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Abstract. Let f be a meromorphic non-entire function in the plane, and suppose that for
every k ≥ 0 , the derivative f (k) has only real zeros. We have proved that then f(az + b) =
P (z)/Q(z) for some real numbers a and b where a 6= 0, where Q(z) = zn or Q(z) = (z2 + 1)n ,
n is a positive integer, and P is a polynomial with only real zeros such that degP ≤ degQ+ 1;
or f(az + b) = C(z − i)−n or f(az + b) = C(z − α)/(z − i) where α is real and C is a non-zero
complex constant.

In this paper we provide part of the proof of this theorem, by obtaining the following result.
Let f be given by f(z) = g(z)/(z2 + 1)n where g is a real entire function of finite order with
g(i)g(−i) 6= 0 and n is a positive integer. If f , f ′ , and f ′′ have only real zeros then g is a
polynomial of degree at most 2n+ 1.

Conversely, if f is of this form where g is a polynomial of degree at most 2n with only real
zeros, then f (k) has only real zeros for all k ≥ 0 . If the degree of g is 2n+ 1 then f (k) has only
real zeros for all k ≥ 0 if, and only if, f and f ′ have only real zeros.

1. Introduction and results

In this paper we develop a theory that ties together complex dynamical prop-
erties of meromorphic functions and the location of the zeros of their first few
derivatives. The specific assumptions made in this paper are that the function
is real on the real axis, is of finite order, and has only finitely many poles. The
methods used, however, would undoubtedly be of greater applicability, yielding
different conclusions if coupled with different assumptions. In this paper we as-
sume that the zeros of f and its first few derivatives are real and obtain results
concerning domains in the upper (and, by symmetry, lower) half plane. Under
more general circumstances, similar results could be obtained in regions which are
assumed or known not to contain such zeros.

The immediate motivation for this study is to complete the answer to the
following problem. Let f be a function meromorphic in the complex plane C .
We consider the question of under what circumstances all the derivatives of f ,

1991 Mathematics Subject Classification: Primary 30D05.

Research partially supported by the Alfred P. Sloan Foundation, by the U.S. National Science

Foundation grant DMS 94-00999, and by the U.S. National Security Agency grant MDA904-95-H-

1014. Part of this research was conducted while the author was visiting University College London,

U.K. He wishes to thank the Department of Mathematics for its kind hospitality.



318 A. Hinkkanen

including f itself, can have only real zeros. We may and will assume that f is not
a polynomial so that none of the derivatives f (k) vanishes identically. We write
f (0) = f . We say that f is real if f(z) is real or f(z) = ∞ whenever z is real. If
f is not a constant multiple of a real function, then f is called strictly non-real.
We have proved the following result. The proof is given partly in this paper and
partly in the two companion papers [H2], [H3].

Theorem A. Let f be a non-entire meromorphic function in the complex
plane, and suppose that for every integer k ≥ 0 , the derivative f (k) has only real
zeros. Then there are real numbers a and b where a 6= 0 , and a polynomial P
with only real zeros, such that

(i) f(az + b) = P (z)/Q0(z) , where Q0(z) = zn or Q0(z) = (z2 + 1)n , n is a
positive integer, and degP ≤ degQ0 + 1; or

(ii) f(az + b) = C(z − i)−n where C is a non-zero complex constant; or
(iii) f(az + b) = C(z − α)/(z − i) , where α is a real number and C is a

non-zero complex constant.
Conversely, if f is as in (i) with degP ≤ degQ0 , or if f is as in (ii) or (iii),

then f (k) has only real zeros for all k ≥ 0 . If f is as in (i) with degP = degQ0+1
then f (k) has only real zeros for all k ≥ 0 if, and only if, f ′ (or, equivalently,
zP ′(z) − nP (z) or (z2 + 1)P ′(z) − 2nzP (z)) has only real zeros.

If f is as in (i) of Theorem A and degP = degQ0+1 then there are polynomi-
als P with only real zeros for which f ′ has only real zeros, and other polynomials
P for which f ′ has at least two non-real zeros (compare [H2]).

For entire f , the corresponding problem has been solved by Hellerstein and
Williamson [HW1], [HW2], and by Hellerstein, Shen and Williamson [HSW]. They
proved, among other things, that if f is entire and f (k) has only real zeros for
all k with 0 ≤ k ≤ 3, then f is in the Laguerre–Pólya class, or f(z) = AeBz ,
or f(z) = A(eicz − eid) , where A,B ∈ C , c, d are real, and ABcd 6= 0, and then
f (k) has only real zeros for all k ≥ 0.

The complete proof of Theorem A is long, and is divided into three papers
(this paper and [H2], [H3]). In this paper we prove the following result (stated as
[H2, Theorem 3] without proof) that deals with real functions of finite order.

Theorem 1.1. Let f be given by

(1) f(z) =
g(z)

(z2 + 1)n

where g is a real entire function of finite order with g(i)g(−i) 6= 0 and n is a
positive integer. If f , f ′ , and f ′′ have only real zeros then g is a polynomial of
degree at most 2n+ 1 .

Conversely, if f is as in (1) where g is a polynomial of degree at most 2n
with only real zeros, then f (k) has only real zeros for all k ≥ 0 . If the degree of
g is 2n + 1 then f (k) has only real zeros for all k ≥ 0 if, and only if, f and f ′

have only real zeros.
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The last paragraph of Theorem 1.1 has been proved in [H2, Theorem 8(ii)].
When stating [H2, Theorem 3], I had the extra assumption that if g ∈ U0 then
also f ′′′ is to have only real zeros. I later on managed to improve my methods so
as to obtain the result without that assumption.

2. Set-up and auxiliary results

2.1. Definitions. We write sgnx = x/|x| if x 6= 0, and sgn 0 = 0. We define
some classes of functions (compare [HW1, pp. 227–228]). We say that f ∈ V2p

where p is an integer with p ≥ 0 if f is of the form

f(z) = g(z) exp{−az2p+2}

where a ≥ 0 and g is a constant multiple of a real entire function with genus not
exceeding 2p+1 and with only real zeros. We set U0 = V0 and U2p = V2p \V2p−2

for p ≥ 1. The class U0 is the so-called Laguerre–Pólya class. We have f ∈ U0 if,
and only if, there are real polynomials Pn with only real zeros such that Pn → f
locally uniformly in C . Also, f ∈ U0 if, and only if, we may write

f(z) = czme−az2+bz
∞
∏

n=1

(

1 −
z

zn

)

ez/zn

where c is a non-zero complex constant, m is a non-negative integer, a ≥ 0, b is a
real number, zn ∈ R\{0} for all n ≥ 1, and

∑∞
n=1 z

−2
n <∞ . Here R denotes the

real axis; we write R = R ∪ {∞} for the extended real axis. Thus if f ∈ U0 then
f (k) ∈ U0 and so f (k) has only real zeros, for all k ≥ 0 if f is transcendental,
and for 0 ≤ k ≤ d if f is a polynomial of degree d .

The elements of U2p are, by definition, constant multiples of real functions,
but not necessarily real. For our purposes the possibly non-real multiplicative
constant does not matter. Hence, for simplicity, but without any loss of generality,
we shall assume in the rest of this paper that each element of any class U2p is
real.

If b ∈ C is a zero of f of order m ≥ 1, we shall write ord (f, b) = m . If
f(b) /∈ {0,∞} , we set ord (f, b) = 0. If b is a pole of f of order m ≥ 1, we write
ord (f, b) = −m .

To prove Theorem 1.1, we shall develop techniques based on the Fatou–Julia
iteration theory, the use of iteration of analytic functions taking a half plane into
itself, and level sets of harmonic functions. We note that the idea of studying
level sets of harmonic functions in the connection of investigating the number of
non-real zeros of the second derivative of an entire function has been successfully
applied by Sheil-Small [S]. In connection with problems on the reality of zeros of
f and its derivatives, iteration theory, in the form of considering a parabolic fixed
point of z − f/f ′ at infinity when z − f/f ′ is rational [E], or similar behaviour
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when z − f/f ′ is transcendental [H1], has been applied by Eremenko [E] and by
the author [H1]. The methods that we develop here will probably be of greater
applicability than only the proof of Theorem 1.1 in the area of studying the reality
of the zeros of the first few derivatives of a real meromorphic function. Therefore,
in the interest of obtaining a more general theory, we shall formulate and prove
various auxiliary results for meromorphic functions f of the form

(2) f(z) = g(z)/Φ(z)

where g is a real entire function of finite order with only real zeros and Φ is a
non-constant real polynomial with leading coefficient 1. We always assume that
g and Φ have no common zeros. Mostly, we make additional assumptions on Φ,
such as assuming that Φ has only non-real zeros, and finally we specialize to the
case Φ(z) = (z2 + 1)n . We denote by Ψ a polynomial with leading coefficient 1
and with only simple zeros that vanishes exactly at the zeros of Φ. Then Ψ has
real coefficients. For example, if Φ(z) = (z2 + 1)n , then Ψ(z) = z2 + 1.

For the purpose of taking the boundary of a set, we consider every set, in-
cluding the boundary, to be a subset of the extended complex plane or Riemann
sphere C = C ∪ {∞} . For example, ∂H+ = R, where H+ = {w : Imw > 0} is
the upper half plane.

We shall use the standard notation and the basic results of Nevanlinna’s theory
of value distribution. For details, we refer to [H].

2.2. The degree of an auxiliary polynomial. Suppose that f(z) =
g(z)/Φ(z) , where g is a real entire function of finite order and Φ is as described
above. Write

(3) L(z) =
f ′

f
(z), Q(z) = z −

1

L(z)
= z −

f

f ′
(z)

so that f , L , and Q are real. If L is constant, then f(z) = eaz+b , and if Q is
constant, then f(z) = A(z−B) . Neither case is possible here so that both L and
Q are non-constant. We have

(4) Q′ =
ff ′′

(f ′)2
.

Thus if f , f ′ and f ′′ have only real zeros, then Q′(z) /∈ {0,∞} for z ∈ H+ =
{w : Imw > 0} . We write H− = {w : Imw < 0} . Note that for any zero z0 of Φ
we have Q′(z0) 6= ∞, 0. Indeed Q′(z0) = 1 + ν−1 , where ν ≥ 1 is the order of the
zero of Φ at z0 . Write

Λ = {z ∈ H+ : ImL(z) > 0}, Λ− = {z ∈ H+ : ImL(z) < 0},(5)

K = {z ∈ H+ : ImQ(z) > 0}, K− = {z ∈ H+ : ImQ(z) < 0}(6)
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so that

(7) Λ ⊂ K ⊂ H+ and K− ⊂ Λ− ⊂ H+.

Note that for any zero z0 of Φ we have

(8) L(z0) = ∞, Q(z0) = z0,

so that if z0 ∈ H+ then

(9) z0 ∈ ∂Λ and z0 ∈ K.

In particular, if f(z) = g(z)/(z2 + 1)n , then

L(i) = ∞, Q(i) = i,

so that
i ∈ ∂Λ and i ∈ K.

If c ∈ R we seek a Levin representation for L(z) − c . Analogously to [S,
p. 181, (2.4)] and [HW1, (2.5), p. 231] we seek to prove that we can write

(10) L(z) − c = ψ(c, z)
ϕ(c, z)

Ψ(z)Ψ1(z)

where Ψ1(z) is a polynomial to be specified, and in the case Φ(z) = (z2 + 1)n ,

L(z) − c = ψ(c, z)
ϕ(c, z)

z2 + 1

where ψ(z) = ψ(c, z) is a real meromorphic function of z with only real zeros such
that

(11) Imψ(c, z) > 0 for all z ∈ H+, unless ψ ≡ 1,

and where ϕ(z) = ϕ(c, z) is a polynomial in z whose degree can be estimated
in terms of the order of g and deg Ψ and can be more precisely determined by
using further information on f . It then follows that L takes the value c at most
degϕ(c, z) times in C \ R , hence at most degϕ(c, z)/2 times in H+ .

In order to find a Levin representation for L(z)− c , it suffices to consider the
case c = 0 since the logarithmic derivative of f(z)e−cz is equal to L(z) − c . So
suppose that c = 0 and suppress c in all notation. Let the distinct zeros of f
(or g ) be ak ∈ R labelled so that (compare [HW1, p. 230])

(12) · · · < ak−1 < ak < ak+1 < · · ·
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where

(13) −∞ ≤ τ ≤ k ≤ ω ≤ +∞, k finite.

Without further comment, we argue as in [HW1, pp. 230–243]. By Rolle’s
theorem, f ′ has at least one zero in each (ak, ak+1) that does not contain any
pole of f , that is, any zero of Ψ. We denote by E the set of the integers k such
that (ak, ak+1) contains a zero of f ′ . For k ∈ E , we choose one zero of f ′ in
(ak, ak+1) and call it bk . For the purposes of estimating degϕ(c, z) , it does not
matter which zero of f ′ is chosen as bk . However, it will be helpful, in connection
with Lemmas 2.2 and 5.1 below, to agree that bk is taken to be the smallest or
largest zero of f ′ on (ak, ak+1) (the choice between those two can be allowed to
depend on k ) so that the remaining zeros of f ′ on (ak, ak+1) , which will be zeros
of the function ϕ below, will not be separated by bk . (If bk is a multiple zero
of f ′ , it will still be only a simple zero of the function ψ defined below, and will
therefore also be a zero of ϕ .) Thus

(14) ak < bk < ak+1.

We also adjust the numbering so that

(15) b−1 < 0 < a1.

If f(0) = 0, set a0 = 0. If some bk must be equal to 0, set b0 = 0. This is
consistent with (15).

It would make some estimates for a function f defined in terms of a general
polynomial Ψ slightly more accurate, if we were to choose similarly a zero βk of
f ′ on each interval between consecutive real poles αk and αk+1 of f (if there are
any) that does not contain any zeros of f , and if we were to use the pair (αk, βk)
in the definition of ψ below in the same way as we will use each pair (ak, bk) .
However, since f has only finitely many poles, this will not matter for our purposes.
Therefore we shall not use this device.

We denote by E ′ the set of integers k as in (13) such that f ′ has no zero on
(ak, ak+1) . By Rolle’s theorem, this can be the case only if (ak, ak+1) contains a
pole of f , that is, a zero of Φ. Thus the set E ′ is finite. We denote by Ψ1 the
polynomial with leading coefficient 1 whose zeros are all simple and occur exactly
at the points ak for k ∈ E ′ . Thus Ψ1 ≡ 1 if E ′ is empty. In particular, if Φ has
no real zeros (for example, if Φ(z) = (z2 + 1)n ) then Ψ1 ≡ 1. Note that the set
of the distinct zeros of f is equal to {ak : k ∈ E } ∪ {ak : k ∈ E ′} .

If f has no zeros, set ψ(z) ≡ 1. If f has exactly one zero (of some multiplic-
ity), call it a0 and set ψ(z) = −1/(z − a0) . Otherwise, write

ψ(z) =
z − b0
z − a0

∏

k 6=0
k∈E

1 − (z/bk)

1 − (z/ak)
if ω = +∞,(16)
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ψ(z) =
z − b0

(z − a0)(aω − z)

∏

k 6=0,ω
k∈E

1 − (z/bk)

1 − (z/ak)
if ω < +∞.(17)

If 0 /∈ E , then the factor (z − b0)/(z − a0) is to be omitted in (16) and (17). If
τ > 0 then we omit (z − b0)/(z − a0) in (16) and (17). In all cases, ψ satisfies
(11) (compare [HW1, p. 230]). Now we may clearly write

(18)
f ′

f
≡ L =

ψϕ

ΨΨ1

where ϕ is a real entire function. Once we specialize to prove Theorem 1.1, we
take Φ(z) = (z2 +1)n so that f has no real poles and the technical complications
associated with the set E not being the set of all integers in (13), or with Ψ1 not
being the constant 1, do not arise. The reader is welcome to think about this
special case only.

We want to show that ϕ is a polynomial. It is only in this argument that we
consider the case where Ψ1 might be non-constant (this more general conclusion
will be used in the proof of Lemma 4.1). It is useful to record this result separately.

Lemma 2.1. Let f be given by (2), where Φ is a non-constant real poly-
nomial and g ∈ U2p , so that f has only real zeros while we do not make any a
priori assumption concerning the reality of the zeros of f ′ or f ′′ . Let the real
polynomials Ψ and Ψ1 be as defined above, and let the function ψ be given by
(16) or (17), as appropriate. Then the function ϕ defined by (18) is a polynomial.

Proof of Lemma 2.1. We have

(19) ϕ = ΨΨ1
f ′

f

1

ψ

so that

(20) T (r, ϕ) = m(r, ϕ) ≤ O(log r) +m

(

r,
f ′

f

)

+m

(

r,
1

ψ

)

.

Since f has finite order, we have

(21)

(

r,
f ′

f

)

= O(log r)

as r → ∞ . If ψ is not constant, then, since ψ(H+) ⊂ H+ , there is a constant
C0 ≥ 1 such that

(22)
| sin θ|

C0r
≤ |ψ(reiθ)| ≤ C0

r

| sin θ|
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when r ≥ 1 and sin θ 6= 0, by a theorem of Carathéodory. Thus

(23) m

(

r,
1

ψ

)

= O(log r).

By (20)–(23) we get T (r, ϕ) = O(log r) so that ϕ is a polynomial, as asserted.
This completes the proof of Lemma 2.1.

The zeros of ϕ are called the extraordinary zeros of f ′ . All other zeros of
f ′ are called ordinary zeros of f ′ (those bk whose multiplicity = 1 and those
ak whose multiplicities are > 1 as zeros of f ). Thus a multiple zero of f ′/f
might count as an ordinary zero of f ′ (if it is among the bk ) and will count as an
extraordinary zero of f ′ .

From now on, we shall assume that Φ has no real zeros. Thus Ψ1 ≡ 1 and we
need not worry about the set E . The reason for this is that even though arguments
similar to those that we shall give, would go through also if Φ has some real zeros,
it would require extra bookkeeping in an already very long paper to explain the
details. Therefore we feel that it is better to skip that case here. An industrious
reader should be able to fill in the details and see what modifications should be
made in the proofs and the conclusions in the case of a general Φ.

Now we seek to estimate or determine the degree, degϕ , of ϕ . Suppose that
g is real as before and g ∈ U2p where p ≥ 0. Suppose that z = 0 is a zero of g
of order m0 ≥ 0. Thus m0 = 0 if g(0) 6= 0. Since g ∈ U2p we may write

(24) g(z) = zm0eS(z)Π(z)

where S is a real polynomial, say

(25) S(z) = −az2p+2 + bz2p+1 + cz2p + dz2p−1 + · · · , where a ≥ 0,

and Π(z) is the canonical product of the zeros of g (or f ) other than possibly the
origin, and is of genus p1 ≤ 2p+ 1. Write

(26) σ = genus (g) = max{degS, p1}

and note that

(27) 2p ≤ σ ≤ 2p+ 2

since g ∈ U2p , with

(28) σ = 2p+ 2 if, and only if, a > 0,

while

(29)
σ = 2p if, and only if, a = b = 0 and p1 = 2p,

or a = b = 0, c > 0 and p1 ≤ 2p− 1.
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In all other cases, σ = 2p+ 1.
Following Hellerstein and Williamson, we shall provide an estimate for the

degree of ϕ . We determine this degree precisely only in the case needed for the
proof of Theorem 1.1, even though a more careful analysis along the same lines
would allow us to determine the degree of ϕ in all cases. It should be clear from
the proof and from [HW1] how an interested reader can obtain more details in the
general case if so desired for some application. On the other hand, the argument
is mostly the same for a general Ψ as for Ψ(z) = z2 + 1, and so we consider a
general Ψ for most of the proof.

Lemma 2.2. Let f be given by (2), where Φ is a non-constant real polyno-
mial with no real zeros and g ∈ U2p , so that f has only real zeros while we do
not make any a priori assumption concerning the reality of the zeros of f ′ or f ′′ .

At each zero ak of f , we have

(30) ϕ(ak) sgnΨ(ak) < 0.

We have

(31) p1 + deg Ψ − 1 ≤ degϕ ≤ deg Ψ + 2p+ 1.

With the above notation, and with Φ(z) = (z2 + 1)n and Ψ(z) = z2 + 1 , we
have

(i) degϕ = deg S + deg Ψ − 1 = deg S + 1 if f has no zeros;
(ii) degϕ = deg S + deg Ψ = degS + 2 and f ′′ has at least 2p non-real zeros

if f has at least one but only finitely many zeros, unless S is constant and the
number of zeros of f with due count of multiplicity is equal 2n ;

(iii) 2p+ 2 ≤ degϕ ≤ 2p+ 3 if f has infinitely many zeros.
If, in addition, f ′ has only real zeros, then, for a general Φ with no real zeros,

we can write f ′ = g1/(ΦΨ) , where g1 ∈ U2p .

The proof of Lemma 2.2 will be given in Section 15. It is based on following
the proof of [HW1, Lemma 8, pp. 237–243] to the extent possible.

3. The idea of the proof of Theorem 1.1

Let f be given by (2). We show that each of L and Q in (3) takes any real
value at most a finite number of times in H+ . (A more careful analysis would
show that there is an upper bound for this number which depends only on the
order of f and on deg Ψ, even if Φ has some real zeros.) We prove that Q maps
each component of K (compare (6)) conformally onto H+ and that the number
of such components is bounded by a number depending on deg Ψ.

Suppose for the rest of this section that Ψ(z) = z2 + 1. Then there are at
most 2 components of K . By a number of considerations from iteration theory,
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we show that f has only finitely many zeros. We prove that Λ is bounded (and,
in fact, connected), which implies that g ∈ U0 .

It is quite tedious to find a contradiction when f has only finitely many zeros
and g ∈ U0 . It arises as follows. We show that K has exactly 2 components, and
that K− is bounded and has a component W that separates the 2 components
of K . Such a component W arises since there must be 2 consecutive zeros of
f ′′ , say a, b , that are not separated by any zeros of f or of f ′ . Then a, b are
zeros of Q′ and hence either [a, b] ⊂ ∂W for a component W of K− , or there is
a closed segment J with J ⊂ ∂W where the end points of J are a zero of f and
one of a, b , while f ′ 6= 0 on J . But since ∂W must contain a pole of Q , that is,
a zero of f ′/f , there must be another segment [c, d] in R ∩ ∂W . This leads to
the separating property of W . We then show that such a separating component
cannot exist.

It may be useful to examine what happens when g is a polynomial of degree
≤ 2n − 1, when it is possible for ff ′f ′′ to have only real zeros. In that case
f ′ and f ′′ collect their extraordinary zeros at the ends; for example, f ′ has one
extraordinary zero on (−∞, aτ) and one on (aω,∞) . Hence we do not get two
consecutive zeros of f ′′ as above, and K− is not forced to have a separating
component. In fact, K is connected. When deg g − 2n ∈ {0, 1} , K is also
connected even if the extraordinary zeros of f ′ may both be on (−∞, aτ ) or
on (aω,∞) .

4. Number of values taken in the upper half plane

When Sheil-Small [S] considered the number of non-real zeros of the second
derivative of a real entire function f of finite order with only real zeros, it was
essential for his work to get an estimate for the number of times that the function
L can take a real value in the upper half plane.

One of the most crucial initial observations we make is the following. Suppose
that b ∈ R . Suppose that z ∈ H+ so that z 6= b . Then Q(z) = b if, and only if,

(32)

(

f/(z − b)
)′

f/(z − b)
= L(z) −

1

z − b
= 0.

The function f/(z− b) = g/
(

(z− b)Φ
)

has the same general properties as f , with
Φ replaced by (z − b)Φ. (Note that (z − b)Φ has at least one real zero.) Thus
we may apply to f/(z − b) some of the auxiliary arguments that we may have
applied to f . This emphasizes the importance of first studying the situation on a
more general level, when the polynomial Φ in (2) is reasonably arbitrary, before
specializing to the case Φ(z) = (z2 + 1)n , say. The above observation allows us to
deduce in a more unified way that not only the function L (as noted by Sheil-Small
in [S, p. 182]) but also the function Q will take any real value in H+ at most a
finite number of times (but compare [S, Lemma 5, p. 186]). This will greatly aid
in the study of the behaviour of Q in H+ .
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Another important tool is the study of the iterates of a branch of Q−1 taking
H+ onto a component U of K . Since U ⊂ H+ , we may iterate Q−1 in H+ and
deduce by the classical Denjoy–Wolff fixed point theorem (see, for example, [V,
Ch. VI] or [Sa, p. 54]) that Q−1 has an attracting fixed point on ∂H+ = R or
at a pole of f in H+ , which corresponds to a repelling fixed point of Q , with a
proper interpretation if this fixed point is at infinity. The study of such iterates
is an essential new idea that we bring to the study of the zeros of derivatives in
this paper, to complement the level set methods inaugurated in this context by
Sheil-Small [S]. (In Sections 8–14 we use the Fatou–Julia theory of iteration in
numerous ways also.)

Lemma 4.1. Let f be given by (2), where g ∈ U2p . Then each of the
functions Q and L takes any real value only finitely many times in H+ .

Proof of Lemma 4.1. Let f be given by (2), and suppose that c ∈ R .
Note that g ∈ U2p if, and only if, e−czg ∈ U2p . By Lemma 2.1, ϕ(c, z) is a
polynomial. By (10), the number of times that L takes the value c in H+ is at
most 1

2degϕ(c, z) . This proves Lemma 4.1 for L .
Then pick b ∈ R and define F (z) = f(z)/(z−b) = g(z)/Ψ2(z) where Ψ2(z) =

(z − b)Φ(z) . For z ∈ H+ , we have

Q(z) − b = z −
1

L(z)
− b = (z − b) −

1

L(z)
= 0

if, and only if, (32) holds, that is, if (F ′/F )(z) = 0. Neither L nor z− b vanishes
at such a point, so that any such point has the same multiplicity as a zero of F ′/F
and as a zero of Q− b . Applying Lemma 2.1 to F instead of f we see that F ′/F
has only finitely many zeros in H+ . This completes the proof of Lemma 4.1.

We remark that if Φ has no real zeros, then by Lemma 2.2, the function
L takes any real value at most 1

2
deg Ψ + p + 1 times in H+ , with due count of

multiplicity.
We shall often benefit from the following result [T, Theorem VIII.14, Corol-

lary, p. 308], also used in [S, p. 182].

Lemma 4.2. Let h be meromorphic in the Jordan domain D . Suppose
that γ1 and γ2 are two disjoint open arcs of ∂D in a neighbourhood of a point
b ∈ ∂D with the point b as a common end point, and that h extends continuously
to γ1 ∪ γ2 . Suppose that there are at least three points in C that h takes only
finitely many times in D .

Suppose that h(z) → aj ∈C as z → b along γj , for j = 1, 2 . Then a1 = a2 ,
and h(z) → a1 as z → b in D .

This easily extends to the following statement, by replacing, if necessary, a
domain by a smaller domain which is a Jordan domain.
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Lemma 4.3. Let D be a domain whose boundary is contained in a path
with at most finitely many self-intersections, none of them occurring at a point
b ∈ ∂D . Let h be meromorphic in the domain D . Suppose that γ1 and γ2 are
the two disjoint open arcs of ∂D in a neighbourhood of the point b ∈ ∂D with
the point b as a common end point, and that h extends continuously to γ1 ∪ γ2 .
Suppose that there are at least three points in C that h takes only finitely many
times in D .

Suppose that h(z) → aj ∈C as z → b along γj , for j = 1, 2 . Then a1 = a2 ,
and h(z) → a1 as z → b in D .

5. Zeros on the boundary of Λ or K

For the rest of the paper, we assume that Φ has no real zeros. For clarity, we
shall occasionally repeat this assumption in the statements of some lemmas.

The following lemma explains which zeros of f or f ′ can be on the boundary
of Λ or K . It turns out that only a finite number of points arises in this way,
and their location can be described. The inequality (30) of Lemma 2.2 plays an
essential role in proving the finiteness. This is useful in limiting the behaviour of
the components of Λ and K , and particularly part (4) of the following lemma will
be of crucial importance in extending to Q certain properties possessed by L . If
x is real, we write [x] for the greatest integer that does not exceed x .

Lemma 5.1. Let f be as in (2), where g is a real entire function of finite
order and Φ is a non-constant real polynomial with no real zeros, and suppose
that f and f ′ have only real zeros.

(1) (i) Suppose that x0 ∈ ∂Λ and L(x0) = 0 . Then f ′(x0) = 0 6= f(x0) and
so x0 ∈ R .

Next, if x0 ∈ R and f ′(x0) = 0 6= f(x0) then (f ′′/f)(x0) = 0 if, and
only if, x0 is a multiple zero of L , and hence, (f ′′/f)(x0) 6= 0 unless either
ψ(x0) = ϕ(x0) = 0 or ϕ(x0) = 0 6= ψ(x0) and x0 is a multiple zero of ϕ ; and
x0 ∈ ∂Λ if, and only if, (f ′′/f)(x0) ≥ 0 . If (f ′′/f)(x0) > 0 then x0 lies on the
boundary of exactly one component of Λ and x0 has a neighbourhood that does
not intersect Λ− . If (f ′′/f)(x0) = 0 then x0 ∈ ∂Λ ∩ ∂Λ− . If x0 ∈ R , ϕ(x0) 6= 0 ,
and f ′(x0) = 0 6= f(x0) , then (f ′′/f)(x0) < 0 .

If f(a) = 0 and (f ′/f)(b) = 0 , and if ff ′ 6= 0,∞ on the open interval with
end points a and b , then (f ′′/f)(b) ≤ 0 .

(ii) Let I be an interval of the form (−∞, aτ ) , (ak, ak+1) , or (aω,∞) , con-
taining the zeros t1 ≤ · · · ≤ tl of ϕ . If I = (ak, ak+1) then l is even and we have
(f ′′/f)(x0) ≥ 0 for 1

2
l of the zeros x0 of ϕ among the tj . If I is unbounded

then we have (f ′′/f)(x0) ≥ 0 for 1
2 l or 1

2 (l − 1) of the zeros x0 of ϕ among the
tj according as l is even or odd. Here the points x0 which are zeros of f ′ of
order m ≥ 1 have been taken into account with weight 1

2m if m is even and with

weight 1
2 (m+ ε) if m is odd, where ε = sgn(f (m+1)/f)(x0) ∈ {1,−1} . In partic-
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ular, those at which (f ′′/f)(x0) > 0 have been taken into account with weight 1
and those at which (f ′′/f)(x0) < 0 with weight 0 .

(iii) Thus, with these weights, the total number of points x0 ∈ ∂Λ with
f ′(x0) = 0 6= f(x0) is finite, and is at most 1 +

[

1
2(degϕ)

]

. In particular, if
Φ(z) = (z2 + 1)n , then this upper bound is n + 1 , which can be lowered to n if
−τ = ω = ∞ (and then degϕ is even).

(2) Suppose that f(x0) 6= ∞ and L(x0) = ∞ . Then f(x0) = 0 and so
x0 ∈ R . But if x0 is a zero of f of order m ≥ 1 then L(z) = m/(z − x0) +O(1)
as z → x0 so that ImL(z) < 0 if z ∈ H+ and |z − x0| is small enough. Thus
then x0 ∈ ∂Λ− and x0 has a neighbourhood that does not intersect Λ .

If x0 ∈ R and f(x0) = ∞ then x0 ∈ ∂Λ and x0 has a neighbourhood that
does not intersect Λ− .

(3) If z0 ∈ H+ and f(z0) = ∞ then z0 ∈ ∂Λ and z0 ∈ ∂Λ− . In fact, then z0
lies on the boundary of exactly one component of Λ and exactly one component
of Λ− .

(4) Suppose that f ′(x0) = 0 6= f(x0) so that x0 ∈ R . Then Q(x0) = ∞ .
We have x0 ∈ ∂K if, and only if, (−1/Q)′(x0) ≥ 0 , which is true if, and only if,
(f ′′/f)(x0) ≥ 0 . This can happen only at the finitely many points x0 described
in (1). If (f ′′/f)(x0) > 0 then x0 lies on the boundary of exactly one component
of K and x0 has a neighbourhood that does not intersect K− . If (f ′′/f)(x0) = 0
then x0 ∈ ∂K ∩ ∂K− . Thus if (f ′′/f)(x0) < 0 then x0 lies on the boundary
of exactly one component of K− and x0 has a neighbourhood that does not
intersect K .

(5) Suppose that f(x0) = 0 so that Q(x0) = x0 ∈ R , and let x0 be a zero of
f or order m ≥ 1 . Then x0 ∈ ∂K if, and only if, Q′(x0) = 0 or (f ′′/f)(x) > 0
for all real x 6= x0 sufficiently close to x0 .

If m = 1 then f ′(x0) 6= 0 and Q′(x0) = 0 . Thus x0 ∈ ∂K ∩ ∂K− .

If m ≥ 2 then Q′(x0) 6= 0 and (f ′′/f)(z) ∼ m(m − 1)/(z − x0)
2 as z → x0

so that x0 ∈ ∂K and x0 /∈ ∂K− .
(6) Suppose that x0 ∈ R∩∂K∩∂K− . Then Q′(x0) = 0 or f ′(x0) = f ′′(x0) =

0 6= f(x0) . Thus
(i) f(x0) = 0 6= f ′(x0) or

(ii) f ′′(x0) = 0 6= f(x0)f
′(x0) or

(iii) f ′(x0) = f ′′(x0) = 0 6= f(x0) .

In each case, there are m sector-like domains in H+ with vertex at x0 ,
every second sector contained in K and every second in K− . In case (i) we have
m = 2 + ord (f ′′, x0) ≥ 2 . In case (ii) we have m = 1 + ord (f ′′, x0) ≥ 2 . In case
(iii) we have m = 1 + ord (f ′′, x0) = ord (f ′, x0) ≥ 2 .

If m is even then 1
2m sectors are contained in each of K and K− .

If m = 2l+ 1 is odd then l ≥ 1 , and l sectors are contained in one of K and
K− while l + 1 sectors are contained in the other one of K and K− . There are
exactly l+1 sectors contained in K if, and only if, (f ′′f)(x) > 0 for all real x > x0
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sufficiently close to x0 , which, in case (iii), is equivalent to (f (2l+2)/f)(x0) > 0 .
If f ′(x0) = 0 6= f(x0) , then the number of sectors in K is equal to the weight
associated to the point x0 as in part (1)(ii) of this lemma.

(7) Suppose that x0 ∈ R∩∂Λ∩∂Λ− . Then L′(x0) = 0 . Thus f(x0) 6= 0 and

f(x0)f
′′(x0) =

(

f ′(x0)
)2

. If also f ′(x0) = 0 then furthermore f ′′(x0) = 0 .
In each case, there are m sector-like domains in H+ with vertex at x0 , every

second contained in Λ and every second in Λ− . We have m = 1 + ord (f ′′f −
(f ′)2, x0) ≥ 2 .

If m is even then 1
2
m sectors are contained in each of Λ and Λ− .

If m = 2l+ 1 is odd then l ≥ 1 , and l sectors are contained in one of Λ and
Λ− while l + 1 sectors are contained in the other one of Λ and Λ− . There are
exactly l+1 sectors contained in Λ if, and only if, (f ′′f)(x) >

(

f ′(x)
)2

for all real

x > x0 sufficiently close to x0 (that is, if (f (2l+2)/f)(x0) > 0 when f ′(x0) = 0).

Proof of Lemma 5.1. (1) (i) Suppose that x0 ∈ ∂Λ and 0 = L(x0) =
(f ′/f)(x0) . Then f(x0) /∈ {0,∞} and f ′(x0) = 0. Since f ′(x0) = 0, we have
x0 ∈ R .

Suppose that f ′(x0) = 0 6= f(x0) so that x0 ∈ R . By (18), we have
ψ(x0) = 0 or ϕ(x0) = 0. We have f ′′/f = (f ′/f)2 +(f ′/f)′ so that (f ′′/f)(x0) =
(f ′/f)′(x0) . Hence (f ′′/f)(x0) = 0 if, and only if, x0 is a multiple zero of L .
Since all the zeros of ψ are simple, x0 is a multiple zero of L if, and only if,
we have ψ(x0) = ϕ(x0) = 0, or ϕ(x0) = 0 6= ψ(x0) and x0 is a multiple zero
of ϕ . If L(x0) = 0 and L′(x0) = (f ′′/f)(x0) < 0 then x0 has a disk neigh-
bourhood D such that ImL(z) < 0 for all z ∈ D ∩ H+ . If L(x0) = 0 and
L′(x0) = (f ′′/f)(x0) > 0 then x0 has a neighbourhood D such that ImL(z) > 0
for all z ∈ D ∩ H+ . If L(x0) = 0 and L′(x0) = (f ′′/f)(x0) = 0 then L has a
multiple zero at x0 , and it is clear that x0 ∈ ∂Λ∩∂Λ− . We conclude that x0 ∈ ∂Λ
if, and only if, (f ′′/f)(x0) ≥ 0. Also this shows that if (f ′′/f)(x0) > 0 then x0

lies on the boundary of exactly one component of Λ and x0 has a neighbourhood
that does not intersect Λ− .

Next we show that (f ′′/f)(x0) < 0 if L(x0) = 0 and ϕ(x0) 6= 0. So suppose
that L(x0) = 0 and ϕ(x0) 6= 0. As we saw above, we then have L′(x0) =
(f ′′/f)(x0) 6= 0. We have ψ(x0) = 0 and so by (18), L′(x0) = ψ′(x0)ϕ(x0)/Ψ(x0) .
This can happen only when f has at least two distinct zeros (so that ψ has at
least one zero), and then it follows from (16) and (17) that ψ′(x) > 0 for all real
x such that ψ(x) is finite (this follows also directly from (34) in Section 15. In
particular, ψ′(x0) > 0. Further, we must have x0 = bk ∈ (ak, ak+1) for some k ,
where f has no poles on (ak, ak+1) , and we have specified that bk is the largest or
smallest zero of f ′ on (ak, ak+1) . Since ϕ(x0) 6= 0, it follows that bk is a simple
zero of f ′ . The proof of Lemma 2.2 is independent of the rest of the paper. We
apply the inequality (43), which is obtained in the course of that proof, and deduce
that ϕ/Ψ < 0 at each of ak and ak+1 . Now Ψ retains its sign on (ak, ak+1) ,
while ϕ can change its sign only at a zero of f ′ which is also a zero of ϕ . Since
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bk is the largest or smallest zero of f ′ on (ak, ak+1) , it follows that ϕ/Ψ has the
same sign at x0 = bk as it has at ak or at ak+1 , as the case may be. So at any
event, we have (f ′′/f)(x0) = L′(x0) = (ψ′ϕ/Ψ)(x0) < 0, as claimed. A similar
argument proves the last statement of part (1)(i).

(1) (ii) Let I be an interval of the form (−∞, aτ) , (ak, ak+1) , or (aω,∞) ,
containing the zeros t1 ≤ · · · ≤ tl of ϕ .

If I = (ak, ak+1) then f ′ has an odd number of zeros on I . One of them is bk
and the others are zeros of ϕ . Thus l is even. Without loss of generality, suppose
that bk ≤ t1 . As we have seen, if bk is a simple zero of f ′ then (f ′′/f)(bk) < 0
while otherwise (f ′′/f)(bk) = 0. At the points tj , the equalities f ′′/f = L′ =
ψϕ′/Ψ hold, and the sign of ψϕ′/Ψ alternates in the same way as the sign of
ϕ′ since ψ and Ψ retain their sign on (bk, ak+1) . If the distinct zeros of ϕ on
(bk, ak+1) are u1 < · · · < uµ with multiplicities ν1, . . . , νµ , then ϕ′(uj) = 0 if,
and only if, νj ≥ 2. We have ν1 + · · ·+ νµ = l − l0 , where l0 + 1 = ord (f ′, bk) .

If x0 ∈ (bk, ak+1) is a zero of L of order m1 ≥ 2 then, since L′ = (f ′′/f)−L2 ,
x0 is a zero of f ′′/f of order m1 − 1, and a zero of ϕ of order m1 . (If x0 = uj

then m1 = νj + 1.) Hence f (j)(x0) = 0 for 1 ≤ j ≤ m1 while (f ′′)(m1−1)(x0) =
f (m1+1)(x0) 6= 0. We have

sgnL(x) = sgn(f ′′/f)(x) = sgn(x− x0)
m1−1 sgn(f (m1+1)/f)(x0)

for all x 6= x0 that are sufficiently close to x0 . Applying this to x0 = uj ,
taking into account that L retains its sign on (uj , uj+1) , and writing εj =
sgn(f (m1+1)/f)(uj) , where m1 depends on j , we see that (−1)νj+1εjεj+1 > 0
for 1 ≤ j < µ . Further, if t1 = bk , set u0 = bk . If bk is a zero of f ′ of order
m0 ≥ 2 then t1 is a zero of ϕ of order m0 − 1, and (f ′′/f)(t1) = 0. With
ε0 = sgn(f (m0+1)/f)(u0) , we have (−1)ν1ε0ε1 > 0.

So if νj+l is odd while νj+1, νj+2, . . . , νj+l−1 are even, then εjεj+l < 0. If
f ′′(uj) 6= 0 then εj = sgn(f ′′/f)(uj) . Thus the weight associated with uj is
1 if (f ′′/f)(uj) > 0 and is 0 if (f ′′/f)(uj) < 0. Thus these weights indeed
count only those zeros of f ′ at which f ′′/f ≥ 0, even if we take into account
weights for all the uj . Note that if f ′′(bk) 6= 0 then (f ′′/f)(bk) < 0 as shown
at the end of the proof of part (1)(i). Let us now assign the weights explained in
(1)(ii), to the distinct zeros of ϕ on (ak, ak+1) , these zeros being u1, . . . , uµ , and
possibly u0 = bk .

If l − l0 is even, then an even number of the integers ν1, . . . , νµ is odd, and
the odd numbers νj can be paired (the first two, the next two, and so on). We
have εjεj+l < 0 if νj and νj+l are odd while νj+1, . . . , νj+l−1 are even. If νj+1

is even then εjεj+1 > 0. Thus, if the odd numbers among the νj are those with
j = kq where 1 ≤ k1 < k2 < · · · < k2r ≤ µ , we find that

ε1 = ε2 = · · · = εk1−1 = −εk1
= −εk1+1 = −εk2−1 = εk2

= · · · = εk2r
= · · · = εµ,
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and in particular, the signs of εkq
alternate. Thus

∑r
q=1 εkq

= 0. Hence the total

weight corresponding to the points u1, . . . , uµ is 1
2
(l− l0) . If l0 = 0 then u0 does

not exist and the total weight is 1
2 l . If l0 6= 0 the l0 is even since l is even. The

point u0 has the weight 1
2
(l0 + 1 + ε0) . The argument at the end of the proof of

part (1)(i) shows that L′(x) < 0 for all real x < bk = u0 that are sufficiently close
to u0 . Since f ′ has a zero of the odd order l0 + 1 at bk , it follows that L′(x) < 0
for u0 < x < u0 + δ as well, for some small δ > 0. This implies that ε0 = −1
so that u0 has the weight 1

2 l0 . Thus the total weight is 1
2 l in all cases when l is

even. This argument also shows that when the total number of zeros of f ′ on I
(including bk ) is odd (here l + 1 where l is even) then the total weight is equal
to 1

2

(

(l + 1) − 1
)

.
If one of the end points of I is infinite, essentially the same argument can

be used. The conclusions of part (1)(iii) are now easily obtained by taking into
account the above results on all intervals I determined by successive zeros of f ,
and adding up.

(2), (4), (5) These statements are clear.

(3) This follows from the fact that all the poles of L = f ′/f are simple.

(6) Suppose that x0 ∈ R ∩ ∂K ∩ ∂K− . Then Q′(x0) = 0 or x0 is a multiple
pole of Q , in which case f ′(x0) = f ′′(x0) = 0 6= f(x0) . Thus one of the (obviously
mutually exclusive) cases (i)–(iii) must occur.

In each case, it follows from the local behaviour of the meromorphic function
Q that if x0 is a zero of Q′ of order m − 1 ≥ 1 or a pole of Q of order m ≥ 2,
then there are m sector-like domains in H+ with vertex at x0 , every second
sector contained in K and every second in K− . Since Q′ = ff ′′/(f ′)2 , it is easy
to verify the given formulas for m , and we leave this to the reader. The remaining
statements of part (6) are now easy to verify and are left to the reader.

(7) Suppose that x0 ∈ R ∩ ∂Λ ∩ ∂Λ− . Then L′(x0) = 0 or x0 is a multiple
pole of L . Since all the poles of L are simple, it follows that L′(x0) = 0 and

L(x0) is finite. Thus f(x0) 6= 0 and f(x0)f
′′(x0) =

(

f ′(x0)
)2

. If f ′(x0) = 0 then
clearly also f ′′(x0) = 0.

As in the proof of part (6), we see that there are m sector-like domains in H+

with vertex at x0 , every second contained in Λ and every second in Λ− , where
m = 1 + ord

(

f ′′f − (f ′)2, x0

)

≥ 2. The remaining statements of part (7) are now
easy to verify and are left to the reader. This completes the proof of Lemma 5.1.

6. Structure of components

The next lemmas provide further information concerning the components of
Λ and K . Among other things, we want to show that Λ and K have only finitely
many components. It may not be quite clear what the strategy of proof ought
to be, for example since L′ may have infinitely many zeros in H+ . We have
chosen to show first that ∂Λ contains only finitely many bounded Jordan curves
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(Lemma 6.1(3) below), and then have followed the same idea for K (Lemma 6.1(8)
below).

Definition. Let γ be a Jordan arc, directed for convenience (such as an
asymptotic path, which has a definite direction), and let h be a non-constant
function, meromorphic in a neighbourhood of γ , with h(γ) ⊂ R. We say that h
is monotonic on γ if h is strictly increasing on γ or strictly decreasing on γ , in
the following sense. We say that h is strictly increasing on γ provided that h is
strictly increasing in the usual sense on each open arc of γ from a to b (directed
in accordance with the direction on γ ) where a and b are successive points on γ
which h maps onto infinity, and provided that at each point a with h(a) = ∞ ,
one of the one-sided limits of h(z) as z → a along γ is +∞ and the other one
is −∞ . The property of being strictly decreasing on γ is defined in a similar
fashion.

The following is an alternative characterization of monotonicity: if M is a
Möbius transformation of R onto the unit circle S1 then, as z traces γ , the point
M

(

h(z)
)

traces S1 , moving all the time in the positive direction, or all the time
in the negative direction, even if S1 were traced several (perhaps infinitely many)
times in this way.

Lemma 6.1. Let f be given by (2), where g ∈ U2p and Φ is a real polyno-
mial with no real zeros, suppose that f ′ has only real zeros, and let L and Q be
as defined in (3). Let Λ , Λ− , K , K− be as defined in (5) and (6). Let Ψ be as
defined below (2). Write l = 2p + deg Ψ + 2 . Then the following statements are
true.

(1) Each of the functions Q and L takes any real value only finitely many
times in H+ : and L takes any real value at most 1

2 l times in H+ , with due count
of multiplicity.

(2) We have Λ ⊂ K . If V is a component of Λ then there is a component U
of K containing V . If V is unbounded then so is U .

(3) There are only finitely many bounded Jordan curves in C contained in ∂Λ .
The set Λ has only finitely many bounded components. Suppose, in addition, that
Ψ has exactly one zero α ∈ H+ ∪R .

(i) If α ∈ R , and if ∂Λ contains a bounded Jordan curve γ , then we must
have γ = ∂G where G is the unique component of Λ with α ∈ ∂G , and G must
be bounded.

(ii) If α ∈ H+ , and if T+ , T− are the unique components of Λ , Λ− with
α ∈ ∂T+ ∩ ∂T− , and if γ ⊂ ∂Λ is a bounded Jordan curve with interior D , then
D = T+ or D = T− , or T+ ∪ T− ⊂ D ⊂ T+ ∪ T− with γ ⊂ ∂T+ ∪ ∂T− . If some
such D contains T− then ∂T− contains no segment of R .

(iii) The set Λ has at most one bounded component, and if there is one, it
contains α on its boundary.

(4) Let V be an unbounded component of Λ and let C be an unbounded
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component of C∩∂V . Then C is an arc with only finitely many self-intersections,
and C ∪ {∞} is a closed curve in C. The function L = ReL is monotonic on C
and tends to the same limit a ∈ R as z → ∞ along the two branches of C . The
limit a is the same for all V . If D ⊂ H+ is a domain with ∂D ⊂ C for any such
component C then L(z) → a as z → ∞ inD . Furthermore, L(z) → a as z → ∞
in V .

If C1 and C2 are components of C∩∂V1 and C∩∂V2 , where V1 and V2 are
unbounded components of Λ (possibly V1 = V2 ) and if C1 6= C2 , then C1 ∩ C2

(if not empty) consists of isolated points in C . If a set C1 that arises in this way
is given, then there is a unique component V1 of Λ such that C1 is a component
of C ∩ ∂V1 . The set Λ has only finitely many unbounded components.

(5) If W is an unbounded component of Λ− then any unbounded component
of C ∩ ∂W has at most finitely many points of self-intersection, and apart from
at most deg Ψ + 2 exceptional components, we have L(z) → a ∈ R uniformly as
z → ∞ in W , for some a depending on f only. The set Λ− has only finitely
many unbounded components.

(6) Suppose that also f ′′ has only real zeros. Let U be an unbounded compo-
nent of K and let C be an unbounded component of C∩∂U . Then C is a Jordan
arc and C ∪ {∞} is a Jordan curve in C. The function Q = ReQ is monotonic
on C . The function Q tends to the same limit a ∈ R as z → ∞ along the two
branches of C . The limit a depends on f only and is therefore the same for all
unbounded components C of C ∩ ∂U and all U . In fact, we have Q(z) → a as
z → ∞ in U .

If C1 and C2 are unbounded components of C∩∂U1 and C∩∂U2 , where U1

and U2 are components of K (possibly U1 = U2 ) and if C1 6= C2 , then C1∩C2 (if
not empty) is a subset of R and consists of isolated points on R . In particular,
if C1 is given, then there is a unique component U1 of K such that C1 is a
component of C ∩ ∂U1 .

(7) Let U be an unbounded component of K , and let γ be a Jordan arc lying
in U such that Q(z) → α = δ + iε ∈ H+ as z → ∞ along γ . Then zL(z) → 1
and L(z) → 0 as z → ∞ along γ .

(8) Suppose that also f ′′ has only real zeros. The sets K and Λ have only
finitely many components. The set ∂K contains only finitely many bounded
Jordan curves.

(9) If Ψ has exactly one zero α in H+ , let V0 be the unique component of
Λ with α ∈ ∂V0 . If Λ 6= V0 then V0 is bounded. In particular, this holds if
Ψ(z) = z2 + 1 with α = i ∈ ∂V0 .

Remark. The conclusions other than (6), (8) remain valid even if the as-
sumption that f ′ has only real zeros is dropped, since then f ′ and f ′′ have only
finitely many zeros in H+ .

Proof of Lemma 6.1. Let the general assumptions of Lemma 6.1 be satisfied.



Iteration, level sets, and zeros of derivatives of meromorphic functions 335

(1) This follows from Lemmas 2.2 and 4.1.

(2) If z ∈ H+ and ImL(z) > 0 then Im
(

1/L(z)
)

< 0 so that ImQ(z) =

Im z − Im
(

1/L(z)
)

> 0. Hence Λ ⊂ K . Thus it is clear that if V is a component
of Λ then there is a component U of K containing V . Hence, if V is unbounded
then so is U .

(3) If V is a bounded component of Λ then ∂V contains a bounded Jordan
curve γ contained in ∂Λ. There can be at most one component V of Λ with
γ ⊂ ∂V since any compact subset of ∂Λ contains only finitely many points that
can lie on the boundary of two or more components of Λ. Hence to prove that
Λ has only finitely many bounded components, it suffices to show that there are
only finitely many bounded Jordan curves γ with γ ⊂ ∂Λ.

Let W be a bounded component of Λ or of Λ− . Then ∂W has only finitely
many components, each consisting of finitely many closed Jordan arcs or curves
which are disjoint apart from finitely many points where at least two such arcs or
curves intersect, since any such point of intersection is a zero of L′ (recall that all
the poles of L are simple).

If ∂W contains no pole of L then ImL is harmonic and bounded in W and
vanishes on ∂W . Thus ImL ≡ 0 in W , which is impossible. Thus ∂W contains
a pole of L , which must be a zero or pole of f .

Any pole of f is a zero of Ψ. There are only finitely many of them, and
by Lemma 5.1(2) and (3), each zero of Ψ lies on the boundary of at most one
component of Λ and at most one component of Λ− . By Lemma 5.1(2), any zero
of f lies on ∂Λ− but not on ∂Λ.

Now, given any bounded Jordan curve γ ⊂ ∂Λ, consider any bounded com-
ponent W of Λ or of Λ− such that γ∩∂W contains an open arc, and such that if
D is the bounded Jordan domain with ∂D = γ then W ⊂ D . For each subarc of
γ not containing zeros of L′ but whose end points are zeros of L′ , there is such a
domain W . Suppose that there exists β ∈ ∂W with f(β) = 0, so that β ∈ R and
W ⊂ Λ− by Lemma 5.1(2). Then there is ε > 0 such that [β − 2ε, β + 2ε] ⊂ ∂W .
There is a Jordan domain G ⊂W ⊂ H+ , bounded by [β − ε, β + ε] and an open
Jordan arc joining β − ε and β + ε in W . Then γ ⊂ H+ \G so that D ∩G = ∅ .
Note that γ ⊂ ∂Λ while [β − ε, β + ε] ∩ ∂Λ = ∅ . Thus W is not contained in D ,
which is a contradiction. Since W is bounded, we conclude that there is a point
α ∈ ∂W with Ψ(α) = 0 and L(α) = ∞ . This allows us to associate α with γ
and W .

There are only finitely many zeros α of Ψ and by Lemma 5.1(2) and (3), each
α lies on the boundary of at most one component W of each of Λ and Λ− . Hence
there are only finitely many components W that can arise as above for all bounded
Jordan curves γ ⊂ ∂Λ. The boundaries of these W contain only finitely many
zeros of L′ and hence consist of finitely many Jordan arcs and curves joining such
zeros of L′ . Any γ consists of some such arcs or coincides with such a curve since
there is such a component W corresponding to each subarc of γ not containing
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zeros of L′ but whose end points are zeros of L′ . Thus there are only finitely
many bounded Jordan curves γ ⊂ ∂Λ.

Suppose that Ψ has exactly one zero α ∈ H+ ∪ R . Then Lemma 5.1(2)–(3)
implies the existence of the unique components G , T+ , T− as stated. If γ ⊂ ∂Λ
is a bounded Jordan curve and W is as above, then the above proof shows that
we must have α ∈ ∂W so that W coincides with G or T+ or T− . The remaining
statements in (i) are now clear.

In (ii), it is clear that D = T+ or D = T− or T+ ∪ T− ⊂ D ⊂ T+ ∪ T− . If
this actually happens, then T+ or T− or both must be bounded. If D = T− then
∂T− = ∂D = γ ⊂ ∂Λ so that ∂T− contains no segment of R . If D = T+ ∪ T−

then any open segment in R ∩ ∂T− must be a subset of ∂D = γ . Again the fact
that γ ⊂ ∂Λ gives a contradiction. This proves (ii).

To prove (iii), suppose that V is a bounded component of Λ. Then the
outermost boundary component of V contains a bounded Jordan curve γ ⊂ ∂Λ,
and V is one of the components of Λ such that γ ∩ ∂V contains an open arc
between zeros of L′ , or a closed curve. By (i) and (ii), we conclude that V = G
or V = T+ , as the case may be. This proves (iii), and the proof of part (3) is now
complete.

(4) Let V be an unbounded component of Λ and let C be an unbounded
component of C ∩ ∂V . If C is not a Jordan arc or Jordan curve, then C must
return to the same point z0 at least twice via different routes. Thus L′(z0) = 0
since all the poles of L are simple. Clearly L = ReL is monotonic on C if C
is traced in the natural way, possibly going several times through certain points.
Then there exists a bounded Jordan curve γ ⊂ C through z0 , on which ImL = 0
except at the poles of L . By part (3), there are only finitely many such γ , and
they contain only finitely many zeros of L′ . Thus C contains only finitely many
points z0 of self-intersection. Thus C ∪ {∞} is a closed curve in C with only
finitely many self-intersections.

If we trace C in the natural way, we clearly pass only finitely many times
through any point of self-intersection.

Since L is monotonic on C , with values in R, the function L(z) can fail
to have a limit as z → ∞ along a branch of C only if L takes each value in R

infinitely often on C . In particular, C would have to contain infinitely many poles
of L . But the poles of L are zeros of f , which do not lie on ∂Λ and hence not
on C by Lemma 5.1(2), and the finitely many zeros of Ψ. We conclude that L(z)
has a limit as z → ∞ along each of the two branches of C .

There is a domain D ⊂ H+ with ∂D = C ∪ {∞} . By Lemma 4.2, there is
a ∈ R such that L(z) → a as z → ∞ in D and in particular along C . Hence
L(C) contains R\ {a} .

Let Cj be an unbounded component of C ∩ ∂Vj of a component Vj of Λ,
for j = 1, 2. Let Γj ⊂ Cj be a Jordan arc from a finite point to infinity. We
may assume that Γ1 ∩ Γ2 = ∅ and join the finite end points of Γ1 and Γ2 by a
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Jordan arc Γ3 in H+ . We need not have ImL = 0 on Γ3 . There is a Jordan
domain D1 ⊂ H+ with C∩ ∂D1 = Γ1 ∪Γ2 ∪Γ3 . Suppose that L(z) → aj ∈ R as
z → ∞ along Γj for j = 1, 2. Applying Lemma 4.2, in view of part (1), we find
that a1 = a2 . This shows that all such limits are equal to some a ∈ R.

Clearly H+\C has at most three unbounded components, and V is contained
in exactly one of them. If V ⊂ D then L(z) → a as z → ∞ in V . Suppose that
V ∩ D = ∅ . This is possible only if R ∩ ∂V contains (−∞, x1] or [x1,∞) for
some real x1 . Without loss of generality, suppose that (−∞, x1] ⊂ R ∩ ∂V .
Then f has no zeros on (−∞, x1] by Lemma 5.1(2). Thus f ′ and hence L has
only finitely many zeros on (−∞, x1] as they must be zeros of ϕ . Therefore, L
being monotonic on (−∞, x1] , L(x) must have a limit as x → −∞ . Applying
our previous arguments to the Jordan domain G in H+ contained in V whose
boundary consists of (−∞, x1 − 1] , a closed Jordan arc in H+ ∪ {x1 − 1} , and a
branch of C from a finite point to infinity (completely contained in H+ ), we see
that L(z) → a as z → ∞ in G. Hence L(z) → a as z → ∞ in V .

Suppose that V1 and V2 are unbounded components of Λ (possibly V1 = V2 )
and that Cj is an unbounded component of C∩ ∂Vj , for j = 1, 2, with C1 6= C2 .
Suppose that C1 ∩C2 6= ∅ and pick β ∈ C1 ∩C2 . Then L′(β) = 0 so that C1 ∩C2

consists of isolated points in C . If C1 is given then, since all points on C1 that
are not zeros of L′ , lie on the boundary of only one component of Λ (which must
be V1 ), it follows that C1 determines V1 .

By Lemma 5.1(1)(i), Lemma 5.1(1)(iii), there are only finitely many zeros of
L on ∂Λ, and they lie on the boundaries of finitely many components of Λ. Let
V be an unbounded component of Λ such that L 6= 0 on C ∩ ∂V . Let C be an
unbounded component of C ∩ ∂V . By what we have proved, it must be the case
that L(z) → 0 as z → ∞ in V since necessarily {0} = R\ L(C) for all such C .
Thus C must contain a pole of L , which, by Lemma 5.1(2), must be a pole of f .
Since f has only finitely many poles and each lies on the boundary of exactly one
component of Λ, there are only finitely many components of Λ like this. It follows
that Λ has only finitely many unbounded components.

(5) Let W be an unbounded component of Λ− . Since W ⊂ H+ , there is at
least one unbounded component C of C ∩ ∂W . Suppose that C has infinitely
many points of self-intersection, and let γ ⊂ C be a bounded Jordan curve. If
γ contains no open segment of R then γ ⊂ ∂Λ so that by part (3), there are
only finitely many such curves γ and finitely many points of self-intersection of C
lying on such curves γ . If γ contains an open segment of R , then, since W ⊂ H+

and γ ⊂ C ⊂ ∂W , it is easily seen that W ⊂ D where D is the bounded Jordan
domain with ∂D = γ . This is a contradiction since W is unbounded.

Hence C has only finitely many points of self-intersection, and C has two
branches along which z → ∞ . The function L = ReL is monotonic along C .
If L(z) does not tend to a limit as z → ∞ along such branch, then this branch
contains infinitely many poles of L , hence infinitely many zeros of f . So it must
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contain (−∞, x1) or (x1,∞) for some real x1 , or it must intersect R along
infinitely many segments containing zeros of f , returning to H+ in between. In
the latter case, there are infinitely many bounded components of Λ, which is
impossible by part (3). There are at most two components C taking up sets of
the form (−∞, x1) and (x1,∞) , and at most two components W having such
boundary components C .

For all but at most two components W , we may apply Lemma 4.2 in the
obvious way and conclude that there is a ∈ R such that L(z) → a as z → ∞
in W .

Each zero of Ψ lies on the boundary of at most one component of Λ− . Hence,
excluding these at most deg Ψ components and the above mentioned at most two
unbounded components of Λ− , we find that any other unbounded component W
of Λ− contains no zero of Ψ on its boundary, and has a point a ∈ R associated
with it such that L(z) → a as z → ∞ in W . By the argument used in the
proof of part (4), the limit a is the same for all Jordan arcs on ∂Λ− going from
a finite point to infinity provided that at least two such arcs exist (and two such
arcs exist as soon as Λ− has an unbounded component other than the at most
two exceptional components discussed above). In fact, the limit a is obviously
the same for the unbounded components of Λ and of Λ− . Any bounded Jordan
curve contained in ∂W and not containing any open segment of R is contained
in ∂Λ. Since ∂Λ contains only finitely many such curves by part (3), there are
only finitely many W like this. If ∂W contains a Jordan curve containing an open
segment of R , it is easily seen that W is bounded.

Let Ω be the set of all unbounded components of Λ− that have no zeros of
Ψ on the boundary and are not among the at most two exceptional components,
such that (a) ∂W contains no Jordan curves (hence each component of C ∩ ∂W
is a Jordan arc going to infinity at both ends), (b) ∂W does not intersect R at
any point belonging to any interval of the form [−M, aτ ] , [ak, ak+1] , or [aω,M ]
that contains a zero of ϕ , where M > 0 is so large that f ′ 6= 0 on (−∞,−M) or
(M,∞) , as appropriate, (c) R∩∂W is connected. Thus Ω contains all but finitely
many bounded components of Λ− . For if e.g. R∩ ∂W is not connected then ∂W
determines a bounded component D of Λ which is not similarly determined by
any other component of Λ− (if x1, x2 ∈ R∩∂W , x1 < x2 , and (x1, x2)∩∂W 6= ∅ ,
then H+∩∂W contains an open Jordan arc Γ joining x1 to x2 , and D is a subset
of the bounded Jordan domain inside the Jordan curve Γ∪ [x1, x2] ). Since Λ has
only finitely many bounded components by part (3), there are only finitely many
such W . If Ω 6= ∅ , there is a ∈ R such that L(z) → a as z → ∞ in W for each
W ∈ Ω. If W ∈ Ω and C is a component of C∩ ∂W then L is monotonic on C .
If L is one-to-one on C then {a} = R\ L(C) .

Combining parts (3) and (4), we see that Λ has only finitely many compo-
nents, say V1, . . . , Vp . Suppose Ω has at least p+ 1 elements, say W1, . . . ,Wp+2 ,
whose boundary intersects R . Set R∩∂Wj = [xj , x

′
j] , with a simple modification
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if R ∩ ∂Wj is unbounded. We may assume that x′j ≤ xj+1 for 1 ≤ j ≤ p + 1.
There are arcs Γj and Γ′

j of ∂Wj from xj and x′j , respectively, to infinity, such
that Γj \ {xj} ⊂ H+ and Γ′

j \ {x
′
j} ⊂ H+ . There is a well-defined open set in H+

between Γ′
j and Γj+1 , each component of which contains at least one component

of Λ. Such components of Λ are disjoint for distinct j , which leads to the exis-
tence of at least p+ 1 components of Λ. This a contradiction, and it follows that
Ω contains only finitely many W with R ∩ ∂W 6= ∅ .

Suppose that W ∈ Ω and R ∩ ∂W = ∅ . Then ∂W contains no pole of L so
that L is one-to-one on each component C of ∂W and {a} = {∞} = R\ L(C) .
Then C must contain exactly one zero of L , hence a zero of f ′ , which is impossible
since all the zeros of f ′ are real while C ∩R = ∅ . This completes the proof of (5).

(6) Suppose that also f ′′ has only real zeros. Let U be an unbounded com-
ponent of K and let C be an unbounded component of C∩∂U . Let z0 ∈ C be a
point of self-intersection of C . Then Q′(z0) = 0 or z0 is a multiple pole of Q , so
that z0 ∈ R . Then ∂U contains a bounded Jordan curve γ ⊂ H+ ∪ {z0} . Let D
be the bounded Jordan domain with ∂D = γ . Now D contains a bounded com-
ponent G of K− , whose boundary must contain at least one pole of Q (otherwise,
ImQ is harmonic in G , bounded in G, and vanishes on ∂G , so that ImQ ≡ 0,
which is a contradiction). But a pole z1 of Q satisfies f ′(z1) = 0 6= f(z1) so
that z1 ∈ R . Hence z1 = z0 ∈ ∂G and z0 is a multiple pole of Q , hence a
multiple zero of f ′ (in fact, a zero of f ′ of order at least 3, since ∂U returns to
z0 from H+ ). In particular, ϕ(z0) = 0 so that there are only finitely many points
z0 of self-intersection, involving only finitely many components U .

Thus, apart from finitely many self-intersections, C is a Jordan arc tending
to infinity at both ends. Clearly Q = ReQ is monotonic on C . If Q(z) has no
limit as z → ∞ along a branch of C then Q has infinitely many poles on C . But
by Lemma 5.1(4), the set ∂K contains only finitely many poles of Q . Thus Q has
a limit as z → ∞ along each of the two branches of C . By the argument used for
L in the proof of part (4), this time applying Lemma 4.1 to Q , we find that there
is a fixed a ∈ R such that Q(z) → a as z → ∞ along C , for any C like this, and
that Q(z) → a as z → ∞ in U , for every unbounded component U of K .

Again, if R∩∂U contains (−∞, x1] or [x1,∞) for some real x1 , say (−∞, x1]
⊂ R ∩ ∂U , then, since ∂U ⊂ ∂K can contain only finitely many zeros of f ′/f by
Lemma 5.1(4), it follows that f and f ′ have only finitely many zeros on (−∞, x1] .
Hence Q has finitely many poles on (−∞, x1] , and being monotonic on ∂U , Q(x)
tends to a limit as x→ −∞ . Now we can argue as in the proof of part (4).

Similarly, it is seen that if W is an unbounded component of K− , if C is an
unbounded component of C ∩ ∂W , and if Q has only finitely many poles on a
branch of C going to infinity, then Q(z) tends to this same point a as z → ∞
along such a branch. If such a branch contains infinitely many poles of Q , it must
intersect R infinitely often. There are at most two such branches (corresponding
to the positive and negative real axis; this does not exclude the possibility of a
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single branch intersecting both the positive and negative real axis at sequences
tending to infinity) and hence at most two corresponding components of K− .
Excluding such exceptional components, we see in the same way as before that
Q(z) → a as z → ∞ in W for any unbounded (non-exceptional) component W
of K− .

The remaining statements of (6) are verified in the same way as in part (4).
Here we also note that the points in C1 ∩ C2 are multiple zeros of f ′ or zeros of
Q′ and hence form a discrete subset of R . This completes the proof of (6).

(7) Let the assumptions of (7) be satisfied. Then zL(z) ∼ z/(z−α) → 1 and
hence L(z) ∼ 1/z → 0 as z → ∞ along γ . This proves (7).

(8) Combining parts (3) and (4) we see that Λ has only finitely many com-
ponents. If γ ⊂ ∂K is a bounded Jordan curve and if D is the bounded Jordan
domain with ∂D = γ , then, as in the proof of (6), we see that there is z0 ∈ γ ∩R

with f ′(z0) = 0 6= f(z0) and Q(z0) = ∞ . Also each of the two arcs of γ ema-
nating from z0 must be among the finitely many arcs in ∂K emanating from z0 .
Since by Lemma 5.1(4) there are only finitely many points z0 like this on ∂K ,
and since Q′(z) 6= 0 and Q(z) 6= ∞ in H+ so that no further branching out of γ
is possible there, it follows that there are only finitely many γ like this. As in the
proof of part (3), we now see that K has only finitely many bounded components.

Let U be an unbounded component of K . By part (6), we have Q(z) → a ∈ R

as z → ∞ in U . Since Q′ 6= 0 and Q 6= ∞ in U and there is no path Γ ⊂ U
tending to ∞ such that Q(z) → β ∈ H+ as z → ∞ along Γ, it follows that
any branch of (Q | U)−1 can be continued analytically without restriction in H+ ,
which defines, by the monodromy theorem, a single-valued inverse of Q mapping
H+ into U . Thus Q is one-to-one in U .

Iterating (Q | U)−1 in H+ , as we may since (Q | U)−1(H+) = U ⊂ H+ ,
we see from the Denjoy–Wolff fixed point theorem (see [V, Ch. VI] or [Sa, p. 54])
that either ∂U contains a finite fixed point z0 of Q with |Q′(z0)| ≥ 1, or we have
(Q | U)−1(z) → ∞ as z → ∞ in H+ and (Q | U)−1(z)/z → c ≥ 1 as z → ∞ in
any Stolz angle in H+ . In the latter case, U contains for each ε ∈

(

0, 1
2
π
)

the
set {reiθ : r > rε, ε < θ < π − ε} for some rε > 0, so that there can be only one
such U . In the former case, f(z0) ∈ {0,∞} so that excluding finitely many U for
which f(z0) = ∞ , we may assume that f(z0) = 0. But then |Q′(z0)| < 1, which
is impossible. (If z0 is a zero of f of order m ≥ 1, then Q′(z0) = 1−m−1 ∈ [0, 1).)
We conclude that K has only finitely many unbounded components, hence only
finitely many components, as asserted.

(9) Suppose that Ψ has a unique zero α ∈ H+ , and let V0 be the unique
component of Λ with α ∈ ∂V0 . Suppose that Λ 6= V0 . To get a contradiction,
suppose that V0 is unbounded. By part (2), K has an unbounded component U0

with V0 ⊂ U0 . By assumption, Λ has a component V 6= V0 . Now ∂V0 contains
no pole of L (by Lemma 5.1(2) and the fact that α ∈ ∂V0 , α /∈ ∂V ). If V is
bounded, we get the same contradiction as before since then ImL = 0 on ∂V



Iteration, level sets, and zeros of derivatives of meromorphic functions 341

and ImL is harmonic and bounded in V . Thus V is unbounded, and we have
L(z) → a0 ∈ R as z → ∞ in V . Since L 6= ∞ on ∂V , it must be the case that
a0 = ∞ . Thus, by what we saw in the proof of part (4), L(z) → ∞ as z → ∞
in V0 . By (6), we have Q(z) → a ∈ R as z → ∞ in U0 and in particular, as
z → ∞ in V0 . Since L(z) → ∞ in V0 and Q(z) = z − 1/L(z) , we have a = ∞ .

Now Q′(z) 6= 0 and Q(z) 6= ∞ in U0 , and Q maps U0 into H+ . If any
branch of Q−1 taking a small disk in H+ into U0 cannot be analytically continued
throughout U0 , then there must be a path γ ⊂ U0 going to infinity such that
Q(z) → z1 ∈ H+ as z → ∞ along γ . This is impossible since Q(z) → ∞ as
z → ∞ in U0 . Thus the analytic continuation is possible, and since H+ is simply
connected, it follows from the monodromy theorem that Q−1 has a single-valued
branch defined in H+ . Hence Q is one-to-one in U0 . Since Q(z) → ∞ as z → ∞
in U0 , it then follows that ∂U0 cannot contain any pole of Q , that is, any zero
of L . But since V0 ⊂ U0 and all zeros of L are real, it follows that ∂V0 contains
no zero of L . Now we see from part (4), considering any unbounded component C
of C∩∂V0 , that L(z) → 0 as z → ∞ along C . This is impossible since L(z) → ∞
as z → ∞ in V0 . This contradiction shows that if Λ 6= V0 then V0 is bounded,
and the proof of part (9) is complete.

7. Number of components of K

7.1. Conformality of Q in the components of K . Let f be as in
(1), where g ∈ U2p . Suppose that f , f ′ , and f ′′ have only real zeros. If g
is a polynomial of degree at most 2n + 1, then the conclusions of Theorem 1.1
follow from [H2, Theorem 8(ii)]. Hence we assume from now on that g is either
transcendental or a polynomial of degree at least 2n+ 2.

The following general elements enter into the proof of Theorem 1.1: the num-
ber of components of K (which we already know to be finite), the conformality
of Q in each of them, the possible number (which may be infinite) and structure
of the components of K− , particularly as regards the unbounded ones (there can
be only finitely many of them), the conformality of Q in each of them apart from
a few possible exceptional situations, the degree of the polynomial ϕ , and the
existence and influence of a zero x0 of f ′ which is not a zero of f and which lies
on ∂K (we shall call x0 the special zero of f ′ if it exists). Different situations
arise depending on if one or both of τ and ω is finite. It seems to me that there
are several observations that can be made concerning these quantities in various
situations. It is not clear to me what would be the absolutely shortest way to
arrange the arguments so that one could make maximal use of the interdependen-
cies that occur. I have experimented with a number of ways without finding any
that would be absolutely short and uncomplicated. I will present the best choice
I could find, but cannot guarantee that it could not be further simplified.

Convention. There always exists a unique component U0 of K with i ∈ U0

(see (8), (9)), and from now on, we reserve the notation U0 for this component.
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Lemma 7.1. If U is a component of K then Q is one-to-one in U and maps
U conformally onto H+ .

Remark. The conclusion of Lemma 7.1 remains valid for f given by (2)
instead of (1).

Proof of Lemma 7.1. Let U be a component of K . Since Q′ = (f ′′f)/(f ′)2 6=
0 in H+ , any branch of Q−1 initially defined in a small disk in H+ , mapping the
disk conformally into U , can be analytically continued without restriction in H+

unless such continuation leads to a path going to infinity in U . This would mean
that Q has an asymptotic value α = δ+iε ∈ H+ , with Q(z) → α as z → ∞ along
the path γ ⊂ U . If there is no such asymptotic value, then, since H+ is simply
connected, it follows by the monodromy theorem that we obtain a single-valued
analytic function Q−1 in H+ , mapping H+ onto U . Then Q is one-to-one in U
and maps U conformally onto H+ . This is always the case when U is bounded
for then U cannot contain a path going to infinity. Next, if Q is not one-to-one in
U , then such a single-valued function Q−1 cannot exist in H+ , and we conclude
that then Q must have an asymptotic value α ∈ H+ and in particular U must
be unbounded.

By part (6) of Lemma 6.1, there is a ∈ R such that Q(z) → a as z → ∞
in U and hence, in particular, on γ . Since Q(z) → α ∈ H+ as z → ∞ along γ ,
we obtain a contradiction. We conclude that for every component U of K , the
function Q maps U one-to-one conformally onto H+ . This proves Lemma 7.1.

Components and Denjoy–Wolff fixed points. We are able to limit the
number of components of K .

Definition. If W is a domain in H+ , we say that W eventually contains
every Stolz angle at infinity if for every ε ∈

(

0, 1
2π

)

there exists rε > 0 such that

{reiθ : r > rε, 0 < ε < θ < π − ε} ⊂W.

Lemma 7.2. The set K has at most two components U , and Q maps each
one-to-one conformally onto H+ . If there are two such components then one of
them, namely U0 , is bounded and contains the point i , and the other one is
unbounded and eventually contains every Stolz angle at infinity.

If a component U is bounded, then the point i is the unique Denjoy–Wolff
attracting fixed point of (Q | U)−1 , and is a repelling fixed point of Q . If U
is unbounded and does not contain i , then there is a number c ≥ 1 such that
Q(z)/z → 1/c as z → ∞ in any Stolz angle at infinity. In this case, the point
∞ ∈ ∂U ∩ ∂H+ is the unique Denjoy–Wolff fixed point of (Q | U)−1 .

The function Q(z) has the same limit a ∈ R as z → ∞ in any unbounded
component U of K , and the limit is a = ∞ if there exists U 6= U0 . In particular,
if U0 is unbounded then K = U0 and Q(z) → a ∈ R as z → ∞ in U0 .
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In particular, K has at most one bounded component U , and if such a com-
ponent U exists then U = U0 .

If U is any unbounded component of K (we may or may not have U = U0 )
then C = C ∩ ∂U is unbounded and connected, and is a Jordan arc tending to
infinity at both ends. The domain U coincides with the Jordan domain D with
∂D = C and D ⊂ H+ , and hence U lies “above” C .

The set C ∩ ∂U0 always contains a pole of Q .

Remark. If f is given by (2) instead of (1), then the conclusion of Lemma 7.2
is to be replaced by the following: K has at most µ + 1 components U , and Q
maps each one-to-one conformally onto H+ , where µ is the number of distinct
zeros of Φ (equivalently, the number of zeros of Ψ) in H+ ∪R . Namely, for each
such zero z0 of Ψ there could be a component U of K containing z0 in its closure,
and in addition, there might be one unbounded component U which eventually
contains every Stolz angle at infinity.

Proof of Lemma 7.2. Let U be a component of K so that by Lemma 7.1, Q
is one-to-one in U and maps U conformally onto H+ . Let h denote the branch
of Q−1 which maps H+ one-to-one conformally onto U . Then h maps H+ into
itself so that we may apply the Denjoy–Wolff fixed point theorem to h (see [V,
p. 134] or [Sa, p. 54]). It follows that there exists a point ζ ∈ H+ with h(ζ) = ζ
(so Q(ζ) = ζ ) and |h′(ζ)| < 1 or h′(ζ) = 1, with an appropriate interpretation
if ζ = ∞ . If ζ ∈ H+ then (f/f ′)(ζ) = 0, so f(ζ) ∈ {0,∞} , which implies that
ζ = i . Then i ∈ U so that U = U0 .

Otherwise, ζ ∈ R or ζ = ∞ . If ζ ∈ R then f(ζ) = 0 and |Q′(ζ)| > 1 or
Q′(ζ) = 1. Since Q′(z) = {(f ′′f)/(f ′)2}(z) , we get a contradiction if f ′(ζ) 6= 0
for then Q′(ζ) = 0. Suppose that f ′(ζ) = 0, and let ζ be a zero of f of order
m ≥ 2. Then Q′(ζ) = 1 − (1/m) , which is also a contradiction.

Suppose that ζ = ∞ . In this case it follows from a theorem of Valiron (see
[V, Ch. VI] or [Sa, pp. 53–54]) that h′(z) has a non-tangential limit c as z → ∞
in H+ , which satisfies c ∈ R and c ≥ 1. Furthermore, h(z)/z → c as z → ∞ in
any Stolz angle {reiθ : r > 0, 0 < ε < θ < π − ε} in H+ . In particular, there can
be at most one such component U . The last statement of Lemma 7.2 concerning
Stolz angles is now immediate. The statement concerning limits of Q in each
individual unbounded component of K follows from part (6) of Lemma 6.1, and
the limit is clearly equal to infinity if U 6= U0 by what we just proved. Suppose
that both U and U0 are unbounded and have unbounded boundary components
C and C0 . We define a Jordan arc γ by taking an arc of C from a finite point in
H+ to ∞ , and arc of C0 from a finite point in H+ to ∞ , and an arc joining the
two finite end points in H+ . Applying Lemma 4.2 to the Jordan domain D with
D ⊂ H+ and ∂D = γ we see that Q(z) tends to the same limit as z → ∞ along
C and C0 . By part (6) of Lemma 6.1, Q(z) tends to this same limit as z → ∞
in U ∪U0 . In fact, this argument was already given in the proof of Lemma 6.1(4).

If U is a bounded component of K then Q | U is a conformal mapping onto



344 A. Hinkkanen

H+ as observed before the statement of Lemma 7.1. So it follows that there is at
most one such component U which, if it exists, must contain i , and hence coincide
with U0 .

Let U be an unbounded component of K . Since U is simply connected, being
conformally equivalent to H+ , the set ∂U has no bounded components. Hence
C∩∂U has at least one unbounded component C . Now C is a Jordan arc tending
to infinity at both ends. By part (6) of Lemma 6.1, Q is real and monotonic on
C , and Q tends to the same limit a ∈ R as z → ∞ along either end of C . Thus
for each x ∈ R\{a} , there is εx > 0 such that if Bx = H+∩Dx where D is a disk
centred at x with radius εx in the chordal metric, then Q takes all values in Bx

in U in a small neighbourhood of a suitable point of C . Since Q is one-to-one in
U , it follows that there cannot exist two distinct components C like this. Thus U
has only one unbounded boundary component. It follows that C∩∂U = C , which
is unbounded and connected, as claimed. Now it is obvious that the domain U
coincides with the Jordan domain D with ∂D = C and D ⊂ H+ , so that we may
say that U lies “above” C . If U 6= U0 exists and if U and U0 are both unbounded
then Q(z) → ∞ as z → ∞ in U ∪U0 . But Q is one-to-one in U0 and (as we shall
show soon) ∂U0 must contain a pole of Q , which leads to a contradiction. Hence
U0 is bounded if K 6= U0 .

Finally, we show that C ∩ ∂U0 always contains a pole of Q . If f has at
least one zero, then by Lemma 2.2(iii), we have degϕ ≥ 2 if at least one of τ, ω
is infinite, and by Lemma 2.2(ii), we have degϕ ≥ 3 if τ, ω are both finite and
g is transcendental. If f has no zeros (so that g must be transcendental by our
assumption), Lemma 2.2(i) shows that degϕ ≥ 2. Next, there is an interval I of
the form (−∞, aτ ) or (ak, ak+1) or (aω,∞) , or R if f has no zeros, such that I
contains at least 2 zeros of f ′ with due count of multiplicity. These zeros of f ′

are not zeros of f , and at least one such zero z0 of f ′ satisfies (f ′′/f)(z0) ≥ 0
so that z0 ∈ ∂K by Lemma 5.1(4). Also Q(z0) = ∞ . If K has a component
U 6= U0 then, by what we have proved above, U is unbounded, Q is one-to-one
in U , and Q(z) → ∞ as z → ∞ in U . This implies that Q 6= ∞ on C∩ ∂U , and
so z0 ∈ C ∩ ∂U0 , as required.

The case remains when g is a polynomial of degree ≥ 2n+2. Then degϕ = 2
by Lemma 2.2(ii). If there is to be no zero z0 of f ′/f with (f ′′/f)(z0) ≥ 0, then
we clearly must have x1 < aτ ≤ aω < x2 for the two zeros x1, x2 of ϕ . To consider
this, we may assume that g has leading coefficient 1. Now limx→aω+(f ′/f)(x) =
+∞ while (f ′/f)(x) ∼ (deg g − 2n)/x > 0 as x → ∞ . This shows that f ′/f , or
equivalently, ϕ , has an even number of zeros on (aω,∞) , which gives a contradic-
tion. This proves Lemma 7.2.

Lemma 7.3. Let W be a component of K− . If W is bounded then Q is
one-to-one in W and maps W conformally onto H− . If W is unbounded, let
C be an unbounded component of C ∩ ∂W . Then C is a Jordan arc which can
be written as C = C+ ∪ C− , where C+ and C− are Jordan arcs starting at the
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same point, going to infinity, and intersecting only their common finite end point.
Concerning C+ , we have either

(i) Q(z) → a+ ∈ R as z → ∞ along C+ ; or
(ii) C+ intersects exactly one of R+ and R− infinitely often at points where

f ′ = 0 6= f , and then τ = −∞ or ω = ∞ .
The same choice applies independently to C− , except that only one of C+ and

C− can intersect R+ infinitely often, and only one of C+ and C− can intersect
R− infinitely often. If both limits a+ and a− exist, then a+ = a− . In this case,
if D is the Jordan domain with C ∩ ∂D = C and D ⊂ H+ then W ⊂ D and
Q(z) → a+ as z → ∞ in D .

In particular, if C does not intersect R outside a compact subset of R then
the limits a+ and a− exist and are equal.

Consequently, there can exist at most 2 components W which have a bound-
ary component C for which Q does not tend to a limit along C+ or C− .

Remark. The conclusion of Lemma 7.3 remains valid for f given by (2) for
a general Φ.

Proof of Lemma 7.3. The proof is similar to that of Lemmas 6.1, 7.1, and 7.2,
and is therefore omitted.

Lemma 7.4. Suppose that U is a component of K with i /∈ U , hence
unbounded. Then C∩ ∂U cannot contain any pole of Q . Thus any pole of Q on
C ∩ ∂K must lie on ∂U0 . There can be only one such pole, say x0 . If x0 is not
a simple pole of Q , then there are at least two sectors emanating from x0 of the
kind considered in part (6) of Lemma 5.1. Each sector which is contained in K , is
contained in a different component of K . Hence the total number of such sectors
(some of which are contained in K− ) can be at most 3 . Thus x0 is a pole of Q of
order m , and x0 is a zero of f ′ of order m , where 1 ≤ m ≤ 3 . If x0 is a simple
zero of f ′ then (f ′′/f)(x0) > 0 . If x0 is a triple zero of f ′ then exactly one of
the three sectors in H+ emanating from x0 lies in K , and (f (4)/f)(x0) < 0 .

Furthermore, x0 lies on the boundary of exactly one component V of Λ , and
if C is the component of ∂V containing x0 , then C passes through x0 exactly
once. Also x0 is an extraordinary zero of f ′ , and ϕ(x0) = 0 .

Convention. From now on, we reserve the notation x0 for this (extraordi-
nary) zero of f ′ , which we shall call the special zero of f ′ .

Proof of Lemma 7.4. Suppose that U is a component of K with i /∈ U , hence
unbounded. Since Q is one-to-one in U and takes values with large modulus in
Stolz angles at infinity, it follows that ∂U cannot contain any pole of Q . Thus
any pole of Q on ∂K , if any, must lie on ∂U0 . There can be only one such pole,
say x0 , since Q is one-to-one in U0 . If x0 is not a simple pole of Q , then there
are at least two sectors emanating from x0 of the kind considered in part (6)
of Lemma 5.1. Each sector which is contained in K , is contained in a different
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component of K since Q is one-to-one in each such component so that when z
traces the boundary of the component, it can hit a pole of Q only once. If at
least 2 sectors are contained in K , then x0 must lie on the boundary of at least
two distinct components of K , which is impossible as only U0 is available for this
purpose. This shows that exactly one of the sectors in H+ emanating from x0

and discussed in Lemma 5.1(6), lies in K . Hence the total number of such sectors
can be at most 3. Thus x0 is a pole of Q of order m , and x0 is a zero of f ′ of
order m , where 1 ≤ m ≤ 3. If x0 is a simple zero of f ′ then (f ′′/f)(x0) > 0 by
part (4) of Lemma 5.1. If x0 is a triple zero of f ′ then exactly one of the three
sectors in H+ emanating from x0 lies in K , which implies, considering part (6)
of Lemma 5.1 with l = 1, that (f (4)/f)(x0) < 0. The statements concerning Λ
now follow from Lemma 5.1(1)(i) and (7).

Since (f ′′/f)(x0) ≥ 0, it follows from Lemma 5.1(1)(i) that x0 is an extraor-
dinary zero of f ′ , which by definition means that ϕ(x0) = 0. This completes the
proof of Lemma 7.4.

Convention. From now on, we denote by V0 the unique component of Λ
with i ∈ ∂V0 . Note that V0 ⊂ U0 by the definitions and by part (2) of Lemma 6.1.

Lemma 7.5. (i) We have Λ = V0 .
(ii) The special zero x0 always exists, and V0 is always bounded. Also, ∂V0

is a Jordan curve that contains a zero of L , which must be the special zero x0 .
Furthermore, L maps V0 one-to-one conformally onto H+ , and Q maps U0 one-
to-one conformally onto H+ . Also x0 ∈ ∂U0 .

Proof of Lemma 7.5. (i) Suppose that V is a component of Λ other than V0 .
Now ∂V contains no pole of L so that V is unbounded and L(z) → ∞ as z → ∞
along any unbounded component C of ∂V . Thus L = 0 at some point z0 ∈ C .
So f ′ = 0 6= f at z0 and hence z0 ∈ R . By part (1)(i) of Lemma 5.1, we then have
(f ′′/f)(z0) ≥ 0, so that by Lemma 7.4, we must have z0 = x0 . By Lemma 7.4, x0

is a zero of f ′ of order m ≤ 3, and if m = 3, then (f (4)/f)(x0) < 0. Thus x0 lies
on the boundary of at most one component of Λ. This implies that there can exist
at most one such C , and at most one such V . Now V ⊂ U for some component
U of K , and U is unbounded since V is. Thus x0 ∈ ∂U so that Q has a pole
on ∂U . By Lemma 6.1(6), we have Q(z) → a ∈ R as z → ∞ in U . In particular,
Q(z) → a as z → ∞ along C . Now L → ∞ and so Q = z − (1/L) → ∞ as
z → ∞ along C . Thus a = ∞ . So Q takes values in H+ close to infinity twice
in U , close to x0 and close to infinity. Since Q | U is one-to-one by Lemma 7.2,
we get a contradiction. Thus Λ = V0 . This proves (i).

(ii) Suppose that V0 is bounded. It follows that L maps V0 onto H+ (this
does not imply that L must be one-to-one in V0 ). Hence ∂V0 contains at least
one zero z0 of L . Thus f ′(z0) = 0 6= f(z0) . Hence z0 is real. Now part (1)(i) of
Lemma 5.1 implies that (f ′′/f)(z0) ≥ 0, and so, by what has been proved before,
we have z0 = x0 , the special zero of f ′ . In particular, it follows that the special
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zero x0 exists. The function L maps V0 onto H+ a certain finite number of times,
say m times, where m ≥ 1. Since V0 is a bounded component of Λ, the function
L maps each component of ∂V0 onto R. Now L(z) must trace R also a certain
number µ of times as z traces any component of ∂V0 ; the sum of all such µ is m .
Since L has only one zero on ∂V0 , it follows that m = 1 and L is one-to-one in
V0 and on ∂V0 , and ∂V0 is connected. If ∂V0 has a point of self-intersection, then
L is not one-to-one on ∂V0 . Thus ∂V0 is a Jordan curve. Since V0 ⊂ U0 , we have
x0 ∈ ∂U0 .

The special zero x0 always exists (under our standing assumption that g is
transcendental or g is a polynomial with deg g ≥ 2n + 2) by Lemma 7.2. More
precisely, any finite pole of Q on ∂K must coincide with x0 . If U0 is bounded
then Q has a pole on ∂U0 . If U0 is unbounded then Q(z) → a ∈ R as z → ∞ in
U0 , and since Q maps U0 conformally onto H+ , there must then be a finite pole
of Q on ∂U0 . This completes the proof that x0 always exists.

If V0 is unbounded then U0 is unbounded since V0 ⊂ U0 .

Suppose that V0 is unbounded, and let C be an unbounded component of
C ∩ ∂V0 . We first claim that ∂V0 = C . Suppose that ∂V0 also has a bounded
component C1 . It follows from the structure of analytic curves (see [MO]) that C1

is the union of finitely many Jordan curves, any two of which can only intersect at
no more than one point (in particular, C1 might be a Jordan curve). Furthermore,
then L(C1) = R so that C1 contains a pole of L , that is, the point i or a zero
of f . But the zeros of f are bounded away from Λ by part (2) of Lemma 5.1, so
that i ∈ C1 . Now C1 must also contain a zero z0 of L . Thus f ′(z0) = 0 6= f(z0) .
Hence z0 is real. Now part (1)(i) of Lemma 5.1 implies that (f ′′/f)(z0) ≥ 0, and
so, by what has been proved before, we have z0 = x0 , the special zero of f ′ . Next,
L(z) must trace R completely a certain integral number of times as z traces C1

once. Since by the last statement of Lemma 7.4, L has only one zero (namely, x0 )
on C1 , it follows that L is one-to-one on C1 . This now shows that C1 is a
Jordan curve (for otherwise, when z traces C1 once, at least one point would
be encountered at least twice, so that L would take some value at least twice).
Let D1 be the Jordan domain bounded by C1 . Since V0 is unbounded, we have
V0 ∩D1 = ∅ . Since C1 intersects R , we obtain a contradiction, since a bounded
boundary component of a domain can be enclosed by a bounded Jordan curve
that lies entirely inside the domain. That is impossible here since C1 ∩R 6= ∅ and
V0 ⊂ H+ . Thus ∂V0 cannot have any bounded components.

Thus every component of C ∩ ∂V0 is unbounded. If there are (at least) two
such components, say the above C and another C2 , then we may choose C2 so
that exactly one of C and C2 contains the point i . But L(z) must tend to the
same limit a ∈ R as z → ∞ along C or C2 . If i ∈ C then a 6= ∞ (considering
the limit on C ), and then, since i /∈ C2 , we have a = ∞ (considering the limit
on C2 ). The same contradiction arises if i ∈ C2 . Hence ∂V0 = C is connected.
This also shows that if D is the Jordan domain with ∂D = C and D ⊂ H+
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then V0 ⊂ D , and V0 lies “above” C . Indeed we now see that D = V0 since
C ∩ ∂V0 = C .

Further, L(z) → b ∈ R as z → ∞ along C . Suppose that b 6= 0. Since
V0 ⊂ U0 , then in view of part (6) of Lemma 6.1, Q(z) = z −

(

1/L(z)
)

→ ∞ as

z → ∞ in U0 and in particular on C0 = C ∩ ∂U0 . Then, since Q is one-to-one
in U0 , it follows that Q has no pole on C0 , and since poles of Q are at the zeros
of L , we deduce that L has no zero on C0 and hence not in V0 . But then b = 0
since {b} ⊂ R \ L(C) , 0 ∈ R\ L(C) , and R\ L(C) contains at most one point.
This contradicts our assumption that b 6= 0. Thus in any case b = 0. If the
special zero x0 of f ′ exists then L(x0) = 0 and x0 ∈ ∂Λ so that x0 ∈ C . This
is impossible (since {b} = R\L(C) , due to the fact that L can have at most one
pole (the point i) on C so that L is one-to-one on C ), and so x0 does not exist.
This is a contradiction, and it follows that V0 must be bounded. This proves (ii),
and the proof of Lemma 7.5 is complete.

8. The proof that f has only finitely many zeros

8.1. Finding a special component of K− . Let f be as in (1), where
g ∈ U2p . If g is a polynomial, suppose that deg g ≥ 2n + 2. Suppose that f ,
f ′ , and f ′′ have only real zeros. Our next major goal is to prove that f has only
finitely many zeros. To do this, we need to present a number of lemmas on the
dynamical properties of Q , which will repeatedly be used also later on. However,
one case is easy to handle.

Lemma 8.1. If K = U0 then f has only finitely many zeros.

Proof of Lemma 8.1. Suppose that K = U0 and that f has infinitely many
zeros. If f(x1) = 0 then Q(x1) = x1 , and by Lemma 5.1(5), we have x1 ∈ ∂K =
∂U0 . We may choose x1 to be any point in a sequence of zeros of f tending to ∞
or −∞ . This shows that U0 is unbounded. By Lemma 7.2, we have Q(z) → a ∈ R

as z → ∞ in U0 . But x1 ∈ U0 and Q(x1) = x1 → ±∞ , which is a contradiction.
This proves Lemma 8.1.

For the rest of this section, we assume that K has exactly 2 components,
U and U0 . By Lemma 7.2, U0 is bounded and U is unbounded. We define
x1 = min{x : x ∈ R∩∂U0} and x2 = max{x : x ∈ R∩∂U0} . There is an open arc
γ of H+ ∩∂U0 joining x1 to x2 . For we can start γ by moving along ∂U0 to H+

from x1 so that U0 stays on the right hand side of the oriented arc γ close to x1 .
When γ hits R again, this must happen at x2 (even if x1 = x2 , and even if the
bounded component Y of H+\γ were to contain one or more components of K− ).
Since Q′ 6= 0 in H+ , there are no points of ∂U0∩∂U in H+ . Since γ ⊂ H+ , there
is a single, unique component W of K− such that γ ⊂ ∂W . If Y is as above
then Y ∩ U = ∅ since U is unbounded. Thus U ⊂ H+ \ Y and W ⊂ H+ \ Y .
Each point of ∂W \ (R ∪ Y ) must lie on ∂U , and there is a continuum of such
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points. Thus W separates U from U0 in H+ . We reserve the notation W for
this particular component for the rest of this section.

As we seek to prove that f has only finitely many zeros, we may assume that
f has infinitely many zeros and derive a contradiction. So suppose that f has
infinitely many zeros. Suppose that they cluster to −∞ . Then f ′ and hence f ′′

has infinitely many zeros, clustering to −∞ , such that the zeros of f ′′ are not
zeros of either f or f ′ . Thus Q′ has infinitely many zeros, clustering to −∞ . At
the zeros of Q′ , a component of K meets a component of K− . Apart from finitely
many zeros, the component of K involved must be U (since U0 is bounded) so
that U is unbounded. Note that i /∈ U . By Lemma 7.2, U contains eventually
every Stolz angle at infinity. Also U must contain half open arcs going from any
preassigned point of U to all but finitely many (and hence to infinitely many)
zeros of Q′ . This shows that Re z must be bounded below for z ∈ W . Similarly,
if f has infinitely many zeros, clustering to ∞ , then Re z is bounded above for
z ∈ W .

Suppose that ω < +∞ so that the zeros of f are bounded above. If aω ∈ ∂U0 ,
it is conceivable that Re z might be unbounded above for z ∈ W . But suppose
that aω > max{x : x ∈ R ∩ ∂U0} so that aω ∈ ∂U . Then U contains a half open
arc γ2 going from a point z′ of U to aω . Let γ3 be a half open arc in U from
z′ to a zero x1 of f ′′ with x1 < min{x : x ∈ R ∩ ∂U0} . Set γ4 = γ2 ∪ γ3 . Then
H+ \ γ4 has a bounded component ∆ containing U0 \ R . We have W ⊂ ∆ or
W ⊂ H+ \ ∆. Since U0 \ R and ∂W ∩ ∂U0 6= ∅ , we have W ⊂ ∆. Hence W is
bounded.

Thus, when τ = −∞ and ω < +∞ , the domain W can be unbounded at
most if aω ∈ ∂U0 . If W is unbounded, we define x2 = max{x : x ∈ R ∩ ∂U0} ,
and then (x2,∞) ⊂ ∂W . For otherwise, we have x ∈ ∂U for some x > x2 , and
using joining x to z′ ∈ U by an arc in U , we find, as above, that W is bounded.

Similarly if τ > −∞ and ω = +∞ , the domain W can be unbounded at
most if aτ ∈ ∂U0 . It is convenient to have a formal statement that summarizes
what we have just proved.

Lemma 8.2. Suppose that K = U0 ∪ U and that f has infinitely many
zeros. Then there is a unique component W of K− such that ∂W intersects both
H+ ∩ ∂U and H+ ∩ ∂U0 . If W is bounded then W is a Jordan domain. If W is
unbounded, then C∩ ∂W is connected and is a Jordan arc, and furthermore, one
of the following must hold:

(i) τ = −∞ , ω < +∞ , and aω ∈ ∂U0 . Even then, {Re z : z ∈ W} is
bounded below. We have (x2,∞) ⊂ ∂W for x2 = max{x : x ∈ R ∩ ∂U0} .

(ii) τ > −∞ , ω = +∞ , and aτ ∈ ∂U0 . Even then, {Re z : z ∈ W} is
bounded above. We have (−∞, x3) ⊂ ∂W for x3 = min{x : x ∈ R ∩ ∂U0} .

The function Q maps W one-to-one conformally onto H− .

Proof of Lemma 8.2. It is clear that if W is bounded then W is a Jordan
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domain. If W is unbounded, then it is seen that C ∩ ∂W is connected and is a
Jordan arc since K has no components other than U and U0 .

If W is bounded, it follows from Lemma 7.3 that Q maps W one-to-one
conformally onto H− . Suppose that W is unbounded. Now Q′ has no zeros
in W . If we can continue analytically without restriction in H− any branch of
(Q | W )−1 , then Q has a single-valued inverse in H− by the monodromy theorem,
and so Q is one-to-one in W and maps W conformally onto H− . If not, then there
is a path γ ⊂ W going to infinity such that Q(z) → α ∈ H− as z → ∞ along γ .
But by what has been proved already in this lemma, f ′/f has only finitely many
zeros and so Q has only finitely many poles on ∂W , so that Q(z) → a ∈ R as
z → ∞ in W (see Lemma 7.3). Thus there is no such path γ .

This completes the proof of Lemma 8.2.

Thus we have the situation where U0 is bounded and K− has a bounded
component W as above. If W is bounded then R ∩ ∂W has at least two (and
hence exactly two) components, say [a, b] and [c, d] , where a < b < x0 < c < d and
such that ∂U0 intersects ∂W (necessarily in a closed Jordan arc which lies in H+

apart from its end points). This follows, since K has the bounded component U0

and the unbounded component U and no other components, and W necessarily
separates U from U0 in H+ . If W is unbounded and τ = −∞ , ω < +∞ , then
R∩∂W = [a, b]∪[x2,∞) , where x2 = max{x : x ∈ R∩∂U0} . In this case we write
c = x2 , d = ∞ , so that R∩∂W = [a, b]∪ [c, d) . If W is unbounded and τ > −∞ ,
ω = +∞ , then R∩∂W = (−∞, x3]∪ [c, d] , where x3 = min{x : x ∈ R∩∂U0} . In
this case we write a = −∞ , b = x3 , so that R∩∂W = (a, b]∪ [c, d] . At this point,
we could conceivably have a = b or c = d . This could be the case only if a (or c)
is a zero of Q′ of order at least 2. Note that since K = U ∪U0 and W separates
U from U0 in H+ , it follows that f can have no zeros in (a, b)∪ (c, d) , since any
such zero t would satisfy Q′(t) ≥ 0 and would place t on ∂K . Further, since
a, d ∈ ∂U whenever they are finite, and since Q has no poles at any finite point
of ∂U by Lemma 7.4, it follows that (f ′/f)(a) 6= 0 if a > −∞ and (f ′/f)(d) 6= 0
if d < +∞ .

8.2. Iteration theory. Next we consider some iteration theoretic properties
of Q . If F is meromorphic in the plane, then the set of normality N(F ) consists
of those z ∈ C that have a neighbourhood T such that all the iterates Fm of
F are defined in T and form a normal family there. The Julia set is defined
by J(F ) = C \ N(F ) , and is a non-empty perfect set if F is not a rational
function of degree at most 1. If T is a component of N(F ) then Fm(T ) ⊂ Tm

for some component Tm of Fm . If all the Tm are distinct then T is called a
wandering domain; a rational function has no wandering domains by a theorem
of Sullivan. Otherwise, there are minimal k, l ≥ 1 such that Tk = Tk+l , and then
Tk is called a periodic domain for F and invariant domain for F l . Any invariant
domain T is one of six types: superattracting, attracting, parabolic, a Siegel disk,
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a Herman ring, or a Baker domain. In the first three cases there is a fixed point
z0 = F (z0) of F in T such that limm→∞ Fm(z) = z0 locally uniformly for z ∈ T .
We have F ′(z0) = 0, 0 < |F ′(z0)| < 1, and F ′(z0) = 1, in the superattracting,
attracting, and parabolic case, respectively. When T is a Baker domain, we have
limm→∞ Fm(z) = ∞ ∈ ∂T locally uniformly for z ∈ T . For further details, we
refer to [B].

First note that all the finite fixed points of Q occur at the zeros and poles of
f so that they consist of the points ±i and all the zeros of f , if any, all the zeros of
f being real. The fixed points ±i are repelling and all the other finite fixed points
are attracting or superattracting. Namely, at a zero z0 of f of order m ≥ 1, we
have Q′(z0) = 1 −m−1 ∈ [0, 1). If m = 1 so that f(z0) = 0 6= f ′(z0) then Q has
a superattracting fixed point at z0 , and Q′ = (ff ′′)/(f ′)2 has a simple zero at z0
unless also f ′′(z0) = 0.

We note that Q is not a rational function of degree at most 1. Since f/f ′

does not vanish identically, Q is not the identity mapping. Since Q fixes each of
±i , it cannot be constant. If Q is a Möbius transformation, then f ′/f is rational.
If (f ′/f)(∞) 6= 0 then Q(∞) = ∞ so that Q fixes three points and is the identity,
a contradiction. Thus (f ′/f)(∞) = 0. Hence f is rational. Now f cannot have
any finite zeros as such a zero would give rise to a third fixed point of Q . Hence
f is a constant multiple of (z2 + 1)−n , and so Q(z) = z − (z2 + 1)/(2nz) =
z
(

1 − (2n)−1
)

− 1/(2nz) , which is not a Möbius transformation. This completes
the proof that Q is transcendental or Q is rational of degree at least 2.

All critical points of Q (zeros of Q′ and multiple poles of Q) are real, and
their images under the iterates of Q are real. If D is a Siegel disk or a Herman ring
for some iterate of Q , then the images of the critical points of Q must cluster to
each boundary point of D , as is classically known. Thus ∂D ⊂ R, and D contains
H+ or H− (or both). This is impossible since the points ±i are repelling fixed
points of Q and hence lie in J(Q) . Thus Q has no Siegel disk or Herman ring
cycles.

Definition. Suppose that f(t) = 0 so that t ∈ R . We write D = D(t) for
the component of the set of normality N(Q) ⊂ C containing t .

Thus limj→∞Qj(z) = t , locally uniformly for z ∈ D(t) , where Qj denotes
the jth iterate of Q .

Lemma 8.3. If f(t) = 0 and D = D(t) , then the domain D is symmetric
with respect to the real axis. Let J be the component of D ∩ R containing t .
Then t is the only zero of f on R∩ J̄ . If D is simply connected, then J = D∩R .

If J is bounded, then J = (x1, x2) with −∞ < x1 < t < x2 < ∞ and
{x1, x2} ⊂ J(Q) . We have Q(J) = J , and Q interchanges x1 and x2 . Further,
Q is strictly decreasing on [x1, x1 + ε] and on [x2 − ε, x2] , for some ε > 0 .

If J is unbounded, then either J = (−∞, x2) , where x2 is a finite pole of Q ,
or J = (x1,+∞) , where x1 is a finite pole of Q . These finite poles of Q are zeros
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of f ′/f but cannot be equal to the special zero x0 of f ′ . Also, we cannot have
J = R .

Suppose that there are points x3, x4 ∈ R with x3 < t < x4 such that
f ′(xj) = 0 for j = 3, 4 , and such that f has no zeros on (x3, t) ∪ (t, x4) . Then
x3 < x1 < t < x2 < x4 .

Proof of Lemma 8.3. Suppose that z ∈ H+ ∩ D . Then Qj(z) ∈ D for all
j ≥ 1 and limj→∞Qj(z) = t ∈ R . Recall that Q is real so that Q(z) = Q(z)

for all z ∈ C . Thus Qj(z) = Qj(z) ∈ D for all large j . Join z to Q(z) by an

arc γ ⊂ D . Then Qj(γ) joins Qj(z) to Qj+1(z) in D , and Qj(γ) joins Qj(z) to

Qj+1(z) . Now Qj(γ) ⊂ D for all large j so that Qj(γ) ⊂ N(Q) for all j . Since

the arcs Qj(γ) form a continuous path from z to t , we deduce that they all lie in
D so that z ∈ D . Thus D is symmetric with respect to R , as claimed.

It is obvious that there is an interval J = (x1, x2) ⊂ D ∩ R with x1, x2 ∈
R∪{−∞,∞} , x1 < t < x2 and {x1, x2}∩R ⊂ J(Q) , this J being the component
of D ∩ R containing t . Since J ⊂ D and Q(D) ⊂ D , we have Q(J) ⊂ D . Since
Q is real, we have Q(J) ⊂ R∩D , and since Q(t) = t ∈ J and Q(J) is an interval,
we have Q(J) ⊂ J .

Any zero of f other than t belongs to a component of N(Q) other than D ,
and hence cannot lie in J .

Since D is symmetric with respect to R , it follows that if J 6= D∩R then D
contains a Jordan curve enclosing some point in J(Q) ∩R , and so D is multiply
connected. Thus if D is simply connected, then J = D ∩ R .

Suppose that J is bounded. Since for j = 1, 2, we have Q(xj) ∈ J(Q) ,
we have {Q(x1), Q(x2)} ⊂ {x1, x2} . If Q(x1) = x1 then f(x1) = 0. But then
x1 ∈ N(Q) , so x1 /∈ J(Q) , which is a contradiction. Thus Q(x1) 6= x1 , and
similarly Q(x2) 6= x2 . Hence Q interchanges x1 and x2 . Since Q(J) is an interval
and {Q(x1), Q(x2)} = {x1, x2} , we have J ⊂ Q(J) . Since also Q(J) ⊂ J , as we
have seen above, we have Q(J) = J . Since Q(J) = J and Q interchanges x1 and
x2 , it is clear that Q is strictly decreasing on [x1, x1 + ε] and on [x2 − ε, x2] , for
some ε > 0.

Suppose that x1 = −∞ . Then f has no zeros smaller than t since each
zero of f belongs to a distinct component of N(Q) . Also Q has no fixed points
on (−∞, t) .

Further, Q has no poles on (−∞, t) since any such pole would lie in D and
hence in N(Q) . This would make sense only if Q is rational as it would require
that ∞ ∈ N(Q) when N(Q) is viewed as a subset of C. But then ∞ is a parabolic
fixed point of Q and hence lies in J(Q) unless (f ′/f)(∞) = 0. Then f is rational.
If (f ′/f)(z) = O(z−2) as z → ∞ then ∞ is a superattracting fixed point of Q
and so belongs to a component of N(Q) other than D . If (f ′/f)(z) ∼ A/z where
A ∈ R \ {0} as z → ∞ then Q(z) ∼ (1 − A−1)z if A 6= 1, and then either
∞ ∈ J(Q) or ∞ belongs to a component of N(Q) other than D . If A = 1 then
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Q(∞) is finite while f = P/(z2+1)n where P is a real polynomial of degree 2n+1.
Since we have excluded this situation by our standing assumptions, we may ignore
it. We conclude that Q has no poles on (−∞, t) .

It follows that either Q(x) > x for all x ∈ (−∞, t) , or Q(x) < x for all
x ∈ (−∞, t) . Since Qj(x) → t as j → ∞ , for all x ∈ (−∞, t) , we must have
Q(x) > x for all x ∈ (−∞, t) . If now x2 is finite, then since Qj(x) → t as
j → ∞ , for all x ∈ (t, x2) , we have Q(x) < x for all x ∈ (t, x2) . Now x2 ∈ J(Q)
so that Q(x2) ∈ J(Q) and thus Q(x2) ≥ x2 (since (−∞, x2) ⊂ D ⊂ N(Q)) or
Q(x2) = ∞ . But Q(x) < x for all x ∈ (t, x2) , so that if Q(x2) is finite then
Q(x2) = x2 , and so f(x2) = 0. But then x2 ∈ N(Q) and indeed x2 lies in
a component of N(Q) other than D = D(t) (namely, x2 ∈ D(x2)). This is a
contradiction, and it follows that Q(x2) = ∞ . Since Q(x) < x for all x ∈ (t, x2) ,
we have Q(x) → −∞ as x→ x2− . Thus x2 cannot be the special zero of f ′ .

The case when J = (x1,+∞) for some finite x1 is dealt with in the same
way.

Suppose that x1 = −∞ and x2 = ∞ . Thus R ⊂ D , and then Q(x) > x
on (−∞, t) and Q(x) < x on (t,∞) . Now t is the only zero of f (even though
the multiplicity of t as a zero of f is not known). Also f ′ cannot have any zeros
other than t since they would be finite (real) poles of Q and hence in J(Q) .
Thus g(z) = (z − t)deP (z) for some positive integer d and real polynomial P2 . A
calculation shows that f ′ must have at least one zero other than t , which gives a
contradiction. It follows that at least one of x1 and x2 is always finite.

Suppose that there are points x3, x4 ∈ R with x3 < t < x4 such that
f ′(xj) = 0 6= f(xj) for j = 3, 4, and such that f has no zeros on (x3, t) ∪ (t, x4) .
Note that Q(xj) = ∞ for j = 3, 4. Then Q(x3) = ∞ implies that x3 ∈ J(Q) so
that x3 /∈ D . Thus x3 ≤ x1 . Since Q(x1) = x2 6= ∞ , we have x3 < x1 . In the
same way we see that x2 < x4 . Thus x3 < x1 < t < x2 < x4 .

This completes the proof of Lemma 8.3.

Next we consider the question of whether D(t) is simply connected. Recall
that a is a repelling fixed point of F if F (a) = a and |F ′(a)| > 1, and a parabolic
fixed point of F if F (a) = a and F ′(a) = 1. The next lemma, which is based on
the results and ideas of Shishikura and of Przytycki, is remarkable in that it says
something about the location of repelling or parabolic fixed points of a function
rather than the fixed points of some iterate of the function.

Lemma 8.4. Suppose that f(t) = 0 and that D = D(t) is multiply con-
nected. Then there is a Jordan curve γ ⊂ D ⊂ C that encloses a repelling or
parabolic fixed point of Q . Thus γ encloses i or −i or both. The complex con-
jugate curve γ is also a subset of D and encloses −i or i or both, respectively.
Both i and −i are boundary points of D .

Proof of Lemma 8.4. Suppose that D is multiply connected. We can deduce
in the same way as in Shishikura’s paper [Sh] that there is a Jordan curve γ ⊂
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D ⊂ C that encloses a repelling or parabolic fixed point of Q . Shishikura’s main
conclusions are formulated for rational functions, but the main lemma to be used
in this case (when considering the attracting or superattracting domain D ), [Sh,
Theorem 2.1], only makes local assumptions and is equally valid for meromorphic
functions such as the function Q here. (The difference is that if Q is not rational,
we are not able to conclude that Q has a repelling or parabolic fixed point also in
the unbounded component of C \D . If Q is rational, we may conclude that such
a fixed point exists, and it will then necessarily be the point at infinity.) Since
the only non-attracting finite fixed points of Q are ±i , we see that γ encloses i
or −i . The statements made about γ are clear since D is symmetric with respect
to R , by Lemma 8.3.

It now suffices to prove that one of ±i lies on ∂D , for then so does the other
one, by symmetry. We may argue as in a paper of Przytycki [Pr, Proof of Theo-
rem A, p. 230], and conclude that there exist two points on distinct components
of ∂D , each of which is fixed by Q provided that Q is defined at that point (that
is, provided that the point is finite or that Q is rational). At least one point must
be finite so that it is i or −i . This argument gives the extra information that if
D is bounded then i and −i lie on distinct components of ∂D . This completes
the proof of Lemma 8.4.

Lemmas 8.3 and 8.4 are valid regardless of any assumption concerning the
existence of W . For Lemmas 8.5 and 8.6 below, we assume that there is a com-
ponent W of K− separating the components U and U0 of K , as explained in
the last paragraph of subsection 8.1. Thus it makes no difference for these two
lemmas whether or not f has infinitely many zeros, as long as such a component
W exists. Thus Lemmas 8.5 and 8.6 can be applied later also when f has only
finitely many zeros.

Lemma 8.5. At most one component D(t) , where f(t) = 0 , is multiply
connected, while all the others are simply connected. In any case, every component
D(t) contains the points ±i on its boundary. Any simply connected component
D(t) is bounded.

Proof of Lemma 8.5. Suppose that there are two multiply connected com-
ponents of the form D(t) , say D1 and D2 . Then by Lemma 8.4, we have
±i ∈ ∂D1∩∂D2 , and for j = 1, 2, the domain Dj contains a Jordan curve γj that
encloses the point i . Since D1 ∩D2 = ∅ and i ∈ ∂D2 , the domain D2 must lie in
the interior of γ1 (that is, in the bounded component of the complement of γ1 ).
Thus γ2 lies in the interior of γ1 . Similarly, γ1 lies in the interior of γ2 . This is
impossible, and so there is at most one multiply connected component D(t) .

In view of Lemma 8.4, it remains to be proved that if D = D(t) is simply
connected then at least one of i and −i (and hence both) lie on ∂D . Again the
argument of Przytycki [Pr] provides a point on ∂D which is fixed by Q if the
point is finite. Thus ±i ∈ ∂D if D is bounded.
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To get a contradiction, suppose now that D = D(t) is simply connected and
unbounded. By Lemma 8.3, we have D∩R = (v1, v2) . If −∞ < v1 < t < v2 <∞
then Q interchanges v1 and v2 .

Suppose first that t is neither the largest nor the smallest zero of f (this is
certainly the case if f has no largest or smallest zero), and choose the nearest
zeros of f to t , say t1 and t2 , and zeros u1 and u2 of f ′ , so labelled that
t1 < u1 < t < u2 < t2 . We may choose u1 and u2 so that f ′ has no zeros on
(u1, t) ∪ (t, u2) . In this case v1 and v2 are both finite.

By Lemma 8.3, we have u1 < v1 < t < v2 < u2 . Suppose that Q′(t) = 0,
which is true if, and only if, t is a simple zero of f . Then there is a component W ′

of K− such that for some small ε > 0, we have (t−ε, t) ⊂ ∂W ′ or (t, t+ε) ⊂ ∂W ′ .
If W ′ is unbounded then either W ′ = W and W is unbounded, or at least
one of τ and ω is finite and ∂W ′ contains (−∞, t] or [t,∞) . This is deduced
by considering the fact that K = U0 ∪ U and W separates U from U0 . But
then f cannot have any zeros on (−∞, t] or [t,∞) , as the case may be, which
contradicts our assumption that t is neither the largest nor the smallest zero of f .
(For if (−∞, t] ⊂ ∂W ′ , f(s) = 0, and s < t , then f ′(s) = 0 6= Q′(s) , and so
s ∈ ∂K \ ∂K− by Lemma 5.1(5), which is a contradiction.) Thus W ′ is bounded.

Without loss of generality, suppose that (t − ε, t) ⊂ ∂W ′ if W ′ 6= W . Note
that then v1 ∈ ∂W ′ . Now ∂D must leave W ′ since W ′ is bounded while D
is unbounded. Thus there is a connected subset Γ of ∂D in H+ joining v1 to
a point v3 ∈ ∂W ′ ∩ ∂D ∩ H+ , such that v3 has a neighbourhood U ′ such that
U ′∩∂D intersects both W ′ and K . (The set Γ∪{v1, v3} is a continuum but need
not be an arc.) Thus there is a sequence of points zk in D tending to v3 with
Q(zk) ∈ R . Note that Q(v3) ∈ R since v3 ∈ ∂W ′ and since Q(v3) is finite (since
v3 ∈ H+ ). We have Q(∂D ∩ C) ⊂ ∂D , and so Q(Γ) is a connected set that lies
in H− (since Q(W ′) ⊂ H− ) and joins v2 = Q(v1) to a point Q(v3) ∈ ∂(D ∩ R)
(since Q(zk) ∈ D ∩ R). Thus Q(v3) is equal to v1 or v2 . If Q(v3) = v2 , then,
roughly speaking, even though Γ may be a complicated continuum and not an arc,
as z traces Γ from v1 to v3 , if Q(z) traces ∂D∩H− from v2 to itself (remaining
finite since Q has no poles in H+ ), it follows that there must be a zero of Q′

on Γ ⊂ H+ . But this is impossible. Hence Q(v3) = v1 . But then it must be
the case that Q(z) traces all of ∂D ∩ H− from v2 to v1 , and we conclude that
∂D∩H− is bounded. By symmetry, ∂D∩H+ is bounded, and so D is bounded, as
required. At the beginning of this paragraph we said that v1 ∈ ∂W ′ if W ′ 6= W .
If W ′ = W and v1 /∈ ∂W ′ then t > c and v1 ∈ (b, c) . If v1 ∈ ∂W ′′ for some
component W ′′ of K− , we can argue as above. If v1 ∈ ∂U0 then Q is strictly
increasing on (v1 − ε, v1 + ε) for some ε > 0, which contradicts Lemma 8.3. Thus
the argument used in this paragraph works whether W ′ = W or W ′ 6= W .

If Q′(t) 6= 0 then Q′(t) > 0 so that t has a neighbourhood whose intersection
with H+ is contained in K , and hence is contained in U0 or in U . To be able
to argue as above, when Q′(t) = 0, it suffices to show that v1 or v2 lies on the
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boundary of a bounded component W ′ of K− and does not lie on ∂K . Then we
can find a set Γ as above. Suppose that neither v1 not v2 has this property, for
some component W ′ of K− , whether bounded or unbounded. Since there is no
pole of Q , hence no zero of f ′/f , on ∂D , and since each zero of f ′/f , other than
the special zero x0 , lies on ∂K− \∂K , this means that [v1, v2] ⊂ ∂U0 or [v1, v2] ⊂
∂U according as t ∈ ∂U0 or t ∈ ∂U . But then Q is strictly increasing on [v1, v2] ,
so that Q cannot interchange v1 and v2 , which contradicts Lemma 8.3. It follows
that, in fact, both v1 and v2 must lie on ∂K− , corresponding to components W1

and W2 of K− , say (since Q([v1, v2]) = [v1, v2] and Q interchanges v1 and v2 ).
We shall now see that at least one of W1 and W2 must be bounded.

For if t ∈ ∂U0 , move from t along R in the direction of the special zero x0

of f ′ , which lies on ∂U0 by Lemmas 7.4 and 7.5. Since Q is strictly increasing
on (x0 − ε1, x0) and on (x0, x0 + ε1) for some ε1 > 0, and hence on each interval
from x0 to the nearest zero of Q′ both to the left and to the right, it follows that
neither v1 nor v2 can lie on such an interval since the property that Q interchanges
v1 and v2 and maps [v1, v2] onto itself, implies that Q is strictly decreasing on
(v1, v1 + ε2) and on (v2 − ε2, v2) , for some ε2 > 0. Hence there must be a zero
of Q′ (thus a zero of f or of f ′′ ) between t and x0 , and such a zero of Q′ must
give rise to a bounded component of K− , which will then serve as W ′ .

If t ∈ ∂U , suppose, for example, that t < x for all x ∈ R ∩ ∂U0 . If W2

is unbounded then W2 = W . Since f has a zero t1 and f ′ has a zero u1 with
t1 < u1 < t , we find that W1 is bounded on the basis that U must contain an
arc from some point of U to a point v of R with v ≤ t1 (v might be a zero
of Q′ ). This could only fail if Q′ has no zeros < u1 , which would mean that t1
is a multiple zero of f . But then Q′(t1) > 0 so that t1 ∈ ∂U and we may take
v = t1 . Hence W1 is bounded.

Now the proof can be completed in the case Q′(t) 6= 0 in the same way as we
did in the case Q′(t) = 0.

Suppose then that t is the largest or smallest zero of f . To be definite,
suppose that t is the largest zero of f . Set R ∩D = (v1, v2) where v1 ∈ R and
v2 ∈ R∪{+∞} . If we can find zeros u1 and u2 of f ′ with u1 < v1 < t < v2 < u2

(we pick the nearest zeros of f ′ to t), we start by following the argument given
when t was neither the largest nor the smallest zero of f but when Q′(t) = 0.
Right now it does not matter whether Q′(t) = 0 or not. By the monotonicity of Q ,
we see that neither u1 nor u2 can be the special zero x0 of f ′ . If W ′ is unbounded,
where u1 ∈ ∂W ′ , then let W ′′ be the component of K− with u2 ∈ ∂W ′′ . If also
W ′′ is unbounded then the one of W ′ and W ′′ whose boundary has no points in
common with ∂U0 , contains no zeros of Q′ on its boundary other than the point
of R ∩ ∂W ′ (or R ∩ ∂W ′′ , as the case may be) closest to t .

Suppose that ∂W ′′∩∂U0 = ∅ . By Rolle’s theorem, we see that u2 is the only
zero of f ′ on R ∩ ∂W ′′ (since R ∩ ∂W ′′ would otherwise contain a zero of f ′′

which would also be a zero of Q′ ). Then t ∈ ∂U , and W ′ 6= W ′′ . The fact that
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W ′ is unbounded implies that W ′ = W . If now f has infinitely many zeros then,
since ω < +∞ , it follows from Lemma 8.2 that (x2,∞) ⊂ ∂W for some x2 , which
implies that W ′ = W = W ′′ , a contradiction. If f has only finitely many zeros
then g = P1e

P2 for some real polynomials P1 and P2 (where degP1 ≥ 2n+ 2 if
P2 is constant), and Q(z) = z − 1/

(

P ′
2 + O(1/z)

)

as z → ∞ . But then f ′/f is
rational, and Q′(x) = 1 + (f ′/f)′/(f ′/f) = 1 + o(1) > 0 as x → +∞ , so that
Q′(x) > 0 for all x > u2 since Q′ has no zeros or poles > u2 . Since u2 is the
largest finite pole of Q , and since u2 6= x0 , the residue of Q at u2 is positive.
Hence limx→u2+Q

′(x) = −∞ , which gives a contradiction.
Suppose that ∂W ′ ∩ ∂U0 = ∅ . Then W ′ 6= W ′′ = W . If f has infinitely

many zeros, Lemma 8.2 again gives a contradiction. If f has only finitely many
zeros, we argue as above and note that Q′(x) > 0 for all x < u1 while we should
have Q′(x) < 0 for all x < u1 since (−∞, u1) ⊂ ∂W ′ ⊂ ∂K− . So this again gives
a contradiction.

Suppose then that t is the largest zero of f and R ∩D = (v1, v2) , but that
we cannot find zeros u1 and u2 of f ′ with u1 < v1 < t < v2 < u2 (for example, if
v2 = +∞). As long as components W ′ and W ′′ of K− to the left and right of t
can be found, the above argument goes through even if at least one of the points u1

and u2 cannot be found. Therefore suppose that at least one of (−∞, t) and (t,∞)
is contained in ∂K and hence in ∂U since U0 is bounded. If (−∞, t) ⊂ ∂U then
Q(v1) 6= ∞ 6= v2 , and Q′(x) > 0 for all x < t so that Q(v1) < Q(t) = t < v2 since
v1 < t , contradicting the fact that Q(v1) = v2 , by Lemma 8.3. If (t,∞) ⊂ ∂U
then Q′(x) > 0 for all x > t so that Q(v2) > Q(t) = t > v1 , a contradiction,
if v2 < +∞ . So we must have Q(v1) = ∞ = v2 and (t,+∞) ⊂ ∂U . Now
Q′(x) < 0 for all x ∈ (v1, t) , and x0 6= v1 ∈ ∂W ′ for some component W ′ of K− .
If W ′ is bounded, we argue as before. If W ′ is unbounded then W ′ = W . By
Lemma 8.2(i), f has only finitely many zeros. Thus, as above, Q′(x) = 1 + o(1)
as x→ ±∞ so that K− and, hence, W , is bounded, which is a contradiction.

All cases have now been covered. This completes the proof of Lemma 8.5.

Remark. Lemma 8.5 may seem surprising in view of the theorem of Przyty-
cki [Pr] that if F is a polynomial then ∞ ∈ ∂D for every attracting component
D of N(z − F/F ′) . Note that Lemma 8.5 has been proved only under the as-
sumption that f , f ′ , and f ′′ have only real zeros while deg g ≥ 2n + 2 if g is
a polynomial. In view of the final conclusion of Theorem 1.1, these assumptions
are never satisfied. Indeed, if f has a largest or smallest zero t , it is easily seen
that D(t) is unbounded, even though it is not immediately obvious if, in this case,
D(t) is also simply connected.

Recall the notation in the last paragraph of subsection 8.1.

Lemma 8.6. Suppose that t is a zero of f such that D(t) is simply con-
nected. Then there is at most one such t ∈ (−∞, a]∪ [d,∞) , ignoring multiplicity.
If t ≤ a then f has no zero on (t, b] , f ′ has no zero on (t, b] and hence not on
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(a, b] , and f ′/f has no zero on [t, b] . If t ≥ d then f has no zero on [c, t) , f ′ has
no zero on [c, t) and f ′/f has no zero on [c, t] .

Proof of Lemma 8.6. To get a contradiction, suppose that f(t1) = f(t2) = 0
and t1 < t2 ≤ a . Then a is finite. Suppose that D = D(t1) and D′ = D(t2) are
simply connected. By Lemma 8.3, we have D ∩ R = [v1, v2] , say. The function
Q interchanges v1 and v2 , and maps [v1, v2] onto itself, so that Q is strictly
decreasing on (v1, v1+ε) and on (v2−ε, v2) , for some ε > 0. Hence v1, v2 ∈ ∂K− .
We have Q′(t) ≥ 0 so that t ∈ ∂U . We have v2 < t2 < b . Similarly, let us write
D′ ∩ R = [w1, w2] . Then v2 < w1 < t2 < w2 .

Let W ′ be the component of K− with v2 ∈ ∂W ′ . Then ∂W ′ ⊂ R ∪ ∂U0 .
There exists u ∈ R ∩ ∂W ′ with (f ′/f)(u) = 0.

We note that Q is one-to-one in W . If f has infinitely many zeros, this
follows from Lemma 8.2. If f has only finitely many zeros, the argument given in
the proof of Lemma 8.2 still works and gives the same conclusion.

Pick a point z ∈ D ∩H+ close to v1 , and a point z′ ∈ D′ ∩H+ close to w1 .
Since i ∈ ∂D and since D is symmetric about R , we can join z by a polygonal
path γ in D ∩H+ to any preassigned point w ∈ D ∩H+ which we may choose
as close to i as we like. There is an analogous path γ′ in D′ ∩H+ from z′ to any
preassigned point w′ ∈ D′∩H+ close to i . Now γ will have to intersect H+∩∂W
when moving from U into W , and again when moving from W into U0 . Let
Γ1 and Γ2 be the components of D ∩ ∂W that γ intersects in this way. Note
that Γ1 and Γ2 may be identical. Since ∂W is a Jordan curve, each of Γ1 and
Γ2 is an open Jordan arc. Define similarly Γ′

1 and Γ′
2 as the components of

D′ ∩ ∂W that γ′ intersects in the same way. Now Q maps each of Γ1 and Γ2

into D ∩ R = (v1, v2) . If Q does not map an end point of Γ1 onto v1 or v2 ,
then Q maps that end point into D ∩ R , which contradicts the fact that D is a
component of Q−1(D) . Hence Q maps each of Γ1 and Γ2 onto (v1, v2) . Since
Q is one-to-one in the closure of W , it follows that Γ1 = Γ2 . Since Γ1 must
contain a point of γ obtained when γ enters W from U , and another point when
γ enters U0 from W , it follows that the Jordan arc Γ1 must contain one of the
intervals [a, b] and [c, d] . A similar argument shows that Γ′

1 = Γ′
2 , and that Γ′

1

must contain one of [a, b] and [c, d] . Since Γ1 and Γ′
1 are disjoint (being mapped

by Q onto disjoint sets), it follows that one of Γ1 and Γ′
1 contains [a, b] while the

other one contains [c, d] . Hence Q maps [a, b] ∪ [c, d] into [v1, v2] ∪ [w1, w2] .
If W is bounded, then Q has a unique pole on [a, b] ∪ [c, d] , which gives a

contradiction.
If W is unbounded, then it is easily seen that f has infinitely many zeros, and

by Lemma 8.2, exactly one of τ and ω is finite. If ω = +∞ then by Lemma 8.2,
we have (−∞, x] ⊂ ∂W for some real number x , which is impossible since it
means that a = −∞ . Thus it must be the case that τ = −∞ and ω < +∞ ,
[x,+∞) ⊂ ∂W for some real x , and Rew is bounded below for w ∈W . Since Q
maps W one-to-one onto H− , and since Q maps [a, b]∪ [c, d) (here d = +∞) into
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[v1, v2]∪ [w1, w2] , it follows that if Q has no pole on [a, b]∪ [c, d) , then Q(z) → ∞
as z → ∞ in C∩W . In particular, one of Γ1 and Γ′

1 must go through infinity and
hence its image under Q must contain infinity. Thus v1 = −∞ , and so D = D(t)
is unbounded, which contradicts Lemma 8.5.

We conclude that f has at most one zero t ∈ (−∞, a] such that D(t) is
simply connected.

Similarly, it is seen that f cannot have two distinct zeros t1, t2 on [d,∞)
such that D(t1) and D(t2) are both simply connected.

Suppose that f(t) = 0, t ≤ a , and D = D(t) is simply connected. Define v1 ,
v2 , and Γ1 as above. Let I ′ be that interval of [a, b] and [c, d] that is contained
in Γ1 (hence I ′ = [a, b] if W is unbounded). Then I ′ ⊂ D ∩ R = (v1, v2) . Thus
we must have I ′ = [a, b] , and also b < v2 . Since Q has no pole, and no fixed point
other than t , on (v1, v2) , we then see that f has no zero on (t, v2) and thus on
(t, b] , and f ′/f has no zero on [t, v2) and thus on [t, b] . Consequently, f ′ has no
zero on (t, v2) and thus on (t, b] . The same argument applies if f(t) = 0, t ≥ d ,
and shows that then f has no zero on [c, t) , f ′ has no zero on [c, t) and f ′/f has
no zero on [c, t] .

Suppose that f(t1) = f(t2) = 0 and t1 ≤ a < d ≤ t2 . Then a and d are
both finite. Suppose that D(t1) and D(t2) are simply connected. By what we
have proved already, f ′/f has no zero on [a, b] ∪ [c, d] . But now W is bounded
and Q maps W conformally onto H− so that ∂W must contain exactly one
pole u of Q , that is, a zero of f ′/f . All the zeros of f ′/f are real, so that
u ∈ R ∩ ∂W = [a, b] ∪ [c, d] . This gives a contradiction, showing that not both t1
and t2 can exist.

This completes the proof of Lemma 8.6.

8.3. Conclusion of proof that f has only finitely many zeros. We are
now in a position to prove that f has only finitely many zeros.

Lemma 8.7. Let f be as in (1), where g ∈ U2p . If g is a polynomial,
suppose that deg g ≥ 2n + 2 . Suppose that f , f ′ , and f ′′ have only real zeros.
Then f has only finitely many zeros.

Proof of Lemma 8.7. Lemma 8.1 gives the conclusion when K = U0 . Thus we
may assume that K = U∪U0 , so that there is a component W of K− separating U
and U0 in H+ . We use the notation given in the last paragraph of subsection 8.1.
By Lemma 8.4, f has at most one zero t (of some multiplicity) for which D(t) is
multiply connected. Thus it suffices to consider from now on only zeros t of f for
which D(t) is simply connected. On the bounded interval [b, c] , f has only finitely
many zeros. On (a, b) ∪ (c, d) , f has no zeros. If f is to have at least one zero
t ≤ a then a must be finite, so that f has at most one such zero by Lemma 8.6.
Similarly, by Lemma 8.6, f has at most one zero on t with t ≥ d . This proves
that f has altogether only finitely many zeros, and Lemma 8.7 is proved.
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8.4. Proof that g ∈ U0 . Knowing that f has only finitely many zeros
greatly simplifies the analysis in the sense that now f ′/f and Q are rational. We
can now prove that g ∈ U0 .

Lemma 8.8. Let f be as in (1), where g ∈ U2p . If g is a polynomial,
suppose that deg g ≥ 2n + 2 . Suppose that f , f ′ , and f ′′ have only real zeros.
Then f has only finitely many zeros and g ∈ U0 . Furthermore, the set K has
exactly 2 components, U and U0 , and the component W of K− separating U
from U0 in H+ is bounded.

The set K− has only finitely many components, and each is bounded and
is mapped one-to-one conformally by Q onto H− . If W ′ is a component of K−

other than W , then R ∩ ∂W ′ is connected and consists of a closed interval or a
single point. In the latter case, the single point is also a zero of f ′/f .

Proof of Lemma 8.8. We have f = P1e
P2/Φ for some real polynomials P1

and P2 , so that

L = f ′/f = P ′
1/P1 − Φ′/Φ + P ′

2 = P ′
2 +O(1/z)

as z → ∞ . By Lemma 7.5, we have Λ = V0 , and V0 is bounded. Thus
Im(f ′/f)(z) < 0 for all z ∈ H+ outside the bounded set V0 . If degP ′

2 ≥ 2, this is
impossible. Thus degP ′

2 ≤ 1, and we can write P ′
2(z) = −2αz + β for some real

constants α and β . If α < 0, we see again that we cannot have Im(f ′/f)(z) < 0
for all z ∈ H+ outside a bounded set. Thus α ≥ 0. Since P2(z) = −αz2 + βz + γ
for some constant γ , this shows that g = P1e

P2 ∈ U0 .
Suppose that K = U0 . If a > 0 then Q(z) = z + O(1/z) as z → ∞ .

If a = 0 6= b then Q(z) = z − (1/b) + O(1/z) . If a = b = 0 then g is a
polynomial and L(z) = (deg g − deg Φ)/z + O(1/z2) and Q(z) = γz + O(1),
where γ = 1 − 1/(deg g − deg Φ) > 0, and deg g − deg Φ ≥ 2. A more careful
analysis of ImQ(z)/y (where y = Im z ) shows that in each of these three cases,
there exists R > 0 such that if z ∈ H+ and |z| > R then ImQ(z) > 0. Thus
U0 is unbounded since K = U0 by our assumption. But in all these cases, we
have Q(z) → ∞ as z → ∞ . Hence Q(z) → ∞ as z → ∞ in U0 . But by
Lemma 7.2, we have Q(z) → a ∈ R as z → ∞ in U0 . This is a contradiction.
It follows that K = U ∪ U0 , so that W exists as before. Since we still have
{z : z ∈ H+, |z| > R} ⊂ K , it follows that K− and hence W is bounded.

Since K− is bounded, it has only finitely many components, and each is
bounded and is mapped one-to-one conformally by Q onto H− by Lemma 7.3.
If W ′ is a component of K− other than W , then R ∩ ∂W ′ is connected and
consists of a closed interval or a single point. For otherwise W ′ separates K and
hence separates U and U0 in H+ , while only W has this property. Suppose that
R ∩ ∂W ′ = {x1} . Then Q(x1) = ∞ and so (f ′/f)(x1) = 0, since R ∩ ∂W ′ must
contain a pole of Q .

This completes the proof of Lemma 8.8.
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We have now proved Theorem 1.1 except in the case when g ∈ U0 and g has
only finitely many zeros. The rest of the paper is devoted to this case.

9. Sign analysis of f ′/f

From now on, we may assume that f is as in (1), where g ∈ U0 and g has
only finitely many zeros. If g is a polynomial, we assume that deg g ≥ 2n + 2.
We further assume that f , f ′ , and f ′′ have only real zeros. Furthermore, the
set K has exactly 2 components, U and U0 , and the component W of K−

separating U from U0 in H+ is bounded. We have R∩∂W = [a, b]∪ [c, d] , where
a ≤ b < c ≤ d . By Lemmas 8.4 and 8.6, the function f has at most one zero t
for which the component D(t) of N(Q) containing t is multiply connected, and
at most one zero t outside (a, d) for which D(t) is simply connected.

By Lemmas 7.4 and 7.5, the special zero x0 of f ′ , at which f 6= 0 and
f ′′f ≥ 0, exists and lies on ∂U0 , hence on [b, c] . At the other zeros of f ′/f , we
have f ′′f < 0.

Since Q is conformal in W , the set ∂W contains exactly one zero of f ′ which
is not a zero of f , that is, exactly one pole of Q . Hence, by Lemma 8.6, at most
one of the points a and d can be a zero of f , unless the other one is the only
possible exceptional zero for which D is multiply connected.

The following sign analysis of L = f ′/f will be used repeatedly.

Lemma 9.1. f(z) = e−ξz2+βzP (z)/(z2+1)n where ξ ≥ 0 , β ∈ R , and P is
a real polynomial with only real zeros such that if ξ = β = 0 then degP ≥ 2n+2 .
Then

L =
f ′

f
= −2ξz + β +

P ′

P
−

2nz

z2 + 1
.

If ξ > 0 then

lim
x→∞

L(x) = −∞,

lim
x→−∞

L(x) = ∞,

lim
x→aω+

L(x) = ∞,

lim
x→aτ−

L(x) = −∞,

so that f ′ has a zero on (−∞, aτ) and also on (aω,∞) , provided that f has at
least one zero. In this case f ′ has 4 extraordinary zeros. If ξ > 0 but f has no
zeros then f ′ has 3 extraordinary zeros.

If ξ = 0 6= β then

lim
x→∞

L(x) = β, lim
x→aω+

L(x) = ∞,

lim
x→−∞

L(x) = β, lim
x→aτ−

L(x) = −∞,

so that f ′ has a zero on (−∞, aτ) if β > 0 , and on (aω,∞) if β < 0 , provided that
f has at least one zero. In this case f ′ has 3 extraordinary zeros. If ξ = 0 6= β
but f has no zeros then f ′ has 2 extraordinary zeros.
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If ξ = β = 0 then, as x → ∞ , we have L(x) ∼ (degP − deg Φ)/x > 0 ,
and as x → −∞ , we have L(x) ∼ (degP − deg Φ)/x < 0 . In this case f ′ has 2
extraordinary zeros, and they are both on (−∞, aτ) , or both on (aω,∞) , or both
on some interval (ak, ak+1) .

We can write f ′ = e−ξz2+βzP1(z)/(z
2 + 1)n+1 , where the numbers ξ and β

are the same as for f , and where P1 is a real polynomial with only real zeros.
Thus, under the assumption that f , f ′ , and f ′′ have only real zeros, the above
conclusions hold also for the extraordinary zeros of f ′′/f ′ .

Proof of Lemma 9.1. In each of the above cases, the number of extraordinary
zeros of f ′ , that is, degϕ , is obtained from Lemma 2.2. The remaining conclusions
on the location of the extraordinary zeros of f ′ are clear. In particular, it follows
that any interval of the form (−∞, aτ) , (aω,∞) , or (ak, ak+1) contains at most
3 zeros of f ′ , counting multiplicities.

We may apply the conclusions to f ′ instead of f since we may write f ′ =
e−ξz2+βzP1(z)/(z

2 +1)n+1 where ξ and β are the same as for f , and P1 is a real
polynomial with only real zeros such that if ξ = β = 0 then degP1 ≥ 2(n+1)+1,
which is all that is needed here, as an inspection of the proof shows. This completes
the proof of Lemma 9.1.

10. Using the Euler characteristic

We now record a consequence of results of Shishikura [Sh], which will be used
several times. If G is a domain in the sphere bounded by k mutually disjoint
Jordan curves, we define the Euler characteristic χ(G) by χ(G) = 2 − k . Thus
χ(G) = 1 if G is simply connected, and χ(G) = 0 if G is doubly connected. If
F is meromorphic in G , we write δ = δ(F,G) for the sum of branching indices
of F in G . Thus, if we set v(F, z) = m − 1 when F maps any sufficiently small
neighbourhood T of z m-to-1 onto F (T ) , then

δ(F,G) =
∑

z∈G

v(F, z).

Lemma 10.1. Suppose that g ∈ U0 and that g has only finitely many zeros.
Suppose that f , f ′ , and f ′′ have only real zeros.

(1) Suppose that f(t) = 0 and that D = D(t) is multiply connected.
Then there exist domains X0 and X1 bounded by finitely many analytic

mutually disjoint Jordan curves, with the following properties. Each iterate of
Q is locally homeomorphic at each point of ∂X0 and ∂X1 . We have X0 ⊂ D ,
X1 ⊂ X0 , Q(X0) = X1 . The set X0 is the component of Q−1(X1) containing X1 .
We have t ∈ X1 , so t ∈ X0 also. The sets X0 and X1 are symmetric about the
real axis. The domain X1 is simply connected while X0 is multiply connected.
Let X0 be bounded by k Jordan curves. The map Q | X0 is a covering map that
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takes X0 onto X1 exactly m times for some m ≥ 2 , and

(33) 2 − k + δ(Q,X0) = χ(X0) + δ(Q,X0) = mχ(X1) = m.

We have k = 2 and δ(Q,X0) = m . The inner boundary contour of X0 contains
the points ±i in its interior.

(2) Suppose that ∞ is a parabolic fixed point of Q , and let D be a component
of N(Q) with ∞ ∈ ∂D , such that D contains (−∞, x) or (x,∞) for some real
x , and such that Qj(z) → ∞ as j → ∞ , locally uniformly for z ∈ D . Suppose
that D is multiply connected.

Then there exist domains X0 and X1 bounded by finitely many mutually
disjoint Jordan curves, which are smooth except possibly at infinity, with the
following properties. Each iterate of Q is locally homeomorphic at each point of
∂X0 and ∂X1 . We have X0 ⊂ D∪ {∞} , X1 ⊂ X0 ∪ {∞} , Q(X0) = X1 . The set
X0 is the component of Q−1(X1) containing X1 . We have ∞ ∈ ∂X1 ∩ ∂X0 . The
sets X0 and X1 are symmetric about the real axis. The domain X1 is simply
connected while X0 is multiply connected. Let X0 be bounded by k Jordan
curves. The map Q | X0 is a covering map that takes X0 onto X1 exactly m
times for some m ≥ 2 , and (33) holds. We have k = 2 and δ(Q,X0) = m . The
inner boundary contour of X0 contains the points ±i in its interior.

Proof of Lemma 10.1. Let the assumptions of Lemma 10.1 be satisfied. Then
Q is a rational function.

Proof of (1). Suppose that f(t) = 0 and that D = D(t) is multiply connected.
As in [Pr], let γ be a Jordan curve in D surrounding t such that γ does not

intersect the set
⋃∞

j=0Q
j(E) where the finite set E consists of the critical points

of Q (critical points are the points at which Q is not a local homeomorphism).
The points in D ∩

{
⋃∞

j=0Q
j(E)

}

cluster to t only. Thus it is easy to take γ
to be an analytic curve and still satisfying these conditions. We further take
γ to be symmetric about R . Let G be the Jordan domain with t ∈ G and
∂G = γ . We take γ to be such that Q(G) ⊂ G . Let Gj be the component of
Q−j(G) containing G . Then each Gj is symmetric about R . Since

⋃∞
j=0Gj = D ,

there is a smallest value of j such that X0 = Gj is multiply connected while
X1 = Q(Gj) = Gj−1 is simply connected. Thus X1 is a Jordan domain, X0 is
bounded by finitely many, say k , analytic Jordan curves, and X1 ⊂ X0 . The
domains X0 and X1 are bounded and their closures are compact subsets of D ,
since ∞ ∈ J(Q) , being a parabolic or repelling fixed point of Q .

It is clear from the construction that each iterate of Q is locally homeomorphic
at each point of ∂X0 and ∂X1 , that X0 ⊂ D , X1 ⊂ X0 , Q(X0) = X1 , that the
set X0 is the component of Q−1(X1) containing X1 , that t ∈ X1 and t ∈ X0 ,
and that the sets X0 and X1 are symmetric about the real axis.

The Euler characteristics of these domains are given by χ(X0) = 2 − k and
χ(X1) = 1. Now Q | X0 is a proper map onto X1 that covers X1 m times, say.
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By the Riemann–Hurwitz formula [B, Theorem 5.4.1, p. 87], we obtain (33), that
is, δ = k− 2 +m , where δ = δ(Q,X0) . By a result of Shishikura [Sh, Proposition
4.1(β ) with p = 1, p. 15], each component of C\X0 contains at least one repelling
or parabolic fixed point of Q . The only such fixed points for Q are ±i and ∞ ,
which implies that k ≤ 3. Also k ≥ 2 as X0 is multiply connected. Hence either
k = 2 and δ = m , or k = 3 and δ = m+ 1.

The case k = 3 remains to be ruled out. To get a contradiction, suppose that
k = 3. Let γj for 1 ≤ j ≤ 3 be the components of ∂X0 , numbered so that γ1

contains i and γ2 contains −i in its interior while γ3 is the outer contour. Then,
by symmetry, γ2 is the reflection of γ1 in the real axis. We have γ1 ⊂ H+ , for
if γ1 intersects R then, since X0 is symmetric about R , we would have γ2 = γ1

(since γ1 contains i and γ2 contains −i in its interior). This is impossible, and
so γ1 ⊂ H+ . Since γ3 is symmetric about R also, it is now seen that X0 ∩ R is
a single open interval. Since X1 = Q(X0) ⊂ X0 is also symmetric about R and
is a Jordan domain, we see that X1 ∩R is also a single open interval.

Now Q maps each γj for 1 ≤ j ≤ 3 onto the Jordan curve ∂X1 , say mj

times, and Q is a local homeomorphism at each point of ∂X0 . It follows from the
argument principle that Q maps the interior of γj onto the interior of ∂X1 , mj

times, for j = 1, 2, since Q has no poles in the interior of γj . This is impossible
since Q fixes the point i , which lies in the interior of γ1 but not in X1 , which is
equal to the interior of ∂X1 . This contradiction shows that the case k = 3 cannot
occur.

Since k = 2, it follows that the inner boundary contour of X0 contains the
points ±i in its interior.

This completes the proof of part (1) of Lemma 10.1.

Proof of (2). Let D be a multiply connected component of N(Q) as in the
assumptions of part (2).

Let γ be a Jordan curve in D ∪ {∞} such that γ is symmetric about R ,
γ is infinitely differentiable at each of its finite points, and γ does not intersect
the set

⋃∞
j=0Q

j(E) where E consists of the critical points of Q . The points in

D∩
{
⋃∞

j=0Q
j(E)

}

cluster to ∞ only, so that we can satisfy these conditions. Let
G be the Jordan domain with ∂G = γ , containing (−∞, x) or (x,+∞) for some
real x , depending on which of these rays is contained in D (exactly one of them
is contained in D ). We take γ to be such that Q(G) ⊂ G ∪ {∞} . Let Gj be
the component of Q−j(G) containing G . Then each Gj is symmetric about R .
Since

⋃∞
j=0Gj = D , there is a smallest value of j such that X0 = Gj is multiply

connected while X1 = Q(Gj) = Gj−1 is simply connected. Thus X1 is a Jordan
domain, X0 is bounded by finitely many, say k , disjoint Jordan curves, that are
smooth outside infinity, and X1 ⊂ X0 ∪ {∞} . Exactly one component of ∂X0 is
unbounded.

It is clear from the construction that each iterate of Q is locally homeomorphic
at each point of ∂X0 and ∂X1 , that X0 ⊂ D ∪ {∞} , X1 ⊂ X0 ∪ {∞} , Q(X0) =
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X1 , that the set X0 is the component of Q−1(X1) containing X1 , that ∞ ∈
∂X1 ∩ ∂X0 , and that the sets X0 and X1 are symmetric about the real axis.

The Euler characteristics of these domains are given by χ(X0) = 2 − k and
χ(X1) = 1. Again Q | X0 is a proper map onto X1 that covers X1 m times, say.
By the Riemann–Hurwitz formula, we obtain (33), that is, δ = k − 2 +m , where
δ = δ(Q,X0) . By a result of Shishikura [Sh, Proposition 4.1(β ) with p = 1,
p. 15], each bounded component (more precisely, any component not containing
the parabolic fixed point ∞) of C\X0 contains at least one repelling or parabolic
fixed point of Q . The only such fixed points for Q are ±i , which implies that
k ≤ 3. Also k ≥ 2 as X0 is multiply connected. Hence either k = 2 and δ = m ,
or k = 3 and δ = m+ 1.

The case k = 3 remains to be ruled out. To get a contradiction, suppose
that k = 3. Let γj for 1 ≤ j ≤ 3 be the components of ∂X0 , numbered so that
γ1 contains i and γ2 contains −i in its interior while γ3 is the unbounded outer
contour. Then, by symmetry, γ2 is the reflection of γ1 in the real axis. We have
γ1 ⊂ H+ , for if γ1 intersects R then, since X0 is symmetric about R , we would
have γ2 = γ1 (since γ1 contains i and γ2 contains −i in its interior). This is
impossible, and so γ1 ⊂ H+ . Since γ3 is symmetric about R also, it is now seen
that X0 ∩R is a single unbounded open interval. Since X1 = Q(X0) ⊂ X0 is also
symmetric about R and is a Jordan domain, we see that X1 ∩ R is also a single
unbounded open interval.

Now Q maps each γj for 1 ≤ j ≤ 3 onto the Jordan curve ∂X1 , say mj

times, and Q is a local homeomorphism at each point of ∂X0 . It follows from the
argument principle that Q maps the interior of γj onto the interior of ∂X1 , mj

times, for j = 1, 2, since Q has no poles in the interior of γj . This is impossible
since Q fixes the point i , which lies in the interior of γ1 but not in X1 , which is
equal to the interior of ∂X1 . This contradiction shows that the case k = 3 cannot
occur.

Since k = 2, it follows that the inner boundary contour of X0 contains the
points ±i in its interior.

This completes the proof of part (2) of Lemma 10.1. The proof of Lemma 10.1
is therefore complete.

11. When g is transcendental

11.1. Connectivity of parabolic domains. Recall that f(z) = g(z)/(z2+
1)n , where g ∈ U0 and g has only finitely many zeros, and that f , f ′ , and f ′′ are

assumed to have only real zeros. If g is transcendental then g(z) = e−ξz2+βzP (z)
where ξ ≥ 0, β ∈ R , and P is a real polynomial with only real zeros. Furthermore,
at least one of ξ and β is non-zero. Thus

L =
f ′

f
= −2ξz + β +

P ′

P
−

2nz

z2 + 1
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and

Q(z) = z −
1

−2ξz + β +O(1/z)
as z → ∞.

Hence Q is rational and has a parabolic fixed point at infinity. For the
definition and discussion of petals at a parabolic fixed point, we refer to [B, pp. 110–
132]. If ξ > 0 then there are exactly 2 petals at infinity, one containing (−∞, x1)
and the other containing (x2,∞) for some real x1 ≤ x2 . If ξ = 0 6= β then there
is exactly 1 petal at infinity, and it contains (−∞, x1) for some real x1 if β > 0,
while it contains (x2,∞) for some real x2 if β < 0. (If g is a polynomial of degree
at least 2n+ 2 then Q has a repelling fixed point at infinity.)

Let D denote any component of N(Q) with ∞ ∈ ∂D , such that D contains
(−∞, x) or (x,∞) for some real x , and such that Qj(z) → ∞ as j → ∞ , locally
uniformly for z ∈ D . Thus D contains one petal. Note that all components D
arising as above are symmetric about R .

Lemma 11.1. The domain D is multiply connected.

Proof of Lemma 11.1. Suppose that D is simply connected. We may assume
that (x,∞) ⊂ D for some real x . Let x1 be the smallest real number such that
(x1,∞) ⊂ D . Then x1 ∈ ∂D ⊂ J(Q) . Thus Q(x) > x for all x > x1 , and either
Q(x1) = x1 or Q(x1) = ∞ , for otherwise, there is ε > 0 such that (x1−ε,∞) ⊂ D .
If Q(x1) = x1 then f(x1) = 0 so that x1 is an attracting or superattracting
fixed point of Q and hence lies in the interior of a component of N(Q) other
than D . This is impossible. Hence Q(x1) = ∞ , and so (f ′/f)(x1) = 0. Since
Q(x) > x for all x > x1 , we have limx→x1+Q(x) = +∞ , so that x1 6= x0 ,
and also limx→+∞Q(x) = +∞ . Hence there must be at least one zero x2 of Q′

on (x1,∞) . There are no zeros of f or of f ′ on (x1,∞) . Thus f ′′(x2) = 0. So
the values in [Q(x2),∞) are taken by Q at least twice on (x1,∞) .

Since D is simply connected, there is a conformal mapping λ of D onto the
unit disk B(0, 1). Then Q1 = λ◦Q◦λ−1 maps B(0, 1) onto itself, and it is known
that Q1 is a finite Blaschke product (see [Po, p. 118]). Let Q1 have degree m .
Then Q1 has no fixed points in B(0, 1) but Q1 has exactly m + 1 fixed points
on ∂B(0, 1) = S(1), with due count of multiplicity. Exactly one of these is the
Denjoy–Wolff fixed point of Q1 and corresponds to the point ∞ for Q . The
other m points are repelling fixed points of Q1 [Po, p. 118]. They correspond
to repelling fixed points of Q on ∂D (see [Po, Theorem 1, p. 118]) in the sense
that if ζ is a repelling fixed point of Q1 then λ−1(ζ) exists as an angular limit
and is equal to a repelling fixed point of Q . Since Q has only two repelling fixed
points, namely ±i , each of multiplicity 1, it follows that m ≤ 2. Since Q cannot
be one-to-one in D , we have m = 2. This also shows that ±i ∈ ∂D and that the
points ±i are accessible boundary points of D (images of certain radii in B(0, 1)
under λ−1 are paths in D tending to i and −i).

More precisely, in our case, for each of ±i there can be only one ζ ∈ S(1)
corresponding to this point. For if the distinct repelling points ζ1, ζ2 ∈ S(1) of Q1
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satisfy λ−1(ζ1) = λ−1(ζ2) = i , let γj be the image under λ−1 of a short radial
segment going to ζj , for j = 1, 2. We can join a point in H+ ∩D to the starting
points of γ1 and γ2 to obtain a set which together with the point i is a Jordan
curve γ in D ∪ {i} (it is a Jordan curve since λ−1 is one-to-one). By reflecting
in R those parts of γ that are in H− and modifying γ slightly at its points of
intersection with R , we may assume that γ \{i} ⊂ H+∩D . Let Y be the interior
of γ . The set Q(γ) is a Jordan curve in D ∪ {i} , Q(i) = i , and ∂Q(Y ) ⊂ Q(γ) .
The function Q has no poles in Y .

Let Γ be any connected component of Y ∩ (C \ D) . Thus ∂Γ ⊂ J(Q) .
Since Q(i) = i and Q(D) = D , Q maps Γ into Γ1 where Γ1 is also such a
component. More precisely, since each of ζ1 and ζ2 is a repelling fixed point of
Q1 , the arcs Q1

(

λ(γj)
)

, for j = 1, 2, are very close to the arcs λ(γj) and also
start from ζ1 and ζ2 . Hence Q(γj) determines the same prime end of D (whose
impression contains i) as γj . Now Q(Y ) can be larger than Y and might contain
points of R . Since Q(Γ) is connected, it follows that Q(Γ) is contained in some
component Γ1 as soon as it is clear that Q(Γ) ∩D = ∅ . If Q(Γ) ∩D 6= ∅ , then Γ
contains a component D1 of Q−1(D) that Q maps onto D . Hence D1 and thus
Γ must contain a pole of Q . But this is not the case since Γ ⊂ Y ⊂ H+ , which
contains no poles of Q .

Now consider the iterates of Q in the open set Y . If z ∈ Y \D then Qj(z) ∈ Y
for all j ≥ 1 by the above. If z ∈ Y ∩D then Qj(z) ∈ D for all j ≥ 1. Thus the
Qj omit at least 3 points in Y and therefore form a normal family in Y . Since
D is a component of N(Q) , it follows that Y ⊂ D . Now the conformality of λ
(via Lindelöf’s theorem) implies that ζ1 = ζ2 . This proves our assertion that only
one point on S(1) corresponds to i , and the same holds for −i .

Since m = 2, x2 is the unique zero of f ′′ on (x1,∞) . Since D is simply
connected and symmetric about R , we have R ∩ D = (x1,∞) . Hence the only
real values that Q takes in D are in (x1,∞) , and each such value is taken twice.
There is a component W ′ of K− such that x2 ∈ ∂W ′ . Then x1 ∈ ∂W ′ also. If
W ′ 6= W , we have R ∩ ∂W ′ = [x3, x2] where d ≤ x3 ≤ x1 . If W ′ = W then
x2 = d and c ≤ x1 .

Now D contains an arc γ1 of ∂W ′ ∩ H+ starting from x2 , as well as the
complex conjugate arc γ2 of γ1 . The map Q takes the same real values on γ1

and γ2 , and these values lie in (x1, x2) . If we follow ∂W ′ starting from x2 and
entering H+ from x2 but then continuing as long as necessary along ∂W ′ , we will
stay in D until we come to a point ζ at which Q(ζ) = x1 . Then ζ ∈ ∂D . The
values of Q decrease as we move along γ1 from x2 towards ζ .

If W ′ 6= W and x3 < x1 then Q(x3) ≤ x3 < x1 . For if Q(x3) ≥ x3 , then,
since Q is decreasing on (x3, x1) , there is a fixed point x4 of Q , hence a zero
of f , on (x3, x1) . If f ′(x4) 6= 0, then Q′(x4) = 0, hence R ∩ ∂W ′ ⊂ [x4, x2] ,
which contradicts the definition of x3 . If f ′(x4) = 0 then Q′(x4) > 0 so that
x4 ∈ ∂K \ ∂K− , which contradicts the fact that x4 ∈ ∂W ′ . We conclude that
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Q(x3) ≤ x3 < x1 or x3 = x1 , and in each case we encounter the point ζ before
coming to the point x3 . So the arc γ1 stays in H+ and goes from x2 to ζ . We
see that Q cannot take real values in D outside γ1 ∩ γ2 ∪ (x1,+∞) . But there is
a path in D from a point in γ1 to i , and this path must intersect ∂U0 , where Q
takes real values. This is a contradiction.

It follows that W ′ = W . When z moves along γ1 , z would first reach a
before any other real number. If a ∈ D then D is multiply connected, which is
against our assumption. Hence we come to ζ before reaching a . Thus all the real
values that Q ever takes in D are attained in the outer contour of W , its complex
conjugate, and in (x1,+∞) . In the same way as above, we get a contradiction
with the fact that i is an accessible boundary point of D .

This completes the proof of Lemma 11.1.

11.2. Some special cases. The cases dealt with in the following lemma do
not fit into our general scheme so that they need to be handled separately.

Lemma 11.2. Suppose that ξ = 0 6= β and that f has no zeros, or that
ξ = β = 0 and f has only one zero, ignoring multiplicities. Then if f and f ′ have
only real zeros, f ′′ must have at least one non-real zero.

Proof of Lemma 11.2. To get a contradiction, suppose that f , f ′ , and f ′′

have only real zeros. Throughout the proof, W ′ denotes a component of K− with
W ′ 6= W , and we write R ∩ ∂W ′ = [w1, w2] . There must exist a unique zero w3

of f ′/f on [w1, w2] .
In the first case, g(z) = eβz where β 6= 0. Now f ′ has exactly 3 zeros, count-

ing multiplicities, all of them extraordinary, and f ′′ has exactly 3 extraordinary
zeros and altogether 5 zeros, by Lemma 9.1. Thus a, b, c, d are all zeros of f ′′ .
We may assume that the unique zero of f ′ on ∂W lies in [a, b] . In addition, f ′

has the special zero x0 ∈ [b, c] and one further zero v , which must be a simple
zero unless it coincides with x0 or u .

If there exists W ′ whose boundary intersects (d,∞) , then v ∈ [w1, w2] . Hence
there is only one such W ′ . Thus also f ′f ′′ 6= 0 on (−∞, a) (a zero of f ′′ there
would imply the existence of a bounded component of K− there and hence the
existence of a zero of f ′ there). So if a 6= u then a is an extraordinary zero of f ′′ ,
and the two other extraordinary zeros of f ′′ are on the same interval determined
by the zeros of f ′ . But v 6= w2 as v is a simple zero of f ′ , and so w2 is the only
zero of f ′′ on (v,∞) , a contradiction. If a = u then u is a double zero of f ′ , so
u = v and W ′ cannot exist. We conclude that (d,∞) ⊂ ∂K . A similar argument
shows that K− has no component W ′ whose boundary intersects (−∞, a) .

If a = u then u = v . Now K− = W , for otherwise f ′ would have to have a
zero other than x0 on [b, c] . Hence the zeros of f ′′ exactly at a, b, c, d , and c, d are
the only extraordinary zeros of f ′′ . Since f ′′ must have exactly 3 extraordinary
zeros, this is impossible.
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So a 6= u , hence a is an extraordinary zero of f ′′ , and the two other ex-
traordinary zeros of f ′′ are on the same interval determined by the zeros of f ′ .
Thus also v ∈ [b, c) , and there exists W ′ with v ∈ ∂W ′ . If x0 ≤ v < w2 then
f ′′ has the 3 zeros w2, c, d greater than the largest zero of f ′ , which is a con-
tradiction. If x0 ≤ v = w2 then f ′ has too many zeros unless x0 = v , and then
w1 = w2 = v = x0 . But now z passes through x0 twice when z traces ∂U0 once,
contradicting the fact that Q is one-to-one in U0 . This proves Lemma 11.2 in the
first case.

In the second case, by our standing assumption, g(z) = (z− t)µ for some real
t and for some integer µ = deg g ≥ 2n + 2. Now by Lemma 9.1, each of f ′ and
f ′′ has 2 extraordinary zeros, and they lie on the same interval determined by
the zeros of f or f ′ , respectively. Now Q′(t) > 0 so that t ∈ ∂K \ ∂K− . The
only zeros of f ′ other than t are x0 and a zero u ∈ ∂W . Possibly u = x0 is a
double zero, and otherwise u is a simple zero of f ′ and hence distinct from all of
a, b, c, d . If u = x0 then u = b or u = c , so we always have a 6= u 6= d . Now there
can exist no W ′ , and so K = W .

Suppose that t ∈ ∂U . We may assume that t > d .

If c ≤ u < d then a, b are the extraordinary zeros of f ′′ . Since u 6= d , also d
is an extraordinary zero of f ′′ , which is impossible.

If a < u ≤ b then a is the only zero of f ′′ less than the smallest zero u of
f ′ , which contradicts Lemma 9.1.

This proves Lemma 11.2 in the second case, and completes the proof of
Lemma 11.2.

11.3. On multiply connected domains.

Lemma 11.3. Suppose that f has only finitely many zeros and g ∈ U0 , so
that Q is rational. Suppose that f , f ′ , and f ′′ have only real zeros.

(i) Let ∞ be a parabolic fixed point of Q with only one petal, and let D be
the associated component of N(Q) . If f has at least one zero, then D is simply
connected.

(ii) Let ∞ be a parabolic fixed point of Q , and suppose that there are two
distinct components D1 and D2 of N(Q) associated with infinity. Then at least
one of D1 and D2 is simply connected.

(iii) Suppose that g is a polynomial. Let f have at least two distinct zeros.
Then D(t) is simply connected whenever f(t) = 0 .

Therefore the function g cannot be transcendental if f , f ′ , and f ′′ are to
have only real zeros.

Proof of Lemma 11.3. Suppose that parts (i), (ii), and (iii) have been proved.

Suppose that f has only finitely many zeros and g ∈ U0 . Write g = e−ξz2+βzP
as before. Suppose that f , f ′ , and f ′′ have only real zeros.
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If ξ > 0 then there are two components of N(Q) , say D1 and D2 , at the
parabolic fixed point at infinity, and by Lemma 11.1, each is multiply connected.
This contradicts (ii). So ξ = 0.

If β 6= 0 then the case when f has no zeros is ruled out by Lemma 11.2.
Suppose that f has at least one zero. Now ∞ is a parabolic fixed point of Q
with an associated component D of N(Q) . By (i), D is simply connected. Now
Lemma 11.1 gives a contradiction.

So g cannot be transcendental, and we have proved the last paragraph of
Lemma 11.3.

We proceed to prove (ii) of Lemma 11.3.

Let D1 , D2 be as in (ii). There are real numbers x1, x2 such that (−∞, x1) ⊂
D1 and (x2,+∞) ⊂ D2 , say. Suppose that D1 and D2 are multiply connected.

The points ±i ∈ ∂D1 ∩ ∂D2 and both are accessible boundary points of D1

and of D2 . It follows from [Sh, Proposition 4.1(β ) with p = 1, p. 15, and Re-
mark 2, p. 16] that at least one of ±i , and hence by symmetry, each of them,
lies on ∂D1 and similarly on ∂D2 . To prove that the points ±i are accessible
boundary points, let D be either one of D1 and D2 , and consider D . For con-
venience, suppose that (x2,+∞) ⊂ D . We use the argument of Przytycki [Pr].
Pick w ∈ D ∩ H+ with a large positive real part such that Q(w) ∈ D ∩ H+ .
Choose w so that w and Q(w) can be joined by a path Γ in D∩H+ such that Γ
(including its end points) does not intersect

⋃∞
j=0Q

j(E) , where E consists of the
critical points of Q . We may assume that the only points z1, z2 of Γ satisfying
z2 = Q(z1) are z1 = w , z2 = Q(w) . Set Γ0 = Γ. Define inductively branches
of Q−1 taking Γj onto Γj+1 so that Γj and Γj+1 share exactly one point. The
set Γ′ =

⋃∞
j=0 Γj is a continuous path. The various branches of Q−j defined in

this way form a normal family in a neighbourhood of Γ. Each limit function of
a convergent subsequence of such branches of Q−j is a constant function and its
constant value belongs to ∂D . The spherical diameters of the Γj therefore tend
to zero as j → ∞ . If the Γj cluster to more than one point, then the cluster
points form a continuum, and each such cluster point z satisfies Q(z) = z . But
there is no such continuum. Hence the sequence Γj tends to a single point, which
must be a fixed point of Q in J(Q) , and hence can only be ±i or ∞ . If we can
choose Γ so that the Γj remain bounded, then the limit point is i or −i . This
shows also that the points ±i are accessible boundary points of D since a path
of the form Γ′ can tend to one of them, and the complex conjugate path tends to
the other.

Now we present the details of the construction of Γ′ . Applying Lemma 10.1
we find domains X1 ⊂ X0 ⊂ D with the properties given there. Let γ0 ⊂ D be
the inner boundary contour of X0 . We can choose w ∈ γ0 ∩H

+ , and assume that
Γ \ {w,Q(w)} ⊂ X0 \X1 . Then the points ±i lie in the interior Ω of γ0 . Since
Γ∩

⋃∞
j=0Q

j(E) = ∅ , there is a unique lift Γ1 of Γ by Q−1 starting from w . That
is, Q(Γ1) = Γ and Γ1 starts at w , corresponding to tracing Γ starting at Q(w) .
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We may assume that Γ is orthogonal to ∂X0 at w and to ∂X1 at Q(w) . Then
Γ1 enters into D \ X0 at w . We claim that Γ1 remains in D \ X0 . If not,
then Γ1 meets γ0 so that Γ = Q(Γ1) meets Q(γ0) = ∂X1 at a point other than
Q(w) , which is against the construction of Γ. Also Γ1 continues until it hits a
point w1 ∈ D \ X0 with Q(w1) = w . Otherwise, Γ1 clusters to ∂D ⊂ J(Q) ,
contradicting the fact that Q is rational and Γ goes (from Q(w)) to w ∈ D . We
obtain Γj for j ≥ 2 by continuing in this way. Suppose that Γ1,Γ2, . . . ,Γj stay
in D \X0 while Γj+1 hits γ0 . Then Γj = Q(Γj+1) hits Q(γ0) = ∂X1 , which is
against our assumption. This produces a bounded path Γ′ , as required.

Consider both D1 and D2 again. Applying Lemma 10.1 we find domains
X1 ⊂ X0 ⊂ D1 and X ′

1 ⊂ X ′
0 ⊂ D2 with the properties given there. Let γ0 ⊂ D1

be the inner boundary contour of X0 , and define γ′0 ⊂ D2 in the same way in
terms of X ′

0 . Let D0 be the interior of the Jordan curve γ0 , and let D′
0 be the

interior of γ′0 . Then by Lemma 10.1, the points ±i lie in D0 ∩D
′
0 . Since γ0 ⊂ D1

and D1 ∩D2 = ∅ , and since D2 is unbounded, it follows that D2 ∩D0 = ∅ . Thus
i /∈ ∂D2 , which is a contradiction. This proves (ii).

Consider D as in (i), and assume that D is multiply connected while f has at
least one zero. Note that ξ = 0 6= β . Again we may assume that (x,∞) ⊂ D for
some real x . This is equivalent to β < 0, which can be achieved by replacing f(z)
by f(−z) , if necessary. Let x1 be the smallest real number such that (x1,∞) ⊂ D .
As in the proof of Lemma 11.1, we find that Q(x1) = ∞ , and so (f ′/f)(x1) = 0.
Again Q(x) > x for all x > x1 , and limx→x1+Q(x) = limx→+∞Q(x) = +∞ ,
and x1 6= x0 . There is a zero x2 of Q′ but no zeros of f or of f ′ on (x1,∞) .
Thus f ′′(x2) = 0. So the values in

[

Q(x2),∞
)

are taken by Q at least twice
on (x1,∞) .

We apply Lemma 10.1 and find the domains X0 and X1 with the properties
given there.

As in the proof of part (ii), we see that ±i ∈ ∂D and that both are accessible
boundary points of D .

The function f cannot have any zero t for which D(t) is multiply connected.
For if there is such a t , then, since ±i ∈ ∂D(t) by Lemma 8.4, it follows that
D(t) is contained in the interior of the inner boundary contour of X0 . But by
Lemma 8.4, D(t) contains a Jordan curve γ such that i lies in the interior of γ .
This prevents i from lying on ∂D . This contradiction shows that D(t) is simply
connected for each zero t of f . (This is the same argument that we used to show
that there cannot exist two multiply connected components D1 , D2 in part (ii).)

So we assume that f has at least one zero t . Now D(t) is simply connected,
and by Lemma 8.5, we have ±i ∈ ∂D(t) . Thus D(t) is a continuum that lies
outside D and contains ±i .

For any j ≥ 1, let Yj be the component of Q−j(X0) containing X0 . Then
each Yj is multiply connected and is bounded by finitely many disjoint Jordan

curves, each smooth outside infinity, and Yj ⊂ Yj+1 ∪
⋃j

l=0Q
−l(∞) . Also each Yj
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is symmetric about R .
Let γj and γ′j be the components of ∂Yj such that the Jordan curve γj

contains the point i in its interior, and γ′j contains the point −i in its interior.

Since ±i belong to the compact connected set D(t) that lies outside D , we have
γj = γ′j . Clearly γj is symmetric about R and contains ±i in its interior Dj .

Since Dj is a Jordan domain symmetric about R , we have R∩Dj = (vj , wj) ,

where −∞ < vj < wj < +∞ . We have Dj+1 ⊂ Dj ∪
⋃j

l=0 Q
−l(∞) , since

Yj ⊂ Yj+1 ∪
⋃j

l=0Q
−l(∞) . Hence vj ≤ vj+1 < wj+1 ≤ wj . As j → ∞ , the

sequences vj , wj converge to limits v, w with v ≤ w . Note that v, w ∈ ∂D .
Let t1, . . . , tk be all the distinct zeros of f . As we have seen, each D(tj)

is simply connected, symmetric about R , and connects i to −i . Let F be the
component of C \D containing i . Since k ≥ 1 and D(t1) ⊂C \D contains ±i ,
we have ±i ∈ F . Thus F ⊂ Dj for all j . Suppose that t1 < · · · < tk . Then

the set
⋃k

j=1D(tj) and all points separated by this set from infinity, lie in F . If
k ≥ 2 then F contains a point s ∈ (t1, t2) with (f ′/f)(s) = 0, hence Q(s) = ∞ .

Suppose first that k ≥ 2, and pick s ∈ F with (f ′/f)(s) = 0.
There is a component T of Q−1(D) , symmetric about R , with s ∈ ∂T . There

are u1, u2 ∈ ∂T with Q(u1) = i , Q(u2) = −i . The points u1, s lie in different
components of ∂T , for otherwise they are joined by a continuum F1 in J(Q) ,
and Q(F1) is a continuum in J(Q) joining i to ∞ , which makes it impossible for
D to be multiply connected. Hence there is a Jordan curve γ ⊂ T separating s
from u1 . We may take γ to be symmetric in R . There is a component F1 of
Q−1(F ) with u1 ∈ ∂F1 . The set F1 ∩ ∂T contains points w1, w2 with Q(w1) = i
and Q(w2) = −i (in fact, w1 = u1 ).

We may take s with s ∈ ∂W ′ for a component W ′ 6= W of K− . For
otherwise, x0 ∈ (t1, t2) so that f ′ has 3 zeros on (t1, t2) . If one of these at
least is distinct from x0 , we take s to be that zero. Then (f ′′/f)(s) < 0 by the
last statement of Lemma 5.1(1)(i). (Otherwise, x0 is a zero of f ′ of order 3. If
x0 is a multiple zero of f ′ then x0 ∈ {b, c} for otherwise z passes through x0

twice when tracing ∂U0 , contradicting the fact that Q is one-to-one in U0 . But
now x0 ∈ {b, c} and x0 /∈ ∂(K− \W ) imply that x0 is a double zero of f ′ , for
otherwise, e.g., x0 = b = a , in which case Q has the pole x0 on ∂U , which is
impossible by Lemma 7.4.)

So R∩ ∂W ′ = [t′, t′′] where one of t′ is a zero of f and the other is a zero of
f ′′ , one belonging to the component D(t1) , the other to D(t2) .

Thus R ∩ ∂T ⊂ [v′, v′′] , where t′ < v′ < v′′ < t′′ , and where v′ ∈ ∂D(t1) ,
v′′ ∈ ∂D(t2) . The set T must lie between D(t1) and D(t2) , and the only points
there that Q maps to ±i are a point w3 ∈ W ′ with Q(w3) = −i , the point
w3 , and possibly the points ±i on the boundary of the region between D(t1)
and D(t2) (unless the closures of D(t1) and D(t2) meet also outside ±i so as
to prevent access from s to ±i). If one of w1, w2 lies in H+ and the other
in H− , then F1 intersects [v′, v′′] also. Hence Q maps some subset of [v′, v′′]
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onto [t1, tk] . But now Q(t′) < t′ and Q(t′′) > t′′ , for otherwise f has a zero on
(t′, t′′) (compare the proof of Lemma 11.1). Hence, on the set (t′, t′′) and thus on
[v′, v′′] , Q omits the values in [Q(t′), Q(t′′)] ⊃ [t′, t′′] while [t′, t′′] ⊂ [t1, tk] . This
is a contradiction. Hence w1, w2 lie both in H+ or both in H− . Suppose that
w1, w2 ∈ H+ . Then w1 = i and w2 = w3 . But Q is locally homeomorphic at i
and maps each of D(t1) and D(t2) onto itself. Hence it cannot map any set close
to i and between D(t1) and D(t2) onto F ∩N for some neighbourhood N of i .
The same contradiction is obtained at −i if w1, w2 ∈ H− .

For (i), it remains to assume that f has only one zero t . Note that there is
a component T of Q−1(D) with x0 ∈ ∂T . Now T ∩ U0 6= ∅ (or, if f ′′(x0) = 0,
we may choose T with T ∩ U0 6= ∅). There is a path λ ⊂ D ∩H+ from infinity
to i , and a path λ1 ∈ T ∩ U0 with Q(λ1) = λ . Since Q is one-to-one in U0 ,
λ1 goes from x0 to i . Let λ2 be the closure of the union of λ1 and its complex
conjugate. Now D(t) ∪ λ2 ⊂ F , and if f ′′(x0) 6= 0, then by the last statement of
Lemma 5.1(1)(i), there is a zero s of f ′/f strictly between t and x0 . Now we
can proceed as above after we found s ∈ (t1, t2)∩F with (f ′/f)(s) = 0, to arrive
at a contradiction.

Suppose that f ′′(x0) = 0 and that we cannot find a pole s of Q strictly
between t and x0 . Then it must be the case that if t > x0 then x0 = b , and
if t < x0 then x0 = c . Suppose that t > x0 = b (a similar argument works
if t < x0 = c). If x0 is a triple zero and hence the only zero of f ′/f , then
consideration of R ∩D(t) in view of Lemma 8.3 shows that D contains no zero
of Q′ other than the point a . This contradicts (33) of Lemma 10.1(1).

Suppose that x0 = b is a double zero of f ′/f . Then (x0, x0+ε) ⊂ ∂U0 ⊂ ∂K .
If t is a multiple zero of f , then Q′(t) > 0 and t ∈ ∂K \ ∂K− . But then also
f ′(t) = 0 so that f ′′(x1) = 0 for some x1 ∈ (x0, t) . Thus (x1, x1 + ε) ⊂ ∂W ′ for
some component W ′ 6= W of K− . Now R ∩ ∂W ′ = [x1, x2] , say. If x2 ≤ t then
there is x3 ∈ [x1, x2) ⊂ (x0, t) with Q(x3) = ∞ and hence f ′(x3) = 0, which is
against our assumption. If x2 > t then t ∈ ∂K− , which is also impossible.

Hence t is a simple zero of f , and Q′(t) = 0. If there is x1 ∈ (x0, t) with
f ′′(x1) = 0 = Q′(x1) , then, as above, there is a component W ′ 6= W of K− such
that (x1, x1 + ε) ⊂ ∂W ′ so that R ∩ ∂W ′ = [x1, x2] for some x2 ≤ t . Thus there
is x3 ∈ [x1, x2] with f ′(x3) = 0, a contradiction. Hence f ′′ 6= 0 on (x0, t) , and
so [x0, t] ⊂ ∂U0 while [t, t + ε) ⊂ ∂W ′ for some component W ′ 6= W of K− .
There must be x3 ∈ [t, x2] = R ∩ ∂W ′ with Q(x3) = ∞ , hence (f ′/f)(x3) = 0.
Thus there is x4 ∈ (x0, x3) with f ′′(x4) = 0. But then t < x4 < x3 ≤ x2 so
that R ∩ ∂W ′ must end at x4 and be equal to [t, x4] . This is impossible. This
contradiction completes the proof of (i).

To prove (iii), we proceed as in the proof of (i), replacing the component D
in (i) by the component D(t) , which we assume to be multiply connected, noting
that f has a zero s 6= t for which D(s) is simply connected by Lemma 8.5. We
note that if x0 is a double zero of f ′/f then f ′/f has exactly 2 distinct zeros, and
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now degQ = 3. We omit further details. This completes the proof of Lemma 11.3.

12. When g is a polynomial

For the rest of the paper, we assume that g is a polynomial. By our standing
assumption, deg g ≥ 2n+ 2. Recall that f(z) = g(z)/(z2 + 1)n , and that f , f ′ ,
and f ′′ are assumed to have only real zeros. Now ∞ is a repelling fixed point of
Q since Q(z) =

(

1− (deg g − 2n)−1
)

z +O(1) as z → ∞ , and the multiplier of Q

at infinity is
(

1− (deg g − 2n)−1
)−1

> 1. By Lemmas 11.2 and 11.3, we may and
will assume that f has at least 2 distinct zeros. Hence by Lemma 11.3(iii), the
domain D(t) is simply connected whenever f(t) = 0. By Lemma 9.1, each of f ′

and f ′′ has exactly 2 extraordinary zeros.

We next obtain a number of lemmas concerning what happens on the inter-
val [b, c] .

Lemma 12.1. At least one of the intervals [b, x0) and (x0, c] contains no
zeros of f , and the corresponding one of the intervals (b, x0) and (x0, c) contains
no zeros of any one of the functions f , f ′ , and f ′′ .

Proof of Lemma 12.1. Suppose that there are zeros x, y of f with b ≤ x <
x0 < y ≤ c . We have Q(x0) = ∞ , and Q maps U0 one-to-one onto H+ . We have
x, y ∈ ∂U0 . As z traces ∂U0 in the positive direction, starting from and ending at
x0 , Q(z) traces R once in the increasing direction. Thus y = Q(y) < Q(x) = x ,
which is a contradiction.

Hence we may assume, for example, that [b, x0) contains no zeros of f . Since
Q′(b) = 0, we have f ′′(b) = 0. If neither f ′ nor f ′′ vanishes anywhere on (b, x0) ,
there is nothing more to prove. So suppose that there is a zero of f ′ or of f ′′

on (b, x0) . Any such point is on the boundary of K− . Similarly, if there is a zero
of f or of f ′ or of f ′′ on (x0, c) then such a point is on the boundary of K− .
Let G be the Jordan domain bounded by [b, c] and that arc of ∂U0 that joins b
and c in H+ . Let the components of G \ U0 be Wj with R ∩ ∂Wj = [cj , dj] for
1 ≤ j ≤ N . Of course, the Wj are components of K− . Label the components
so that b < cj < dj < cj+1 ≤ c for all j . Recall that x0 is bounded away from
K− so that x0 does not lie in [cj , dj] for any j . We now need to show that if
there is a component Wj with cj < x0 then we must have cj < x0 for all j with
1 ≤ j ≤ N . Therefore, to get a contradiction, we assume that this is not true,
which means that c1 < x0 < cN .

Suppose that also c2 < x0 . For each j , there is a unique zero uj of f ′/f
on [cj, dj ] . So if, for example, f ′′(cj) = 0 6= f(cj) , we might have cj = uj and
f ′(cj) = 0, while if f(cj) = 0, we cannot have cj = uj . Between any two zeros
of f , there is exactly one zero of f ′ , apart from the interval (ak, ak+1) between
successive zeros of f that contains x0 . On the interval (ak, ak+1) , the point x0

is the middle zero of f ′ , with appropriate interpretation if x0 is a multiple zero
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of f ′ . Since f 6= 0 on [b, x0] while [b, x0] contains the zeros u1 < u2 < x0 of f ′ ,
we get a contradiction. This shows that if c1 < x0 < cN then c2 > x0 .

Suppose that (a, b) contains a zero u of f ′/f . Then (u, u1) must contain a
zero of f which must be b or c1 . This is impossible, and it follows that f ′ 6= 0
on [a, b] . Hence f ′(u) = 0 for exactly one point u ∈ (c, d) .

We now deduce a number of inequalities involving x and Q(x) , for various
values of x ∈ ∂U0 ∪ ∂W . All these inequalities can be obtained by checking what
happens to Q(z) as z traces ∂U0 or ∂W or ∂Wj once in the positive direction,
starting from and ending at x0 or at u or at uj , as the case may be. Note that
Q(x0) = Q(u) = ∞ .

Suppose that f(t) = 0 for some t ∈ (x0, c] . Since Q(t) = t > x0 , we have
Q(x) > t for all x ∈ [b, x0) . In particular, we have c1 < d1 < x0 < t < Q(c1) <
Q(d1) . Now Q is decreasing on each of [c1, u1) and (u1, d1] , and Q(u1) = ∞ .
Thus Q(x) decreases from Q(c1) to −∞ as x increases from c1 to u1 . It follows
that Q has a fixed point and so f has a zero on (c1, u1) ⊂ [b, x0) , which is
impossible. So if c1 < x0 (and if f 6= 0 on [b, x0)) then f has no zero on (x0, c] ,
either. Now, since f has no zero on (x0, c] , we may use the above argument which
proved that c2 > x0 , to show that cN−1 < x0 . It follows that N = 2.

Now all of the points b, c1, d1, c2, d2 are zeros of Q′ and hence zeros of f ′′

and not zeros of f . Recall that f ′(u) = 0 for exactly one point u ∈ (c, d) . The
interval (u2, u) between successive zeros of f ′ now contains exactly two zeros of
f ′′ , namely, the points d2 and c , which is impossible. (The point c or d2 could
be a multiple zero of f ′′ only if d2 = c , which would then have to be a zero of
f ′′ or order 2 for otherwise there would exist more components Wj than allowed,
leading to the same result.) This contradiction shows that if f 6= 0 on [b, x0) and
if f ′ or f ′′ has a zero on (b, x0) , then f(c) 6= 0 and none of f , f ′ , and f ′′ can
vanish on (x0, c) . This proves Lemma 12.1.

Lemma 12.2. (i) Suppose that ff ′f ′′ 6= 0 on (b, x0) . If c1 exists, we have
f ′′(c1) = 0 6= f(c1) .

(ii) Suppose that ff ′f ′′ 6= 0 on (x0, c) . If cN exists, we have f ′′(cN ) = 0 6=
f(cN ) .

Proof of Lemma 12.2. It suffices to consider the case when ff ′f ′′ 6= 0 on
(b, x0) . Suppose that c1 exists so that c1 is a zero of Q′ and hence of f or of f ′′ .
It therefore suffices to prove that f(c1) 6= 0. To get a contradiction, suppose that
f(c1) = 0. Write D = D(c1) . By Lemma 8.3, we have (v1, v2) = D ∩ R where
x0 < v1 < c1 < v2 < u1 , and v1, v2 ∈ J(Q) with Q(v1) = v2 and Q(v2) = v1 . On
the other hand, Q is increasing on (x0, c1) and decreasing on (c1, u1) as can be
seen by letting z trace ∂U0 and ∂W1 . Hence Q(v1) < Q(c1) = c1 < v2 . This is
a contradiction, and Lemma 12.2 is proved.

Lemma 12.3. If N ≥ 2 then for 1 ≤ j ≤ N − 1 , exactly one of the points
dj and cj+1 is a zero of f but not of f ′′ and the other one is a zero of f ′′ but
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not of f . If (c, d) contains a zero of f ′ then also exactly one of dN and c is a
zero of f but not of f ′′ and the other one is a zero of f ′′ but not of f .

Proof of Lemma 12.3. Suppose that N ≥ 1. Suppose that for some j with
1 ≤ j ≤ N − 1, both dj and cj+1 are zeros of f so that neither one is a zero
of f ′′ . Then there is no zero of f ′ between dj and cj+1 , which contradicts Rolle’s
theorem. Suppose then that both dj and cj+1 are zeros of f ′′ and hence not zeros
of f . Then there are exactly two zeros of f ′′ (namely, dj and cj+1 ) between the
successive zeros uj and uj+1 of f ′ , which is also impossible. If (c, d) contains a
zero of f ′ , we argue in the same way. Lemma 12.3 is proved.

13. There are no zeros of ff ′f ′′ outside [a, d]

Recall that f(z) = g(z)/(z2+1)n , where g is a polynomial of degree ≥ 2n+2,
and that f , f ′ , and f ′′ are assumed to have only real zeros.

Lemma 13.1. Suppose that g is a polynomial with at least 2 distinct zeros,
and that f(t) = 0 . Then a < t < d .

Proof of Lemma 13.1. Let the assumptions of Lemma 13.1 be satisfied. Then
Q is a rational function. By Lemma 11.3(iii), the domain D(t) is simply connected
whenever f(t) = 0. To get a contradiction, suppose that f(t) = 0, that D = D(t)
is simply connected, and that t /∈ (a, d) . Then t ≤ a or t ≥ d . We consider the
case t ≥ d as the case t ≤ a is similar. So suppose that t ≥ d . By Lemma 8.6,
all the other zeros t′ of f (for which D(t′) is simply connected, hence in this case
all other zeros t′ of f ), satisfy a < t′ < d . Also, f ′/f has no zero on (c, t) and
hence not on (c, d) . But f ′/f has a zero on [a, b] .

Suppose that all zeros of f are ≥ b . Suppose that f ′′(a) = 0 6= f ′(a) . If
f ′′ has no zeros < a then f ′′ has exactly one extraordinary zero < u , which
contradicts Lemma 9.1, unless f ′ has a zero < a . If f ′ has a zero v < a ,
take v to be maximal. Then v ∈ ∂W ′ where W ′ is a component of K− , and
v ∈ R ∩ ∂W ′ = [w1, w2] , say. Since f has no zeros ≤ b , we have f ′′(w1) =
f ′′(w2) = 0. Whether some of v , w2 and a coincide or not, we see that there are
exactly 2 zeros of f ′′ between consecutive zeros of f ′ (such as v, u or other pairs
to the left of them in case K− has components other then W ′ further left), or f ′′

has exactly one extraordinary zero to the left of the smallest zero of f ′ . In any
case we have a contradiction. So suppose that f ′′(a) = 0 = f ′(a) . Then a = u ,
and f ′ has a double zero at a . If K− has a component W ′ to the left of a , we
get the same contradiction as above for the smallest zero of f ′′ , or two zeros of f ′′

between zeros of f ′ in case there are two or more such components W ′ . Otherwise
ff ′f ′′ 6= 0 on (−∞, a) . Consideration of possible components Wj 6= W of K−

with boundaries intersecting [b, c] , for 1 ≤ j ≤ N , as in the proof of Lemma 12.1
(whether ff ′f ′′ 6= 0 on (b, x0) or on (x0, c)), shows that the extraordinary zeros
of f ′′ must occur somewhere on (dN ,∞) . In the same way as above, we see that
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K− cannot have a component W ′ 6= W with t /∈ ∂W ′ and R ∩ ∂W ′ = [w1, w2]
where w1 ≥ d .

Since f ′ has a double zero at a , f must have a zero on (b, x0) for otherwise
f ′ has at least the 3 zeros a = u, x0 less than the smallest zero of f , violating
Lemma 9.1. Thus by Lemma 12.1, ff ′f ′′ 6= 0 on (x0, c) . Also, N ≥ 1 in the
notation of the proof of Lemma 12.1.

If K− has a component W ′ with R ∩ ∂W ′ = [w1, w2] , where w1 ≥ d , then
t = w1 or t = w2 , and there is w3 ∈ [w1, w2] with f ′(w3) = 0. If t = w1 then
f ′′(w2) = 0, so that if f ′(w2) 6= 0, then f ′′ has exactly one extraordinary zero to
the right of the largest zero of f ′ , which is impossible. If f ′′(w2) = f ′(w1) = 0
then f ′ has exactly one extraordinary zero to the right of the largest zero of f ,
which is impossible. If t = w2 and f ′′(dN ) = 0 6= f(dN ) , then there are exactly
4 zeros (which are w1, d, c, dN ) of f ′′ between the consecutive zeros w3, uN of
f ′ (true even if w2 = w3 ), which is a contradiction. If t = w2 then w2 6= w3

for otherwise w2 is a multiple zero of f and hence not on ∂K− . If t = w2 and
f(dN ) = 0 6= f ′′(dN ) and x0 > dN , then there are exactly 2 zeros of f ′ (which
are x0 and w3 ) between the consecutive zeros w2, dN of f . So there is no such
component W ′ 6= W at all. Thus f ′′ 6= 0 on (d,∞) and f ′ 6= 0 on [c,∞) .

Since K− has no component W ′ with ∂W ′ ∩ (d,∞) 6= ∅ , then either t = d ,
or t > d and t is a multiple zero of f so that Q′(t) > 0 and t ∈ ∂K , hence
t ∈ ∂U .

Suppose that t = d . Since ff ′f ′′ 6= 0 on (x0, c) then f ′′ has exactly one
zero, c , greater than the largest zero x0 of f ′ , which is impossible.

Suppose that t > d and t is a multiple zero of f . Now the extraordinary
zeros of f ′′ are c, d which are greater than the largest zero x0 of f ′ , and so f ′′

has no other extraordinary zeros, by Lemma 9.1.
We use notation as in the proof of Lemma 12.1. If f ′′(c1) = 0 6= f(c1) then,

unless c1 = u1 , f ′′ has at least 2 zeros between the consecutive zeros a, u1 of
f ′ , which is impossible. If c1 = u1 then f ′ has the 4 zeros a, u1 less than the
smallest zero of f (counting multiplicities), which contradicts Lemma 9.1.

If f(c1) = 0 6= f ′′(c1) and N = 1, then c1 6= u1 , and f ′ has exactly the 2
zeros u1, x0 between the consecutive zeros c1, t of f , which is impossible.

If f(c1) = 0 6= f ′′(c1) and N ≥ 2, then one of dN−1, cN is a zero s of f ,
and f ′ has exactly the two zeros uN , x0 between the consecutive zeros s, t of f ,
which is impossible.

Suppose then that f has a zero s < b . Since f ′/f has a zero on [a, b] , it
follows from Lemma 8.6 that D(s) is multiply connected, and then from Lemma
11.3(iii) that there is no such zero s at all.

This completes the proof of Lemma 13.1.

Lemma 13.2. Suppose that g is a polynomial with at least 2 distinct ze-
ros. Then (−∞, x0) or (x0,∞) contains at most one zero of f ′ , not counting
multiplicities.
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Proof of Lemma 13.2. Suppose that g is a polynomial with at least 2 dis-
tinct zeros. We know from Lemma 13.1 that f has no zeros outside (a, d) . Thus
f ′′(a) = f ′′(d) = 0. All zeros of f ′ on (−∞, b) and (c,∞) are therefore extraor-
dinary zeros of f ′ , and by Lemma 9.1, there are only 2 of them, counting multi-
plicities (but they do not have to lie on (−∞, b)∪ (c,∞)). In view of Lemma 12.1,
we may assume that (b, x0) contains no zeros of ff ′f ′′ . If f ′ has no zeros on
(−∞, a) , then (−∞, x0) contains at most one zero of f ′ , namely, one on [a, b] ,
if any. If f ′ has a zero w on (−∞, a) then there is at most one such zero, for
otherwise there will be exactly 2 zeros of f ′′ (counting multiplicities) between
successive such zeros of f ′ since each such zero of f ′ lies on the boundary of a
component of K− . If now there is also a zero u of f ′ on [a, b] then both zeros
of f ′ must be simple (in view of Lemma 9.1). But now there are exactly 2 zeros
of f ′′ (counting multiplicities) between the successive zeros u and w of f ′ , again
a contradiction. This shows that f ′ has at most one zero on (−∞, x0) . This
completes the proof of Lemma 13.2.

Lemma 13.3. Suppose that g is a polynomial with at least 2 distinct zeros.
Then the unbounded component of H+ \W must be contained in K and must
therefore coincide with U . Thus f ′ and f ′′ have no zeros outside [a, d] .

Proof of Lemma 13.3. Suppose that g is a polynomial with at least 2 distinct
zeros. We know from the previous lemmas that f has no zeros outside (a, d) .
To get a contradiction, suppose that the unbounded component of H+ \W inter-
sects K− . Then there is a zero u′ of f ′ outside [a, d] , lying on the boundary of
a bounded component W ′ of K− , and both end points w1 and w2 of R ∩ ∂W ′

must be zeros of f ′′ and not zeros of f . We may assume that w1 < u′ < w2 , and
take u′ so that there are no zeros of f ′ between u′ and a if u′ < a and between
u′ and d if u′ > d . There cannot be two such zeros of f ′ on the same side of a as
there would be exactly two zeros of f ′′ between a pair of successive zeros of f ′ like
that, which is impossible. Thus there might be one such zero < a and one > d .
Let us denote such a zero < a by u′ if one exists, and denote such a zero > d by
u′′ if one exists. Then choose the nearest zeros wj of f ′′ for 1 ≤ j ≤ 4 so that
w1 ≤ u′ ≤ w2 and w3 ≤ u′′ ≤ w4 , where either 2 or 4 of these zeros of f ′′ exist.
Thus [w1, w2] = R∩∂W ′ for the component W ′ of K− whose boundary contains
u′ , and similarly for [w3, w4] .

Suppose, for example, that there exists u′ < a . Suppose that f ′ has no
zero on [a, b] . Then a, b must be zeros of f ′′ and not of f . (For f(a) 6= 0 by
Lemma 13.1, and if f(b) = 0, then by Lemma 9.1, f ′ must have exactly two
extraordinary zeros on (−∞, b) , and they must be u′ and one other zero, which
will have to lie on [a, b] .) Now there are three zeros w2, a, b of f ′′ on (u′, x0) (two
of which are therefore extraordinary) and hence exactly one zero of f ′′ between
any other pair of successive zeros of f ′ . By Lemma 9.1, f ′′ cannot have any other
extraordinary zeros, which contradicts the fact that w1 , which is smaller than the
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smallest zero u′ of f ′ , is an extraordinary zero of f ′′ .
So if u′ exists, it must be the case that f ′ has a zero u on [a, b] and no zeros

on [c, d] . Now if a < u and u′ < w2 , then (u′, u) contains exactly 2 zeros of f ′′ ,
namely w2 and a . Since u′ and u are consecutive zeros of f ′ , this is impossible.
If a = u or u′ = w2 , then f ′ has at least 3 zeros smaller than the smallest zero
of f (which is ≥ b), which contradicts Lemma 9.1.

Thus u′ cannot exist, and by a similar argument, u′′ cannot exist.
We have now proved that K contains the unbounded component of H− \W .

If f ′ or f ′′ had a zero x outside [a, d] , then by what we have already proved and
by Lemma 5.1(4), we cannot have f ′(x) = 0, and so f ′′(x) = 0 = Q′(x) . But
since Q′(x) = 0, it follows that x ∈ ∂K− , which is impossible. This completes
the proof of Lemma 13.3.

14. Finishing the proof of Theorem 1.1

We assume that f(z) = g(z)/(z2 + 1)n , where g is a polynomial of degree
≥ 2n + 2 with at least 2 distinct zeros, and that f , f ′ , and f ′′ have only real
zeros. Thus K = U0 ∪U and there is a bounded component W of K− separating
U0 and U in H+ . We assume, as we may in view of the preceding lemmas, that
all the zeros of f lie in (a, d) and that D(t) is simply connected for every zero t
of f .

We consider two cases. In view of Lemma 12.1, we may and will assume
without loss of generality that none of f , f ′ , and f ′′ vanishes on (b, x0) and that
f(b) 6= 0. Then f ′ has a unique zero u on [a, b] ∪ [c, d] .

We know by Lemma 13.3 that f ′f ′′ has no zeros outside [a, d] , either. We
assume that ff ′f ′′ has only real zeros and derive a contradiction.

Case I. We assume that u ∈ [c, d] . Thus f ′(b) 6= 0, and so b < x0 . Hence
(b, x0) ⊂ ∂U0 . Now each of a, b is a zero of f ′′ and is not a zero of f . Then by
Lemma 9.1, f ′′ has exactly 2 extraordinary zeros, which then must be a and b .
Since f(d) 6= 0, we must have f ′(d) = 0 = f ′′(d) , for otherwise d is another
extraordinary zero of f ′′ . Thus also u = d . Now f ′ must also have exactly
2 extraordinary zeros, by Lemma 9.1, and x0 is also an extraordinary zero by
Lemma 7.4. But d counts as 2 extraordinary zeros of f ′ (since the largest zero
of f is < d), so there are no others by Lemma 9.1. This is a contradiction.

Case II. We assume that u ∈ [a, b] , so that f ′ 6= 0 on [c, d] . Suppose first that
each of c, d is a zero of f ′′ and is not a zero of f . Thus c, d are extraordinary
zeros of f ′′ , so by Lemma 9.1, f ′′ has no other extraordinary zeros. Since a
cannot be an extraordinary zero of f ′′ , we have f ′(a) = f ′′(a) = 0 (otherwise, a
is smaller than the smallest zero of f ′ ). So u = a . Since there needs to be a zero
of f ′′ between the consecutive zeros a, x0 of f ′ , we have f ′′(b) = 0. Now a is a
double extraordinary zero of f ′ while x0 is also an extraordinary zero of f ′ . This
contradicts Lemma 9.1.
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Thus f ′′(d) = 0 and f(c) = 0 6= f(b)f(a)f(d) . If a < u then f ′′ has exactly
one zero (which is extraordinary) on (−∞, u) , which contradicts Lemma 9.1. For
if a is a multiple zero of f ′′ while f ′(a) 6= 0, then a is a multiple zero of Q′

so that there is a component W ′ of K− with (a − ε, a) ⊂ ∂W ′ for some ε > 0.
This contradicts Lemma 13.3. Thus a = u and f ′(a) = 0. Now a is a double
extraordinary zero of f ′ , and by Lemma 9.1, f ′ has no other extraordinary zeros.
Hence f must have a zero on (a, x0) . Since f 6= 0 on (a, b) ∪ (b, x0) , we must
then have f(b) = 0, which is a contradiction.

This completes the proof of Theorem 1.1.

15. Proof of Lemma 2.2

Proof of Lemma 2.2. Let f be given by (2), where Φ is a non-constant real
polynomial with no real zeros and g ∈ U2p , so that f has only real zeros while
we do not make any a priori assumption concerning the reality of the zeros of
f ′ or f ′′ . We have the representation (compare [HW1, Lemma 3, p. 231], [L,
Theorem 2, p. 310])

(34) ψ(z) = γz + δ +

ω
∑

k=τ

′

Ak

(

1

ak − z
−

1

ak

)

−
Ak0

z
,

where γ ≥ 0, δ ∈ R , Ak > 0, and where

(35)
ω

∑

k=τ

′Ak

a2
k

<∞.

The dash in the summation in the above (34) and (35) indicates that if there is
k0 with ak0

= 0 (it would be k0 = 0 by our convention) then k = k0 is omitted
in the summation and then the extra term −Ak0

/z is included in (34); if there is
no such k0 then the term −Ak0

/z is omitted in (34).
We have, by (24),

(36)

f ′

f
≡ L =

m0

z
−

Φ′

Φ
(z) + S′(z) +

Π′

Π
(z)

=
m0

z
−

Φ′

Φ
(z) − a(2p+ 2)z2p+1 + b(2p+ 1)z2p + c(2p)z2p−1

+ d(2p− 1)z2p−2 + · · ·+ zp1

ω
∑

k=τ

ak 6=0

mk

ap1

k (z − ak)

where mk is the multiplicity of ak as a zero of g .
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Suppose that f has no zeros so that ψ ≡ 1. Then by (36) and (18) we have

f ′

f
(z) ∼ C1z

deg S−1 and
f ′

f
(z) ∼ C2z

deg ϕ−deg Ψ,

as z → ∞ , for some C1, C2 ∈ C \ {0} . Thus

(37) degϕ = deg S + deg Ψ − 1 if f has no zeros.

This proves (i).
If f has at least one but only finitely many zeros then ψ(z) ∼ −1/z as z → ∞

by (17), so by (36) and (18),

(38)
f ′

f
(z) ∼ C1z

deg S−1 ∼ C2z
deg ϕ−1−deg Ψ if S′ 6≡ 0

so that

(39) degϕ = deg S + deg Ψ.

We remark that by a result of the author [H1], if f has only finitely many zeros
and g ∈ U2p then f ′′ has at least 2p non-real zeros.

Suppose that f has at least one but only finitely many zeros and S′ ≡ 0. So
deg S = 0. Then g is a polynomial and by (18),

f ′

f
(z) ∼ C1z

deg ϕ−1−deg Ψ as z → ∞

while by (36),

(40)
f ′

f
(z) = −

Φ′

Φ
(z) +

∑

k

mk

z − ak
.

If the number of zeros f , counting multiplicities, is not equal to deg Φ, then

f ′

f
(z) ∼ C2z

−1 as z → ∞

so that degϕ = deg Ψ which is the same as (39). This proves (ii).
Suppose then that f has infinitely many zeros. Combining (36), (18), and

(34), we get
(41)

m0

z
−

Φ′

Φ
(z) − a(2p+ 2)z2p+1 + b(2p+ 1)z2p + c(2p)z2p−1 + · · ·

+ zp1

ω
∑

k=τ

′ mk

ap1

k (z − ak)
=
ϕ(z)

Ψ(z)

{

γz + δ −
Ak0

z
+

ω
∑

k=τ

′Ak

(

1

ak − z
−

1

ak

)}

.
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Equating residues at z = ak , we get

(42) mk = −Ak
ϕ(ak)

Ψ(ak)

which is valid for all k , also for k = k0 . Thus

(43) ϕ(ak) sgnΨ(ak) = −mk
Ψ(ak) sgnΨ(ak)

Ak
< 0,

which is valid by the same argument even if f has only finitely many zeros. This
proves (30). Write ρ = degϕ and choose M > 1 so that for some positive integer
l , we have

(44) 0 < −ϕ(ak) sgn Ψ(ak) ≤M |ak|
ρ

and k 6= k0 whenever |k| ≥ l . Then by (44), (43), and (35)

1

M

∑

|k|≥l

mk

|ak|ρ+2−deg Ψ
≤

∑

|k|≥l

Ak

|Ψ(ak)||ak|2−deg Ψ
<∞.

Hence by the definition of p1 we have

(45) p1 + 1 ≤ ρ+ 2 − deg Ψ = degϕ− deg Ψ + 2,

which proves the lower bound for degϕ in (31).
Note that by (43),

(46) if τ = −∞ and ω = ∞ then ρ+ deg Ψ is even.

Next, since p1 ≤ 2p+ 1, we get from (36) and [HW1, Lemma 4, p. 231] that

(47)

∣

∣

∣

∣

f ′

f
(iy)

∣

∣

∣

∣

≤ a(2p+ 2)|y|2p+1 + o(|y|2p+1) as |y| → ∞,

and

(48) Im
f ′

f
(iy) = −a(−1)p(2p+ 2)y2p+1 + o(|y|2p+1) as |y| → ∞.

Next using (18) with Ψ1 ≡ 1 and (22) we get

(49)

∣

∣

∣

∣

f ′

f
(iy)

∣

∣

∣

∣

≥ C1|y|
ρ−deg Ψ−1
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and
∣

∣

∣

∣

f ′

f
(iy)

∣

∣

∣

∣

≤ C−1
1 |y|ρ−deg Ψ+1

for |y| ≥ 2, for some C1 ∈ (0, 1). By (49) and (47) we get

ρ = degϕ ≤ 2p+ 2 + deg Ψ.

If ρ = 2p+ 2 + deg Ψ and a = 0 then (49) and (47) yield ρ ≤ 2p+ 1 + deg Ψ. So
if ρ = 2p+ 2 + deg Ψ, then a > 0. But then (43) shows that B1 < 0 where B1 is
the leading coefficient of ϕ while (18) implies that

(50) Im
f ′

f
(iy) ∼ (−1)p+1B1y

2p+2 Imψ(iy) as |y| → ∞.

Now (50) and (48) combine to give

(51) Imψ(iy) ∼
a

B1
(2p+ 2)y−1 as |y| → ∞.

Since a > 0 and B1 < 0, (51) contradicts the fact that Imψ(iy) > 0 when y > 0.
Thus ρ = 2p+ 2 + deg Ψ is impossible, and so we always have

(52) ρ = degϕ ≤ 2p+ 1 + deg Ψ.

This proves the general upper bound for degϕ in (31).
From now on, we assume that Φ(z) = (z2 + 1)n , so Ψ(z) = z2 + 1. We have

degϕ ≥ deg Ψ − 1 = 1. Next we multiply both sides of (41) by Ψ(z) and then
differentiate q times where

(53) q ≥ max{σ + deg Ψ − 1, degϕ+ deg Ψ − 1, p1 + 1} ≥ max{1, 2p+ 1}

since σ ≥ 2p . Then if 1 ≤ q = deg Ψ − 1, we have σ = ρ = 0 = p1 , so that by
(45), deg Ψ − 1 ≤ 0, which is impossible. Hence q ≥ deg Ψ. This yields
(54)

Ψ(0)m0(−1)qq!

zq+1
+

dq

dzq

{

Ψ(z)zp1

∑

k 6=k0

mk

ap1

k (z − ak)

}

+ q!B

=
dq

dzq

{

ϕ(z)(γz + δ)

}

− Ak0

dq

dzq

ϕ(z)

z
+

∑

k 6=k0

{

dq

dzq

Akϕ(z)

ak − z
−
Ak

ak

dq

dzq
ϕ(z)

}

where, in view of (26)–(29), (45), and (53),

B = −(2p+ 2)a ≤ 0

B = (2p+ 1)b

B = 2pc > 0

B = 0

if q = 2p+ deg Ψ + 1,

if q = 2p+ deg Ψ,

if q = 2p+ deg Ψ − 1,

if q ≥ 2p+ deg Ψ + 2.
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Recall that Ψ has leading coefficient 1. Consider the left hand side of (54). As in
[HW1, p. 240], we see that

Ψ(z)zp1
1

ap1

k (z − ak)
=

Ψ(z)

z − ak
+

Ψ(z)

ak
T

(

z

ak

)

where
T (z) = zp1−1 + zp1−2 + · · ·+ z + 1.

Also
Ψ(z)

z − ak
= Ψ2(z; ak) +

Ψ(ak)

z − ak
,

where Ψ2(z; ak) is a polynomial of degree deg Ψ − 1 in z . Note that deg Ψ ≥ 2.
By (45), q ≥ ρ+ deg Ψ − 1 ≥ p1 + 2. So

dq

dzq
Ψ(z)zp1

∑

ak 6=0

mk

ap1

k (z − ak)
=

∑

ak 6=0

mkΨ(ak)
dq

dzq

1

z − ak
.

Further, since q ≥ ρ+ 1, we have, denoting the leading coefficient of ϕ by B1 ,

dq

dzq

(

ϕ(z)(γz + δ)
)

= γ
dq

dzq

(

zϕ(z)
)

= γB1(ρ+ 1)!

(

d

dz

)q−ρ−1

1,

−Ak0

dq

dzq

ϕ(z)

z
= −Ak0

ϕ(0)(−1)qq!

zq+1
=

Ψ(0)m0(−1)qq!

zq+1

by (42) for k = k0 , and (d/dz)qϕ = 0, so that (54) becomes (using also (42))

(55)

q!B +
∑

ak 6=0

mkΨ(ak)
dq

dzq

1

z − ak
= γB1(ρ+ 1)!

(

d

dz

)q−ρ−1

1

+
∑

ak 6=0

mk
Ψ(ak)

ϕ(ak)

dq

dzq

ϕ(z)

z − ak
.

But since q ≥ ρ+ 1 we have

1

ϕ(ak)

dq

dzq

ϕ(z)

z − ak
=

dq

dzq

1

z − ak
,

using ϕ(z) = ϕ(ak) + ϕ′(ak)(z − ak) + · · ·+ ϕ(ρ)(ak)(z − ak)ρ/ρ! . Thus

(56) q!B = γB1(ρ+ 1)!

(

d

dz

)q−ρ−1

1.
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Claim. If σ = 2p then ρ is even. We assume that σ = 2p so that by (29),
a = b = 0 and p1 ≤ 2p . Also either p1 = 2p , or c > 0 and p1 ≤ 2p − 1. If
τ = −∞ and ω = ∞ , then ρ is even by (46). Suppose that ω < ∞ so that
τ = −∞ . Then (36) gives

(57)
f ′

f
(z) =

m0

z
−

Φ′

Φ
(z) + 2pcz2p−1 + · · ·+ zp1

∑

k 6=k0

mk

ap1

k (z − ak)
.

Thus with z = x ∈ R ,

(58) lim
x→aω+

f ′

f
(x) = +∞ and lim

x→+∞

f ′

f
(x) = +∞.

A similar analysis shows that ϕ has an even number of zeros on each interval
of the form (ak, ak+1) or (aω,+∞) . Thus ρ is even. A similar argument shows
that if τ > −∞ then ρ is even.

Thus

(59) if σ = 2p then ρ = degϕ is even.

Claim. If ρ is even then ρ = 2p+2. Suppose that ρ is even so that ρ ≤ 2p+2
by (52). If p1 ≥ 2p then ρ ≥ 2p+1 by (45), hence ρ = 2p+2. Suppose then that
p1 ≤ 2p− 1. If ρ ≥ 2p+ 1 then ρ = 2p+ 2, so suppose also that ρ ≤ 2p . Then,
since σ ≥ 2p by (27), we may, in view of this and (53), choose q = σ+ 1 ≥ 2p+ 1
in (54) to get (56). Moreover, since

p1 ≤ 2p− 1 < 2p ≤ σ = max{p1, degS}

by (26), we have σ = degS ≥ 2p . Hence B 6= 0 by the formulas for B after (54)
and (25). Thus by (56), γ 6= 0 and q = ρ+ 1, so since q = σ + 1, we have (since
also σ ≥ 2p and ρ ≤ 2p)

(60) degϕ = ρ = σ = degS = 2p and B = 2pc > 0.

But then, since by (43), ϕ(ak) < 0 for all k and since degϕ is even, the leading
coefficient of ϕ must be negative. This contradicts (56) since B = c > 0 by (60)
and γ ≥ 0 by (34) (and now γ > 0 since γ 6= 0). Thus this case is impossible and
we conclude that

(61) if ρ is even then ρ = 2p+ 2.

Claim. If ρ is odd then ρ = 2p+3. Suppose that ρ is odd so that ρ ≤ 2p+3
by (52). To prove that ρ = 2p+ 3, it suffices to show that ρ ≥ 2p+ 3. To get a
contradiction, suppose that ρ ≤ 2p + 1. Suppose that p1 ≥ 2p + 1 so that then
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p1 = 2p+ 1. Then by (45), ρ ≥ p1 + 1 = 2p+ 2, a contradiction with ρ ≤ 2p+ 1.
So we may assume that p1 ≤ 2p and ρ ≤ 2p+ 1. By (27) and (59), we must have
σ ≥ 2p+ 1. Thus we may choose q = σ + 1 in (53) and (54) and get (56). Now

(62) p1 ≤ 2p < 2p+ 1 ≤ σ = max{degS, p1}

so that

(63) σ = degS > p1, degS ≥ 2p+ 1.

Thus a 6= 0 or b 6= 0, and q = degS + 1. By the formulas for B after (54),
and by (25), B 6= 0 in the formulas for B after (54) and in (56) so that γ 6= 0
(hence γ > 0), and q = ρ+ 1. Hence

(64) σ = ρ = degϕ = degS = 2p+ 1 or 2p+ 2

and therefore

(65) degS = σ = ρ = 2p+ 1 since ρ is odd.

Thus by the formulas for B after (54),

(66) B = (2p+ 1)b 6= 0, a = 0.

By (46), and since ρ is odd, we have τ > −∞ or ω <∞ . Suppose that ω <∞ .
Since ϕ(ak) < 0 for all k and degϕ is odd, the leading coefficient B1 of ϕ must
be positive. Hence, since γ > 0, (56) gives B = (2p+1)b > 0. By (36), (26), (66),
and (65) we have

(67)
f ′

f
(z) =

m0

z
−

2nz

z2 + 1
+ b(2p+ 1)z2p + · · ·+ zp1

∑

k 6=k0

mk

ap1

k (z − ak)

where now b > 0, p1 ≤ 2p and ω <∞ . Thus,

(68) lim
x→aω+

f ′

f
(x) = +∞ and lim

x→+∞

f ′

f
(x) = +∞.

Thus f ′ and hence ϕ has an even number of zeros on (aω,+∞) and so degϕ is
even, a contradiction. A similar argument works if τ > −∞ . We conclude that

(69) if ρ is odd then ρ = degϕ = 2p+ 3.

We have proved that if f has infinitely many zeros and deg Ψ = 2 then

(70) 2p+ 2 ≤ ρ = degϕ ≤ 2p+ 3,
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and this proves (iii).
For any c ∈ R , we have g ∈ U2p if, and only if, ge−cz ∈ U2p . Thus, what

has been proved for ψ(0, z) and ϕ(0, z) above, is true for ψ(c, z) and ϕ(c, z) for
any real c .

We can write (compare (24))

(71) f ′ =
zm′

0eS1Π1

Φ(z)Ψ(z)
=

g1
Φ(z)Ψ(z)

,

where g1 is a real entire function of finite order and of the same order as g .
Since f ′ has only finitely many extraordinary zeros and otherwise has zeros

at the multiple zeros of f and one on each interval (ak, ak+1) , we deduce that

(72) genus (Π1) = genus (Π) = p1.

As in [HW1, p. 232],

(73) deg (S1 − S) ≤ p1 ≤ 2p+ 1.

Note that the development above up to this point after (9) only needs the assump-
tion that g ∈ U2p , not any assumption on the reality of the zeros of f ′ or of f ′′ .
If we assume that all the zeros of f ′ are real then by (71)–(73), we obtain also
that g1 ∈ U2p .

This completes the proof of Lemma 2.2.
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