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Abstract. If f(z) is meromorphic in C and N1 and N2 are components of the Fatou set of
f(z) such that f(z): N1 → N2 , it is shown that D = N2 \ f(N1) is a set which contains at most
two points. If f(z) is entire then D contains at most one point. Examples show that these results
are sharp and also that the points of D are in general neither Picard exceptional nor Nevanlinna
deficient.

1. Introduction

Let f(z): C (or Ĉ) → Ĉ be a non-constant meromorphic function which is
not a Möbius transformation. We define the the nth iterate of f(z) at z as fn(z) ,
where f1 = f(z) and fn+1(z) = f

(
fn(z)

)
. The subset of the sphere such that

{fn} , n ∈ N , is defined meromorphically on some open neighbourhood, U of
z and forms a normal family in U is termed the Fatou set of f(z) , F (f) , and
consists of a countable union of connected open components. The complement of
F (f) in Ĉ , J(f) is termed the Julia set of f(z) and is non-empty and perfect.

Non-rational functions are not defined continuously at transcendental singu-
larities and so these points must lie in J(f) .

The Fatou set has the property of complete invariance, that is z ∈ F (f) if
and only if f(z) ∈ F (f) ; for rational f(z) , J(f) has this property whilst for
non-rational f(z) , z ∈ J(f) \ {∞} if and only if f(z) ∈ J(f) .

Let N1 be any component of F (f) . Then f(N1) is a connected subset of
F (f) and so lies inside some component of F (f) , say N2 .

If f(z) is rational then there are at worst finitely many algebraic singularities
of f−1 in N2 , and so f(z): N1 → N2 is a finite branched cover. However this
need not be the case if f(z) is non-rational. For instance, consider the function
f(z) = ez − 1. Let H = {z : Re(z) < 0} . Then f(H) ⊂ H and so by Montel’s
theorem {fn} , n ∈ N , forms a normal family in H which is then contained in
some (forward invariant) component of F (f) , say N . Now −1 ∈ H but −1 is a
Picard omitted value of f(z) and so F (N) ⊂ N but −1 is not in f(N) .

It is already known (e.g. [4]) that if f(z): N1 → N2 , then f(N1) is open and
dense in N2 , but nothing further seems to be known about the set N2 \ f(N1) .
Our main result is
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Theorem 1. If f(z) is meromorphic in C and f(z): N1 → N2 , where Ni

are components of F (f) , then |N2 \ f(N1)| ≤ 2 .

Theorem 2. If a ∈ N2 \ f(N1) , then a is admitted as an asymptotic value

of f(z) along some path γ ⊂ N1 which runs to ∞ .

We then have two obvious corollaries.

Corollary 1. If N1 is bounded, then f(z): N1 → N2 is a finite branched

cover.

Corollary 2. If f(z) does not admit asymptotic values, then for all compo-

nents N1 of F (f) , f(z): N1 → N2 is surjective.

In [7, pp. 7–11], a family of meromorphic functions which do not admit asymp-
totic values is introduced.

Theorem 3. If f(z) is transcendental and F (f) is connected, then each

point of F (f) \ f
(
F (f)

)
is a Picard exceptional value of f(z) , and so the latter

set contains at most two points.

We are able to prove more under assumptions on the structure of N1 :

Theorem 4. Let f(z) be transcendental meromorphic in C such that F (f)
contains at least two components, with N1 unbounded and let Γ be the component

of ∂N1 which contains ∞ . Then if ∂N1 \ Γ is bounded in C , |N2 \ f(N1)| ≤ 1 .

Corollary 3. If f(z) is transcendental entire and N1 is unbounded, then

N1 and N2 are simply-connected and |N2 \ f(N1)| ≤ 1 .

Corollary 4. If f(z) is a non-entire transcendental meromorphic function,

and N1 is of finite connectivity ≥ 2 , then |N2 \ f(N1)| ≤ 1 .

It has been shown in [5] that for non-entire meromorphic functions F (f) may
have unbounded components of arbitrary connectivity.

Theorem 5. Let f(z) be a non-entire transcendental meromorphic function,

with N1 of connectivity at most two. Then if N2 is simply-connected, |N2 \
f(N1)| ≤ 1 whilst if N2 is multiply-connected then f(N1) = N2 .

We may also investigate this problem for holomorphic self maps of the punc-
tured plane. We need only consider transcendental non-entire functions which as
in [3] are conjugate to

f(z) = zk exp

(
g(z) + h

(
1

z

))

where g , h are entire, k ∈ Z (if k is non-negative, then h is non-constant). It is
shown in the same paper that then the connectivity of any component of F (f) is
at most two, there being at most one multiply-connected component.

We then have:
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Theorem 6. Let f(z) be a transcendental non-entire self map of C∗ =
C \ {0} and f(z): N1 → N2 where N1 is a component of F (f) . Then if N2 is

simply-connected |N2 \ f(N1)| ≤ 1 whilst if N2 is multiply-connected (doubly)
then f(N1) = N2 .

Note that if f(z) is as above and F (f) consists of a single component, then by
Theorem 3, f(z): F (f) → F (f) must be surjective as the two Picard exceptional
values of f(z) lie in J(f) .

In Section 4 we shall give various examples to show the sharpness of Theo-
rems 1, 3, and 4 (with its corollaries). The obvious way to construct examples
is by using functions, such as tan z , which have Picard exceptional values. We
shall show, however, that a value in N2 \ f(N1) , although asymptotic need not
be a Picard exceptional value, nor even Nevanlinna deficient. In particular, in
Section 4, Example 4 for the entire function

f(z) =

∫ z

0

exp(−et) dt,

F (f) contains a sequence of different components Ni , i = 1, 2, . . . , such that
f(Ni) ⊂ Ni , and each Ni \ f(Ni) is a singleton {ai} , where the value ai has
Nevanlinna deficiency δ(ai, f) = 0.

2. Results needed for the proofs

Consider a domain D and let f(z) be a function single valued and mero-

morphic in D , where we assume that the complement of D in Ĉ has non-empty
interior. By a spherical rotation, this is equivalent to supposing that D is bounded.
When we refer to the capacity of a given set this should always be taken to mean
the logarithmic capacity. For a non-isolated point z0 of ∂D = Γ we define

CD(f, z0) = {α : ∃zn ∈ D, zn → z0, f(zn) → α}.

Suppose further that E is a closed subset of Γ of capacity zero and z0 ∈ E
is a limit point of Γ \ E . We define

CΓ\E(f, z0) =
⋂

r>0

⋃

z∈Γ∩Dr, z /∈E

CD(f, z),

where Dr is a disc of spherical radius r centred at z0 . We denote by ΩD,E(f, z0)
the open set

CD(f, z0) \ CΓ\E(f, z0).

With these assumptions we have:
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Lemma 1 [14, Theorem VIII.39, p. 332]. If z0 ∈ E , then ∂CD(f, z0) ⊂
CΓ\E(f, z0) .

Lemma 2 [14, Theorem VIII.41, p. 335]. Let Ω be a connected component

of ΩD,E(f, z0) , where z0 ∈ E . Then in any neighbourhood of z0 in D , f(z)
takes any value of Ω infinitely often with the possible exception of at most a set

of capacity zero. If the set E = {z0} , then the exceptional set above contains at

most two points.

Lemma 3 [12, Theorem 10, p. 25]. Let D be a simply-connected domain

which is of hyperbolic type and z0 ∈ E as above. If CD(f, z0) is not the entire

sphere then for any connected component Ω of ΩD,E(f, z0) , f(z) takes any value

of Ω infinitely often in a neighbourhood of z0 with at most one exception.

Lemma 4 [8, Theorem 3.5, p. 56]. Let w = f(z) be analytic and univalent in

the disc D . Then the radial limits f(eiθ) = limr→1− f(reiθ) exist on ∂D outside

a set of capacity zero, and can be constant only on sets of capacity zero.

Lemma 5 [8, Theorem 5.14, p. 109]. Let w = f(z) be analytic and bounded,

|w| < 1 in |z| < 1 and suppose that

lim
r→1−

|f(reiθ)| = 1

outside a set of capacity zero. Then either f(z) reduces to a finite Blaschke

product or f(z) assumes every value in |w| < 1 infinitely often with at most one

exception.

Lemma 6. If N is a simply or doubly-connected domain, D is the unit disc

and Φ: D → N is the uniformizing map then Φ(eiθ) = limr→1− Φ(reiθ) exists

outside a set of capacity zero on ∂D . Given a value α , then Φ(eiθ) takes the

value α at most on a set of capacity zero.

Proof. Because of Lemma 4 we may assume that N is doubly-connected. Let
α , β be finite values which lie in different components of ∂N and put

Ψ = log
Φ − α

Φ − β
: D → C,

where we begin by choosing some z ∈ D and some branch of log
{(

Φ(z) −
α
)
/
(
Φ(z)−β

)}
. By the monodromy theorem the continuation of this branch gives

a single-valued analytic function Ψ in D . In fact, Φ gives a conformal map of D
to the universal cover of N and the log maps this universal cover univalently to a
simply-connected region B . Thus Ψ: D → B is univalent. Hence by Lemma 4 the
radial limit Ψ(eiθ) exists except for a set E of capacity zero, and for any c ∈ Ĉ ,
Ec = {eiθ : Ψ(eiθ) exists and = c} is a set of capacity zero for eiθ /∈ E ∪ E∞ ,
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eiθ lies in Ec for some finite c which implies that Φ(eiθ) = T (ec) 6= α, β , where
T (w) = (α− βw)/(1 − w) , and thus ec 6= 0,∞ .

For a given u the set {eiθ : Φ(eiθ) = u} is a subset of ∪Ecn
∪E ∪E∞ , where

ecn = T−1(u) , which is a union of countably many sets of capacity zero and hence
has capacity zero.

3. Proofs

Proof of Theorem 2. (See [4, p. 242]). A brief sketch may be useful. This
follows from the Star theorem of Gross (see e.g. [11, p. 287]). If z0 ∈ N1 , w0 =
f(z0) ∈ N2 and g is the branch of f−1 such that g(w0) = z0 , the Star theorem
ensures that we can continue g analytically along some polygonal path δ in N2 up
to a point β ∈ D(α, ǫ) ⊂ N2 and then along some circular arc δ′ in D(α, ǫ) which
goes from β up to α . Then g(δ ∪ δ′) = γ is in N1 by the complete invariance
of F (f) and γ goes to ∞ since α /∈ f(N1) . i.e. the continuation is not possible
over α .

Proof of Theorem 3. Suppose that F (f) is a single connected component.
Then if Ur = {z : r < |z| < ∞} , by Picard’s theorem f(Ur) covers each point of
the complex sphere infinitely often with the exception of at most two points. By
the complete invariance of F (f) , f

(
Ur ∩ F (f)

)
then covers each point of F (f)

infinitely often with at most two exceptions and the result follows.

Proof of Theorem 1. Since Theorem 3 already covers the case when F (f) has
a single component we assume that there are at least two components. Thus the
complement of N1 has a non-empty interior and we may apply Lemmas 1 and 2
with D = N1 .

Suppose that α ∈ N2 \ f(N1) . Then α is admitted as an asymptotic value of
f(z) along a path γ to ∞ in N1 . Thus α ∈ CN1

(f,∞) . Now

C∂N1\{∞}(f,∞) =
⋂

r>0

⋃

υ∈∂N1∩Dr, υ 6=∞

CN1
(f, υ), Dr = {z : |z| > r}

=
⋂

r>0

⋃

υ∈∂N1∩Dr, υ 6=∞

f(υ),

which is contained in ∂N2 . Thus

ΩN1,∞(f,∞) = CN1
(f,∞) \ C∂N1\{∞}(f,∞)

is non-empty since it contains α ∈ N2 . From Lemma 1

∂CN1
(f,∞) ⊂ C∂N1\{∞}(f,∞) ⊂ J(f)

and so there must be a connected component Ω of ΩN1,{∞}(f,∞) which con-
tains N2 . From the second part of Lemma 2 we see that each point of Ω is assumed
infinitely often by f(z) in N1 with at most two exceptions. Thus |N2 \f(N1)| ≤ 2
as claimed.
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Proof of Theorem 4. Let Γ be the component of ∂N1 which contains ∞ .
If Γ were a point then it would have to be a limit point of bounded components
of ∂N1 , which contradicts the hypothesis, and so Γ must be a non-degenerate
continuum. If we let M be the component of Ĉ \ Γ which contains N1 , then M
must be simply-connected, and as J(f) is infinite M must be of hyperbolic type.

Suppose that α ∈ N2 \ f(N1) , which is then admitted as an asymptotic value
on some path to ∞ in N1 , say γ . Then α ∈ CM (f,∞) . As in the previous
proof we see that CΓ\{∞}(f,∞) ⊂ ∂N2 , and ∂CM (f,∞) ⊂ CΓ\{∞}(f,∞) so
that ΩM,{∞}(f,∞) contains α and has a connected component Ω which must
contain N2 .

Now CM (f,∞) ⊂ N2 6= Ĉ . By using Lemma 3 we see that with the possible
exception of a singleton, each value in Ω is taken infinitely often by f(z) in
any neighbourhood of ∞ in M . Under the hypothesis we may choose such a
neighbourhood which lies entirely within N1 and so |N2 \ f(N1)| ≤ 1.

Proof of Corollary 3. If f(z) is transcendental entire and F (f) is connected,
then this follows from Theorem 3. Otherwise F (f) has at least two components,
N1 is unbounded and so is simply-connected (cf. [1]), in which case ∂N1\Γ is empty
and the result follows from Theorem 4. Note that if N2 were multiply-connected
then by [2, Theorem 3.1] N1 would be bounded which is a contradiction.

Proof of Corollary 4. If N1 is of finite connectivity ≥ 2 then by [6, Theo-
rem 3.1] N1 is not completely invariant and so there must be other components
of F (f) . The result then follows directly from Theorem 4.

Proof of Theorem 5. Let ψi: D → Ni be the uniformizing maps of N1 , N2 ;
then by Lemma 6, ψ1(e

iθ) exists and is finite outside a set E of capacity zero.
Pick eiθ /∈ E , then ψ1(e

iθ) = α ∈ ∂N1 \ {∞} and fψ1(e
iθ) = f(α) ∈ ∂N2 . If λ

is any branch of ψ−1
2 then we may continue F = λfψ1 to an analytic function in

D , and by the properties of the map ψ2 we see that |F (reiθ)| → 1 as r → 1− .
Then by Lemma 5 we see that F is either a finite Blaschke product, in which case
F (D) = D and f(N1) = N2 , or F (z) takes every value D infinitely often with at
most one exceptional point, so that N2 \ f(N1) is at most a singleton. If however
N2 is multiply-connected then given any w ∈ N2 , there are infinitely many points
pn such that ψ2(pn) = w with at most one of the pn not taken by F (z) , so that
f(N1) = N2 .

Proof of Theorem 6. If f(z) is a self map of the punctured plane then the
components of F (f) are of connectivity at most two and so we may use the proof
of Theorem 5 to show the claim.

This concludes the proofs of the theorems. There now follows a series of
examples which demonstrate the sharpness of Theorem 3 and Corollaries 3 and 4.
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4. Examples

Example 1. Consider the meromorphic function f(z) = tan z . Then from
[9, p. 61] we see that J(f) = R ∪ {∞} and F (f) consists of two completely
invariant components H+ and H− , the upper and the lower planes respectively.
Now f(z) 6= ±i in C and so H+ \ f(H+) = {i} and so the bound in Corollary 4
is sharp.

Example 2. Consider f(z) = 1
2 tan z . From [9, pp. 62–63] we see that J(f) is

an unbounded totally disconnected subset of R , so F (f) is a single component.
Also f(z) 6= ±1

2
i in C , so that F (f) \ f

(
F (f)

)
=

{
±1

2
i
}

and the bounds in
Theorems 1 and 3 are sharp.

The question of whether the case |N2 \ f(N1)| = 2 can occur when F (f) is
not connected remains open.

Example 3. Consider

(1) fp(z) =

∫ z

0

e−tp

dt = z − zp+1

p+ 1
+ · · · , p ≥ 2.

From (1), zero is a parabolic fixed point of f with multiplicity p + 1 ≥ 3. It is
then easy to see that for x ∈ R+ , z ∈ C the following properties of fp hold:

fp(e
2πυiz/p) = e2πυi/pfp(z), υ = 1, 2, . . . , p,(2)

fp(x) ≤ x,(3)

fp(R
+) ⊆ R+.(4)

Note also that f ′(z) = e−zp

which is non-zero in the finite plane, so that f−1 has
no finite branch points.

Define sets Aυ , υ = 1, 2, . . . , p , by

Aυ =

{
z :

∣∣∣arg z − 2υπ

p

∣∣∣ ≤ π

2p

}
,

and non-zero constants

αυ = e2πυi/p

∫ ∞

0

exp(−rp) dr.

Then by [11, p. 267] we have that as z → ∞ , z ∈ Aυ , fp(z) → αυ whilst as z → ∞
in the rest of the plane |f(z)| is unbounded, so the only finite transcendental
singularities of f−1

p are α1, . . . , αp .
The points ∞ and αυ have Nevanlinna deficiencies δ(∞) = 1 and δ(αυ) =

1/p , so that each αυ is non-Picard exceptional.
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We now claim that there are p disjoint, simply-connected components of
F (fp) , say Nυ , υ = 1, 2, . . . , p , such that:

f(Nυ) ⊆ Nυ, e2πυi/pR+ ⊆ Nυ.

For, by using the Leau–Fatou Flower Theorem (cf. [10, Theorem 7.2, p. 45]
we see that there are p disjoint forward invariant components Nυ of F (f) such
that zero lies in each ∂Nυ and that a segment [0, ǫ] , ǫ > 0 of R+ lies in one
Nυ , say Np . From (3) and (4) we then see that fn

p |R+ → 0 as n → ∞ and R+

is contained in Np . Using this fact and (2) we may label each Nυ so that Nυ

contains e2πυi/pR+ , which is then unbounded and so simply-connected (cf. [1]).
Now each αυ ∈ e2πυi/pR+ ⊂ Nυ . Suppose that αυ ∈ fp(Nυ) . Then there ex-

ists some β ∈ Nυ with fp(β) = αυ and some branch g of f−1
p defined analytically

on some open neighbourhood of β with g(αυ) = β .
Continuation of g along any path γ in Nυ which does not return to α is

clearly possible. If U = D(αυ, r) ⊂ Nυ so that g is analytic in U , suppose γ
leaves U at z1 and returns a first time to U at z2 . If σ is the circumference of
U and τ is the arc from z1 to z2 on ∂U then γ is homotopic in Nυ \ {αυ} with
fixed ends z1 , z2 to τσn for some integer n . Thus on analytic continuation on γ ,
g returns to the same branch and remains analytic at αυ . But this is impossible,
since in a parabolic basin such as Nυ the function fp cannot be univalent.

So αυ /∈ f(Nυ) , and we have a function fp demonstrating the sharpness of
Corollary 3. Further the exceptional points of αυ are not Picard exceptional.

We now show that exceptional points do not have to be even Nevanlinna
exceptional.

Example 4. Consider the transcendental entire function f(z) defined as

(6) f(z) =

∫ z

0

exp(−et) dt =

∫ z

0

∞∑

n=0

(−1)n

n!
ent dt = z +

∞∑

n=1

(−1)n

n!n
(enz − 1).

From (6), we see that for all z ∈ C

f(z + 2πi) = f(z) + 2πi,

and so in particular, f(2kπi) = 2kπi + f(0) = 2kπi , k ∈ Z . Thus each point
2kπi is a fixed point of f(z) , and as f ′(z) = exp(−ez) , f ′(2kπi) = e−1 < 1, it is
actually an attracting fixed point of f(z) . As such, each 2kπi lies in F (f) .

Suppose that z = x+ iy , x > 0, |y| ≤ 1
2
π . Evaluating f(z) along the paths

γ1 : Im z = 0, Re z = t ∈ [0, x] ; γ2 : Re z = x , Im z = t ∈ [0, y] we get

f(z) =

∫ x

0

exp(−et) dt+

∫ y

0

i exp(−ex+it) dt.
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As x > 0 we have that

α(x) =

∫ x

0

exp(−et) dt <

∫ x

0

e−t dt,

so that α(x) → α ∈ [0, 1] as x→ ∞ . As |y| ≤ 1
2π , if 0 ≤ t ≤ |y| , then sin ≥ 2t/π ,

so that

∣∣∣∣

∫ y

0

i exp(−ex+it) dt

∣∣∣∣ ≤
∣∣∣∣

∫ y

0

exp(−ex cos t) |dt|
∣∣∣∣ =

∫ |y|

0

exp(−ex cos t) dt

≤
∫ π/2

0

exp(−ex cos t) dt =

∫ π/2

0

exp(−ex sin s) ds

≤
∫ π/2

0

exp

(−2t

π
ex

)
dt

= 1
2π(e−x − e−xe−ex

) → 0 as x→ ∞.

Thus if x→ ∞ , |y| ≤ 1
2π then

f(z) = f(x+ iy) →
∫ ∞

0

exp(−et) dt = α ( 6= 0), say.

Now for k ∈ Z , set

Ak = {z : Re z > 0, | Im z − 2kπ| ≤ 1
2π}.

We have from (7) that as z → ∞ , with z lying in some Ak , that

f(z) → α+ 2kπi = αk, say.

We claim that |f(z)| is unbounded as z → ∞ on the following paths:

(8) γk : R+ + (2k + 1)πi , k ∈ Z .

(9) Any path γ: [0, 1] → Ĉ such that Im γ(t) is unbounded.

(10) Any path γ: [0, 1] → Ĉ such that Re γ(t) < x0 for sufficiently large t .

To show (8), if z = x+ (2k + 1)πi , k ∈ Z , x > 0, then

f(z) =

∫ (2k+1)π

0

i exp(−eit) dt+

∫ x

0

exp
(
−et+(2k+1)πi

)
dt

= O(1) +

∫ x

0

exp(et) dt

so that |f(z)| → ∞ as |x| → ∞ , and (8) is shown.
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To show (9), suppose that γ is any such path to ∞ . We may find values
zk = xk + 2πki ∈ γ for an unbounded sequence of integers k and xk ∈ R . Then
f(zk) = f(xk) + 2πki . As f(z) is real on the real line, |f(z)| ≥ 2π|k| → ∞ as
|k| → ∞ .

In proving (10) we may now assume because of (9) that Im γ(s) is bounded
with Re γ(s) → −∞ , and | Im γ(s)| < y0 , say. Then if z = x+ iy lies on γ ,

f(z) =

∫ x

0

exp(−et) dt+

∫ y

0

i exp(−ex+it) dt.

Now t < 0, so et < 1, e−et

> e−1 and then

∣∣∣∣

∫ x

0

exp(−et) dt

∣∣∣∣ > |x|e−1 → ∞

and
∣∣∣∣
∫ y

0

exp(−ex+it) dt

∣∣∣∣ ≤
∣∣∣∣
∫ y

0

exp(−ex cos t) |dt|
∣∣∣∣

≤
∣∣∣∣

∫ y

0

exp(ex) |dt|
∣∣∣∣ ≤ |y0| exp(ex) → |y0| as x→ −∞.

Thus as z → ∞ on γ , |f(z)| → ∞ , and the claims (8)–(10) above are shown. It
is clear that f ′ is non-zero in the finite plane, and so f−1 has no finite algebraic
singularities. We now claim that the finite asymptotic values of f(z) are the
points {ak} . Suppose not, and so there is a path γ → ∞ so that as z → ∞
on γ , f(z) → a ∈ C \ {αk} , k ∈ Z . By claims (8)–(10) we see that γ must
eventually lie in the strip S in the right half-plane between an Ak and one of the
lines lk , lk−1 ; without loss of generality we may assume that it lies between Ak

and lk−1 , so S = Re(z) > 0, (2k − 1)π ≤ Im(z) ≤
(
2k − 1

2

)
π . We may then take

the line δ : Im(z) =
(
2k − 1

2
π
)

contained in Ak and join γ and δ by a vertical
line l , so that these paths together with ∞ enclose a region R contained inside
the horizontal strip S .

Note that there exists A > 0 such that |f(z)| ≤ exp(e|z|)|z| < exp(Ae|z|) for
all large enough |z| .

Clearly |f | is bounded on ∂R , |f | < M , say. Consider the function g , where

g(z) = exp
(
ǫ exp

(
m{z − (2k − 3

4πi)}
))
, ǫ > 0,

√
2 < m < 2.

Then for z ∈ R ,

|g(z)| = exp
(
ǫ(expmx) cos

(
my −m(2k − 3

4 )
))

> exp
(
ǫ
(
exp(mx) cos(m1

4
π)

))
> 1,
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since
√

2 < m < 2. Thus |f/g| < M on ∂R , and as x→ ∞ in R ,

|f/g| < exp
{
Aex(1+v(x)) − ǫ cos( 1

4
mπ)emx

}

where v(x) = (|z|/x) − 1 → 0 as x → ∞ . Hence we see that f/g → 0 as z goes
to ∞ in R . We now choose a z ∈ R and take a curve Γ ⊆ R which connects γ
and δ so that z lies in the finite part R0 of R cut off by Γ. Using the above and
the maximum principle we see that, so long as Γ is chosen far enough to the right
then |f/g| < M on Γ, and ∂R0 , so |f/g| < M in R0 .

So |f(z)| < M |g(z)| , and as ǫ is arbitrary and z fixed, we see that |f(z)| <
M . However the choice of z was arbitrary and so this is true of all z ∈ R . We
then use [13, Theorem 340, p. 172] to see that the asymptotic values a , αk are
equal, and so the only finite asymptotic values of f are the points αk which are
then exactly the finite transcendental singularities of f−1 .

The positive real axis, R+ , is mapped into itself by f(z) which has an at-
tracting fixed point at 0, and on R , f ′ < 1, so by Rolle’s theorem, f(x) = x has
no real solutions other than 0. Also, for x > 0 (< 0), f(x) < 0 (> 0), and so we
may then see that fn → 0 on R as n → ∞ , so R lies in an unbounded (and so
simply-connected) forward invariant component N0 of F (f) .

Using (7) we see that each R + 2kπi lies in some simply connected, forward
invariant component Nk of F (f) which has an attracting fixed point of f(z) at
2kπi , so that the Nk must be disjoint. We then use exactly the same reasoning
as in Example 3, to see that each αk ∈ Nk \ f(Nk) .

It is shown by [11, p. 290] that the points αk are non-Nevanlinna exceptional
points of f(z) , and so the claim at the end of the introduction is shown.

The author wishes to thank Professor I.N. Baker for many helpful suggestions.
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