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Abstract. In this paper we introduce the concept of extreme loop structures, and basing on
it we present an explicit fundamental domain for the action of modular group in the deformation
space of Riemann surfaces of genus 0 with n (n > 4) boundary components.

Introduction

There have been several well-known ways of parametrizing the deformation
space of a surface: for example, Fricke cooordinates, Teichmiiller coordinates and
Fenchel-Nielsen coordinates. Though these parametrizations provide an overview
of all possible Riemann surfaces, some basic questions remain unsolved. We cannot
decide whether two Riemann surfaces, when expressed by the parameters, are
isometric or not. This is mainly a problem of marking a surface in different ways,
then read off the parameters to get a hold of the action of the modular group on
the deformation space.

The present work is an attempt towards an understanding of this problem.
We present an explicit fundamental domain for the action of the modular group on
the deformation space of Riemann surfaces of genus zero with n =m+1 (m > 3)
boundary components. Similar exploration for the topological types (0,4) and
(1,1) were considered in [M1] and [M2].

In Section 2, we introduce the concept of extreme loop structures. An extreme
loop structure is mapped to an extreme loop structure under a conformal mapping,
and with certain restricting conditions, it is unique. Even though an extreme loop
structure is defined only by finitely many length inequalities, it has a certain global
control ability (Theorem 1). Moreover, one can write an algorithm to search all
extremal loop structures on a Riemann surface of type (0,n).

As a natural corollary, the inequalities that define our extreme loop structure
yield the required fundamental domain.

Part of this paper was written while the author was visiting Bielefeld univer-
sity in 1996. The author thanks Professor H. Helling who made the visit possible.
The author also would like to thank the referee whose suggestions improve the pa-
per; especially, he (or she) pointed out an error in the original proof of Theorem 1.
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1. Preliminaries

Throughout this paper G will denote a Fuchsian group acting on the upper
half plane H and S = H/G a Riemann surface of genus zero with m+1 (m > 3)
boundary components Ag, Ay,..., A, .

Assume that o and 3 are two closed curves on S. Their geometric intersec-
tion number #(«, 3) is the infimum of the cardinality of o/ N J" for all &/ ~ «,
3 ~ 3 where ~ denotes homotopy. This infimum is realized by o/ NG if o/ ~ «,
3 ~ [ and both o/ and (' are distinct closed geodesics.

Let [ be a closed curve on S. If g € G has the property that any curve in H
with z and g(z) as its terminal points is projected to a closed curve on S which is
freely homotopic to [, then we say that g covers [. Suppose that g covers [ and
I' ~ 1, then g also covers I’. Moreover, the set {g’ocgog’~!: ¢ € G} contains all
elements in G which cover [. Assume that

az+b
g(z) - cz 4+ d,

Define | g |=| a+d |. Note that |I| = 2log(+/]g]?> — 4 +|g|) —log 4 is the hyperbolic
length of the shortest geodesic in the homotopy class of [.

Provide [ with a certain orientation, and let x and y be two distinct points
on [. We denote by I(x,y) the path on [ which starts at =, follows the orientation,
and ends at y. Suppose that [; and [y are two oriented curves such that [, starts
at the terminal point of /1. Then [ + [; will represent the curve which starts at
the starting point of [;, goes along /1 and 5, and ends at the terminal point of 5.

Fix a point 6 on S and choose a set of generators {a; : i = 0,1,...,m}
of the fundamental group 7(S,06) with the following properties: for each i, «
is freely homotopic to A;, ajoaj_10---0ap (0 < j < m) are simple, and
Qmo---oajoag ~ 0. By a well-known lifting procedure, we get the corresponding
generators go, g1,--.,9m of G, with g; (0 < j < m) covering «a;, gpogio---0g,
(0 < j <m) covering ajoaj_j0---0ap, and gpogio---0g, = id. The generators
g; (7=0,1,...) are called standard generators. See Figure 1, where m = 3.

ad — bec = 1.

go(° g1
go© g1 0

-1 0

Figure 1.
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Let .# be the set of all Mobius transformations fixing H. A deformation of
G is a monomorphism ¢: G — # for which there is an orientation preserving
homeomorphism ¢: H — H, with pogop~! = 19(g), for all g € G. We may
write ¢ = (lﬂ(gj)) Two deformations 1 and 5 are equivalent if there exists
an element A € .#, with Ao(g) o A1 = 9s(g) for all g € G. The set of
equivalence classes is the deformation space F'. A deformation 1 is called modular
if ¥(G) = G and it acts on F' in the following way: if 1 is any deformation,
then define (1) = 1 o 1. The action defined above induces a group operation
on the set M of all modular deformations, which is called the modular group.
The quotient F//M is the moduli space, or Riemann space of conformally distinct
Riemann surfaces of genus zero, with m + 1 boundary components.

2. Extreme loop structures and the fundamental domain

Definition. Suppose that for 1 < ¢ < 3, ()} is either a boundary compo-
nent of S or a simple closed curve on S. If there exist pants P(Cy,Cs,C3) on
S such that C7, C5 and (5 are exactly its border components, then we write
(C1,C5,C3) =1.

Let [; (j = 1,2,...,m) be simple closed curves on S with the following
properties:

(1) (Ao,Aj,lj) = 1, j: 1,2,...,777,;
(2) #(li 1) =2 for i # .
Imaging A; (j =1,2,...,m) as points on a circle centered at the point Ay with [,
as intervals lying inside it, we can give a clockwise order for {A; : j =1,2,...,m},
provided we choose one boundary component, say A;, as the initial element.
Without loss of generality, we may assume that the indexes of {A,} are consistent
with the order, i.e.,

Ay <Ay < < Ay,

and call {Ag, Aj,l;}72; a loop structure with the center Ay and the initial A;.

Figure 2.
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Let {Ao, Aj,1;}72, and {Ao, 4y, l;- 74 be two loop structures with the center

Ao and initial A;. We define {Ao, A;, [;}70, = {Ao, A, U}, if I; or 5 ~ 17,
j=12,...,m.

Definition. A loop structure {Ag, 4;,1;}jL; is extreme if
(*) |l]| §{|l| (Ao,A],D:l, #(l,h):Q, 27&]}, fOI‘j:1,2,,m

It is easy to see that we can choose the «; in Section 1 in such a way that
they satisfy a; oag ~ I; or lj_l. We call such a set {a;} of generators com-
patible with the loop structure {Ag, A;,1;}7",. Thus, if {o;} is compatible with
{Ao, Aj,1;}72, , the inequalities (*) can be written in the following way:

1 1 1 1 1 1 |

1 _ _ _ _
oay |, lagoaz o] cay oz oag
foagtooayloap |l

lag o ap| < min{|az oy oay ,

...,‘ozm_lo~-~oo420a1_

1 1 1 1 1 1 |

oay'|,Jazoaioatoaitoast oay
Yoajto--roat ,oagt )

|t 0 ap| < min{|ag oy, 0 )

-~-,‘Oém—20"'OOé1OOér_n

Lemma 1. There exists an extreme loop structure on S with center Ay and
initial Ay .

Proof. Since the length spectrum of closed curves on S is discrete, we see
that there are [(A4;) (j=1,2,...,m) on S such that
(1) (Ao, A47,1(A7)) =1, #(I(4;),1(A;)) =2 for i # j;
(2) [1(A;)] = min{|l] : (Ao, 4;,1) =1, #(L,1(4;)) =2, 1 <i<j}.
In the way we used in defining our loop structure, we can give an order for {A4;}.

If we change the indexes of {A;} according to the order, we see that the lemma
follows.

Theorem 1. Let {Ag, A;,1;}7; be an extreme loop structure. Then
il =min{|l| : (Ao, 4;,1) =1},  j=1,2,...,m.

Moreover, if all inequalities in (x) hold strictly, then {Ao, A;,1;}]L, is the unique
extreme loop structure on S with the center Ay and initial A .

Proof. For any 1 < j < m, let | be a closed geodesic satisfying [ # [;
and (Ao, A;,1) = 1. We will show that |/;| < |{|. The assertion holds trivially
if #(1,1;) = 2 for all ¢ # j. Suppose that #(l,1;) > 2 for some i # j. Since
all Ay (1 < k,k # j) do not lie in the pants P(Ag, Aj,1), we see immediately
that P(Ao, Aj,1) N P(Ag, A;,1;) has p+1 connected components for some integer
p > 1. It is not difficult to see that ¢ can be chosen so that we may assume that
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the intersection points px1, Pk2, Pr3, Pka € 0Dk NINI; (k= 1,2) shown by
Figure 3 have the following properties:

1. the inner part of the curve [(Pi1, P12) meets l;; twice for all 1 <i' < m;
2. among all intersection components Do is the nearest to Ay in P(Aq, A;,1;).

It may happen that D = Ds.

Figure 3.

Then

1| + L] > |U(p11,p13) + Li(p1s, p11)| + [1(p2s, p21) + Li(p21, p23)|-

Since |I(p11,p13) + i (p13, p11)| > |l;| by our assumption, we get |I| > |I(p23, po1) +
l;(p21,p23)|. Denoting by I’ the geodesic in the homotopy class of [(pa3,p21) +
li(p21, p23), we see that

m m

(Ao, Aj 1) =1, > #(1L) <Y #(,1), and || <]ll.

=1 =1

Repeating the same procedure on ', we get |I| > |[;| after finitely many steps.
Suppose the inequalities in the definition of our extreme loop structure hold
strictly. Let {Ag, Ag(),l'}i2; be an extreme loop structure on S with the center
Ao and initial Ay, where k(i) € {1,2,...,m} and k(1) = 1. Then Ij ~ Iy or
lk_(li) (i=1,2,...,m), and the assertion follows.

Since conformal mappings preserve length, the following corollary is obvious.
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Corollary. Let {Ao, Aj,l;}72; be an extreme loop structure on S and
f: S = So a conformal homeomorphism. Then {f(Ao), f(A;), f(l;)}7; is an
extreme loop structure on Sy. Furthermore, if all inequalities in (x) hold strictly,
then {f(Ao), f(A;), f(l;)}jL, is the unique extreme structure on Sy with the
center f(Ap) and initial f(A1).

Remark. Let S’ be a Riemann surface of topological type (0,m + 1), and

{Ao, Aj,1;}7L, and {Bo, B;,15}7L, be extreme loop structures on S and S’, re-

spectively. Suppose that {a;} and {a’} are sets of generators compatible with
{Ao, Aj, 1172, and {Bo, B;,l5}]L,, respectively. Then by Theorem 4.1 in [O], we
see that S is conformally equivalent to S’, provided the following equalities are
true:

|| =[], 0<j<m;
1151 = 1151, 1<j<m
loj o | = | o o], 2<j7<m

Since there are only finitely many extreme loop structures on S and S’, it is easy
to see that the above discussion leads to an algorithm of comparing two Riemann
surfaces of topological type (0,m + 1).

Theorem 2. The fundamental domain for the action of the modular group
M on F can be realized by the following inequalities:

|(¥(g0)] < ¥(g1)| < |(¥(g5)], 2<j<m
|(1(g0 0 g1)| < min{[(¢(g5 " 0 g5 0 g7 " 0 g2),
(g og3 ogst ogr togaogs)l,
] (W(ggtogntiorogytogitogao o gma1)|};

1% (go © gm)| < min{|(¥ (g5 " 0 g7 ' 0 g5, 0 g1)l,
1¥(go " 095 ogr 09, 0 g10ga)l,
| @W(gg o gytaor0ogrtogtogion o gm_s)|}.

Proof. Let q = (1/1(91)) € F' and denote by S, the Riemann surface attached
to ¢. Choose 0 < igp, i1 < m, iy # i1, such that |¥(gi)| < [¥(9:,)] < |[¥(g;)]
for all j # ig,41. According to Lemma 1, there exists an extreme loop structure
on S, with the center and initial covered by (g;,) and v(gi,), respectively.
Thus, applying the lifting procedure, we get a set of standard generators {¢’(g;) :
0 < j < m} in the covering group such that (+’) hold, which implies that ¢
is modular equivalent to a point satisfying our restricting condition (*'). Now
let ¢ = (¢1(gi)) and ga = (¢2<gi)) be two distinct points in F'. Suppose
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that for these two points, all inequalities in (*) hold strictly. Assume ;(g) =
©; 0go gpi_l, g € G, where @; (i =1,2) are the associated orientation preserving
homeomorphisms. Denote by ¢; the projections of ¢; (i =1,2),1.e., $;: S — S, .
It is easy to see that 1;(g;) cover @;(a;) (0 < j < m) and ;(go o gi) cover
i(agoag) (1 <k < m). Hence the inequalities in (x’) guarantee that for i = 1,2,
E; = {9i(Ao), pi(Aj), pi(ajoap) ], is an extreme loop structure on S;, with the
center ¢;(Ap) and initial ¢;(A1). Suppose there is a conformal homeomorphism
f: Sy, — Sg,. Then from the corollary of Theorem 1 and (x'), it is easy to
verify that f((ﬁl(ozj)) ~ @a(aj), 0 <7 <m, and f(fp'l(ozk o ao)) ~ pa(ag o ap),
1 <k <m. It follows that fo®; ~ @y, which implies that for all g € G, 11(g)
differ from 19(g) only by a conjugation of an element in .# . Thus ¢; = g2, which
is a contradiction, and the theorem is proved.
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