+1)\pi i, k \in \mathbf{Z}.$
- (9) Any path $\gamma: [0,1] \to \widehat{\mathbf{C}}$ such that $\operatorname{Im} \gamma(t)$ is unbounded.
- (10) Any path $\gamma: [0,1] \to \widehat{\mathbf{C}}$ such that $\operatorname{Re} \gamma(t) < x_0$ for sufficiently large t. To show (8), if $z = x + (2k+1)\pi i$, $k \in \mathbf{Z}$, x > 0, then

$$f(z) = \int_0^{(2k+1)\pi} i \exp(-e^{it}) dt + \int_0^x \exp(-e^{t+(2k+1)\pi i}) dt$$
$$= O(1) + \int_0^x \exp(e^t) dt$$

so that $|f(z)| \to \infty$ as $|x| \to \infty$, and (8) is shown.

To show (9), suppose that γ is any such path to ∞ . We may find values $z_k = x_k + 2\pi ki \in \gamma$ for an unbounded sequence of integers k and $x_k \in \mathbf{R}$. Then $f(z_k) = f(x_k) + 2\pi ki$. As f(z) is real on the real line, $|f(z)| \ge 2\pi |k| \to \infty$ as $|k| \to \infty$.

In proving (10) we may now assume because of (9) that $\operatorname{Im} \gamma(s)$ is bounded with $\operatorname{Re} \gamma(s) \to -\infty$, and $|\operatorname{Im} \gamma(s)| < y_0$, say. Then if z = x + iy lies on γ ,

$$f(z) = \int_0^x \exp(-e^t) \, dt + \int_0^y i \exp(-e^{x+it}) \, dt.$$

Now t < 0, so $e^t < 1$, $e^{-e^t} > e^{-1}$ and then

$$\left| \int_0^x \exp(-e^t) \, dt \right| > |x|e^{-1} \to \infty$$

and

$$\left| \int_{0}^{y} \exp(-e^{x+it}) dt \right| \leq \left| \int_{0}^{y} \exp(-e^{x\cos t}) |dt| \right|$$
$$\leq \left| \int_{0}^{y} \exp(e^{x}) |dt| \right| \leq |y_{0}| \exp(e^{x}) \to |y_{0}| \quad \text{as } x \to -\infty.$$

Thus as $z \to \infty$ on γ , $|f(z)| \to \infty$, and the claims (8)–(10) above are shown. It is clear that f' is non-zero in the finite plane, and so f^{-1} has no finite algebraic singularities. We now claim that the finite asymptotic values of f(z) are the points $\{a_k\}$. Suppose not, and so there is a path $\gamma \to \infty$ so that as $z \to \infty$ on γ , $f(z) \to a \in \mathbb{C} \setminus \{\alpha_k\}$, $k \in \mathbb{Z}$. By claims (8)–(10) we see that γ must eventually lie in the strip S in the right half-plane between an A_k and one of the lines l_k , l_{k-1} ; without loss of generality we may assume that it lies between A_k and l_{k-1} , so $S = \operatorname{Re}(z) > 0$, $(2k-1)\pi \leq \operatorname{Im}(z) \leq (2k-\frac{1}{2})\pi$. We may then take the line $\delta : \operatorname{Im}(z) = (2k - \frac{1}{2}\pi)$ contained in A_k and join γ and δ by a vertical line l, so that these paths together with ∞ enclose a region R contained inside the horizontal strip S.

Note that there exists A > 0 such that $|f(z)| \le \exp(e^{|z|})|z| < \exp(Ae^{|z|})$ for all large enough |z|.

Clearly |f| is bounded on ∂R , |f| < M, say. Consider the function g, where

$$g(z) = \exp\left(\epsilon \exp\left(m\{z - (2k - \frac{3}{4}\pi i)\}\right)\right), \quad \epsilon > 0, \ \sqrt{2} < m < 2.$$

Then for $z \in R$,

$$|g(z)| = \exp\left(\epsilon(\exp mx)\cos\left(my - m(2k - \frac{3}{4})\right)\right)$$

>
$$\exp\left(\epsilon\left(\exp(mx)\cos\left(m\frac{1}{4}\pi\right)\right)\right) > 1,$$

since $\sqrt{2} < m < 2$. Thus |f/g| < M on ∂R , and as $x \to \infty$ in R,

 $|f/g| < \exp\left\{Ae^{x(1+v(x))} - \epsilon\cos(\frac{1}{4}m\pi)e^{mx}\right\}$

where $v(x) = (|z|/x) - 1 \to 0$ as $x \to \infty$. Hence we see that $f/g \to 0$ as z goes to ∞ in R. We now choose a $z \in R$ and take a curve $\Gamma \subseteq R$ which connects γ and δ so that z lies in the finite part R_0 of R cut off by Γ . Using the above and the maximum principle we see that, so long as Γ is chosen far enough to the right then |f/g| < M on Γ , and ∂R_0 , so |f/g| < M in R_0 .

So |f(z)| < M|g(z)|, and as ϵ is arbitrary and z fixed, we see that |f(z)| < M. However the choice of z was arbitrary and so this is true of all $z \in R$. We then use [13, Theorem 340, p. 172] to see that the asymptotic values a, α_k are equal, and so the only finite asymptotic values of f are the points α_k which are then exactly the finite transcendental singularities of f^{-1} .

The positive real axis, \mathbf{R}^+ , is mapped into itself by f(z) which has an attracting fixed point at 0, and on \mathbf{R} , f' < 1, so by Rolle's theorem, f(x) = x has no real solutions other than 0. Also, for x > 0 (< 0), f(x) < 0 (> 0), and so we may then see that $f^n \to 0$ on \mathbf{R} as $n \to \infty$, so \mathbf{R} lies in an unbounded (and so simply-connected) forward invariant component N_0 of F(f).

Using (7) we see that each $\mathbf{R} + 2k\pi i$ lies in some simply connected, forward invariant component N_k of F(f) which has an attracting fixed point of f(z) at $2k\pi i$, so that the N_k must be disjoint. We then use exactly the same reasoning as in Example 3, to see that each $\alpha_k \in N_k \setminus f(N_k)$.

It is shown by [11, p. 290] that the points α_k are non-Nevanlinna exceptional points of f(z), and so the claim at the end of the introduction is shown.

The author wishes to thank Professor I.N. Baker for many helpful suggestions.

References

- BAKER, I.N.: The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 1975, 277–283.
- BAKER, I.N.: Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3) 49, 1984, 563–573.
- BAKER, I.N.: Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 12, 1987, 191–198.
- BAKER, I.N., J. KOTUS, and LÜ YINIAN: Iterates of meromorphic functions I. Ergodic Theory Dynam. Systems 11 (2), 1991, 241–248.
- [5] BAKER, I.N., J. KOTUS, and LÜ YINIAN: Iterates of meromorphic functions II: Examples of wandering domains. - J. London Math. Soc. (2) 42, 1990, 267–278.
- [6] BAKER, I.N., J. KOTUS, and LÜ YINIAN: Iterates of meromorphic functions III. Preperiodic domains. - Ergodic Theory Dynam. Systems 11, 1991, 603–618.
- BERGWEILER, W.: Newton's method and a class of meromorphic functions without wandering domains. - Ergodic Theory Dynam. Systems 13, 1993, 231–247.
- [8] COLLINGWOOD, E.F., and A.J. LOHWATER: The Theory of Cluster Sets. Cambridge University Press, 1966.

- [9] DEVANEY, R.L., and L. KEEN: Dynamics of meromorphic maps with polynomial Schwarzian derivative . - Ann. Sci. École Norm. Sup. (4) 22, 1989, 55–79.
- [10] MILNOR, J.: Dynamics in one complex variable. Introductory lectures. Preprint S.U.N.Y. Stonybrook, 1990/5.
- [11] NEVANLINNA, R.: Analytic Functions. Springer-Verlag, Berlin, 1970.
- [12] NOSHIRO, K.: Cluster Sets. Springer-Verlag, Berlin, 1960.
- [13] PÓLYA, G., and G. SZEGÖ: Problems and Theorems in Analysis, Vol. 1. Springer-Verlag, New York, 1972.
- [14] TSUJI, M.: Potential Theory in Modern Function Theory. Maruzen Co. Ltd., Tokyo, 1959.

Received 23 August 1993