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Abstract. We explore conditions under which the property of geometrical finiteness is open
among type-preserving representations of a given group into the group of isometries of hyperbolic
n -space. We give general criteria under which this is the case, for example if every maximal
parabolic subgroup has rank at least n − 2 . In dimension n = 3, we deduce Marden’s theorem
that geometrical finiteness is always an open property. We give examples to show that, in general,
additional constraints of the type we describe are necessary in dimension 4 and higher.

0. Introduction

In this paper, we consider the space of type-preserving representations of a
given finitely generated group into the group, IsomHn , of isometries of hyper-
bolic n -space, Hn . We are particularly interested in the subset of geometrically
finite representations without accidental parabolics, and consider the question of
when this subset is open. This need not always be the case, and we give examples
in dimension n = 4 of sequences of non-discrete (or of discrete non geometrically
finite representations) which converge on a geometrically finite representation (Sec-
tion 5). We also give a positive result (Theorem 1.5) which clarifies how and when
this phenomenon can occur.

Deformations of Kleinian groups play an important role in hyperbolic geom-
etry. In dimension n = 3, there is a well developed theory (see for example [BeP]
for an exposition), which plays a crucial role in Thurston’s hyperbolisation the-
orem for Haken 3-manifolds. In higher dimensions, spaces of deformations are
much less well understood in general, but can be useful in constructing interesting
examples.

Suppose that Γ is a finitely generated group with a (possibly empty) collection
of virtually abelian “peripheral” subgroups. We say that a representation from
Γ to IsomHn is “type preserving” if it sends every peripheral subgroup to a
discrete parabolic group. By a “peripheral element”, we mean an infinite order
element lying in some peripheral subgroup. An “accidental parabolic” is a non-
peripheral element which gets sent to a parabolic. Let R = R(Γ, n) be the set of
type preserving representations. Thus, R carries a natural “algebraic” topology
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(Section 1). Let RD ⊆ R be the subset of discrete representations, and let
RF ⊆ RD be the subset of geometrically finite representations without accidental
parabolics. (We do not necessarily assume that such representations are faithful,
though the kernel of such a representation is, by hypothesis, finite.) It turns out
that RD is always closed in R , provided that Γ is not virtually abelian [Wi].
(See the end of Section 1 for a discussion of this). The properties of RF , depend
on the dimension, n , and the group Γ.

In dimension n ≤ 3, RF is always open in R . For n = 3, this is a result of
Marden [Mard]. These cases are discussed more fully in Section 1. The set R is
also open in the “convex cocompact” case—where Γ has no peripheral elements.
This is a consequence of the Holonomy Theorem (see [L], [G2]), and will also
be proven directly in Section 4 (Proposition 4.1). Also, in the finite covolume
case, Mostow rigidity tells us that RF is a point, and in particular open. In fact,
Proposition 1.8 tells us that RF is open provided that the rank of every peripheral
subgroup is at least n− 2. All the above examples are special cases of this result.

Note that our definition of “type preserving” is more restrictive than that
sometimes used, in that we are supposing that the parabolic groups are discrete.
Elsewhere it has been taken to mean that every peripheral element gets sent to
a parabolic. In low dimension, this makes no real difference. Note that a rank 1
parabolic group is necessarily discrete, and a discrete rank n− 1 parabolic group
cannot be deformed to a non-discrete parabolic group. We thus recover the usual
results in dimension n ≤ 3. In higher dimension, however, some assumption of
discreteness is essential. Consider, for example, a rank 2 free abelian group acting
properly discontinuously by translation on euclidean 3-space. We can perturb this
action so that it becomes non-discrete fixing setwise a 1-dimensional subspace.
We can extend this to parabolic action on hyperbolic 4-space. This gives a fairly
trivial example. In fact, Misha Kapovich has observed that this phenomenon can
occur in more interesting situations, for example, by deforming a finite volume
hyperbolic 3-manifold into 4-space by bending along a totally geodesic finite-area
surface.

Even assuming discreteness of parabolic groups, however, RF need not be
open in R or even in RD . Again, the simplest examples occur in dimension n = 4.
In Section 5, we describe a sequence of representations in R \RD which converge
on a point of RF . We also give a sequence of representations in RD \ RF which
converge to a point of RF . In both these examples, there is a cyclic parabolic group
G ≤ Γ which acts by euclidean isometry on a horosphere. For each representation
in the converging sequence, this group acts as a “screw motion”. As the sequence
converges, the rotational part of the screw motion tends to 0, so that, in the limit,
we are left with a euclidean translation. In other words, the parabolic group, in
some sense, changes character in the limit. We shall see that this must always be
the case in such examples.

The main positive result of this paper (Theorem 1.5) gives a “stratification”
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of the space R , such that the intersection of RF with each stratum is open in that
stratum. This is achieved by associating to each parabolic subgroup a canonical
euclidean subspace in the corresponding horosphere. On a stratum, the dimension
of these subspaces is constant. In the case of a screw motion on euclidean 3-space,
the canonical subspace is just the axis of the screw motion. For a translation, it
is the whole of euclidean 3-space. Thus, in the examples described earlier, we see
that the dimension jumps up in the limit. In contrast, there are cases (for example
as described by Proposition 1.8) where the whole of R consists of a single stratum,
or at least where each stratum is open and closed in R . Thus, in such cases, RF

is open in R .

As remarked earlier, representations in RF or RD are not assumed to be
faithful. However the above results would remain valid if “discrete” were every-
where replaced by “discrete and faithful”, and “geometrically finite” by “geomet-
rically finite and faithful”. (See Lemma 1.9.)

In this paper, we shall concentrate on the case of constant curvature. However,
the notion of geometrical finiteness can be defined for groups acting on any pinched
Hadamard manifold (i.e. a complete simply connected Riemannian manifold of
pinched negative curvature). The definitions are described in general in [Bo3], and
have been explored explicitly in the case of complex hyperbolic space by Goldman
and others, (see for example [G3]). I suspect that many of the results described
here can be generalised to that situation. The problem reduces to understanding
the geometry of parabolic groups. For complex hyperbolic space (and the other
symmetric spaces) this may be possible along similar lines. In the general case,
one could not hope to associate canonical subspaces to parabolic groups, but one
might be able to rephrase the stratification in terms of rotational parts of parabolic
isometries, which can be defined in the general context [Bo2]. Note that peripheral
subgroups in this case are allowed to be virtually nilpotent.

In the special case of convex cocompact groups (no peripheral elements),
none of these problems arise. Indeed the proof given here of Proposition 4.1
generalises, essentially unchanged, to show that in variable curvature, the set of
convex cocompact representations is open.

Returning to the constant curvature case, we remark that there are close
connections between geometrical finiteness and structural stability. These were
explored by Sullivan [S] in dimension n = 3. In [Tu], Tukia shows that geomet-
rically finite representations are structurally stable (among geometrically finite
representations) in any dimension. (In Tukia’s paper, a more restrictive definition
of geometrical finiteness is used, namely that the group should possess a finite-
sided fundamental domain. However, all the arguments appear to go through in
general.) This means that the limit sets of geometrically finite representations
vary continuously in the Hausdorff topology. Moreover the action of Γ on the
boundary of Hn of actions which are close in RF are quasiconformally conjugate,
by a map with quasiconformal constant close to unity. In some sense, these results
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are complementary to the kind of results we describe in this paper. Thus, Sullivan
and Tukia consider representations which remain in the class of geometrically fi-
nite groups. In dimension 3, this restriction is superfluous by the result of Marden
[Mard], but not necessarily in higher dimensions.

1. Summary of results

We use Sn , En and Hn to denote, respectively, the n -dimensional spherical,
euclidean and hyperbolic spaces. We write dsph , deuc and dhyp for the metrics on
these spaces. If X is any of these spaces, we shall write IsomX for the Lie group
of isometries of X .

Suppose Γ is a finitely generated group. The space of representations ̺: Γ −→
IsomX carries an algebraic topology. This is defined by choosing a finite generating
set {γ1, . . . , γk} for Γ, and embedding the representation space in the cartesian
product (IsomX)k by the map

[

̺ 7→
(

̺(γ1), . . . , ̺(γk)
)]

. Note that, for any
γ ∈ Γ, the map [̺ 7→ ̺(γ)] is thus continuous. In particular, it follows that the
topology is independent of the choice of finite generating set.

We say that a representation is discrete if it is finite-one and ̺(Γ) is a discrete
subset of IsomX . Thus, ̺ is discrete if and only if the induced action on X is
properly discontinuous.

Let us begin our discussion with euclidean space Em . The Bieberbach The-
orems tell us that:

Lemma 1.1. If ̺: G −→ IsomEm is discrete, then G is finitely generated

virtually abelian.

We shall assume, from now on, that G is finitely generated virtually abelian.
We write r(G) for the rank of a finite index free abelian subgroup. (This is
independent of the choice of such a subgroup.)

Suppose that ̺: G −→ IsomEm is discrete. A crystallographic subspace of
Em is a ̺(G)-invariant affine subspace, µ ⊆ Em , such that µ/̺(G) is compact.
Note that the latter condition is equivalent to saying that dim(µ) = r(G) . We
say that G is a crystallographic group if r(G) = m , or equivalently if Em/̺(G) is
compact.

For any discrete representation, ̺ , we set Σ = Σ(̺) to be the set of all
crystallographic subspaces. We set σ = σ(̺) =

⋃

Σ(̺) ⊆ Em . The following is
another consequence of the Bieberbach Theorems (see for example [Wo] or [Bo1]).

Theorem 1.2. The set σ is a non-empty ̺(G) -invariant subspace of Em ,

which is foliated by the elements of Σ . Any two elements of Σ are parallel, and

the action of ̺(G) on two such elements commutes with orthogonal projection

between them.

We write s(̺) = dim
(

σ(̺)
)

. Clearly r(G) ≤ s(̺) ≤ m .
We shall write S = S (G,m) for the space of discrete representations of G

into IsomEm with the algebraic topology. We shall see (Section 2) that:
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Lemma 1.3. The map s: S −→ N is upper semicontinuous.

We now move on to hyperbolic space, Hn . We write ∂Hn for the ideal sphere.
Given p ∈ ∂Hn , we write Isomp Hn for the subgroup of isometries which preserve
some, and hence any, horosphere about p . Identifying some such horosphere with
En−1 , we get an identification of Isomp Hn with IsomEn−1 .

If G is a finitely generated infinite virtually abelian group, we say that a rep-
resentation ̺: G −→ IsomHn is parabolic, with fixed point p , if ̺(G) ⊆ Isomp Hn

and ̺ is discrete. The fixed point, p , is uniquely determined by ̺ .
Now suppose that Γ is a finitely generated group. A peripheral structure on

Γ consists of a set, Π, and an action of Γ on Π, together with a collection (Gi)i∈Π

of subsets of Γ indexed by Π, satisfying the following conditions:

(1) If γ ∈ Γ and i ∈ Π, then Gγi = γGiγ
−1 ,

(2) Π/Γ is finite,

(3) If i 6= j then Gi ∩Gj is finite, and

(4) For each i ∈ Π, Gi is an infinite finitely generated virtually abelian group.

Note that these conditions imply that Gi is the stabiliser of i (so that we could
have defined peripheral structure purely in terms of the action of Γ on a set Π).

Definition. A representation ̺: Γ −→ IsomHn is type-preserving (relative
to the given peripheral structure) if for each i ∈ Π, ̺ | Gi is discrete parabolic.

We shall write R = R(Γ, n) for the space of type-preserving representations
in the algebraic topology.

We can think of NΠ/Γ as the set of maps ω: Π −→ N such that ω(γi) = ω(i)
for all i ∈ Π and γ ∈ Γ. We define a partial order, ≤ , on NΠ/Γ by ω ≤ ω′ if and
only if ω(i) ≤ ω′(i) for all i ∈ Π. Let W (Γ) be the finite subset of NΠ/Γ defined
by ω ∈W (Γ) if and only if ω(i) ≤ n− 1 for all i ∈ Π.

Now, given any ̺ ∈ R(Γ), and i ∈ Π, we get a parabolic representation
̺ | Gi −→ Isompi

Hn , where pi is the fixed point of ̺(Gi) . We set ∆(̺)(i) =
s(̺ | Gi) . This defines a map ∆: R −→ W . The following is a corollary of
Lemma 1.3:

Lemma 1.4. The map ∆: R(Γ, n) −→ W (Γ) is upper semicontinuous.

This gives us our stratification of R , where each “stratum” has the form
Rω = ∆−1(ω) , for ω ∈W (Γ).

By a peripheral element of Γ, we mean an infinite order element of
⋃

i∈ΠGi .
If ̺ is type-preserving, then an accidental parabolic of ̺ is a non-peripheral ele-
ment whose image under ̺ is parabolic. We write RF ⊆ R for the subspace of
geometrically finite representations without accidental parabolics.

Our main result can now be stated:

Theorem 1.5. For each ω ∈W , the set RF ∩ Rω is open in Rω .
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This is proved in Section 4.
In our definition of a geometrically finite representation, we did not assume

that the representation was faithful, though there would be no loss in doing this.
(Note that the kernel of a geometrically finite representation is a finite normal
subgroup. Provided that the group is not elementary, this will be the unique
maximal finite normal subgroup. Moreover the trivial representation of any finite
group is isolated in the algebraic topology. It follows easily that we cannot have
a sequence of non-faithful geometrically finite representations of a non-elementary
group converging on a faithful geometrically finite representation.)

To describe some applications of this result, we return for a moment, to
euclidean space Em . Let G be a finitely generated virtually abelian group, and
suppose that ̺ ∈ S (G,m) . Now r(G) ≤ s(̺) ≤ m , so if r(G) = m then
s(̺) = m . If ̺(Γ) = m− 1, then s ∈ {m− 1, m} . In fact:

Lemma 1.6. If r(G) = m− 1 , then s is locally constant on S (G,m) .

This is fairly intuitive, since for any crystallographic subspace, either each
component of the normal bundle is preserved by ̺(G) , or there is some element
which interchanges the two components. In the former case, s(̺) = m and in the
latter s(̺) = m − 1. This situation remains stable under small perturbations. A
more detailed argument is given at the end of Section 2.

Returning to hyperbolic space, with Γ as above, we obtain the following
corollaries.

Corollary 1.7. If r(Gi) ≥ n− 2 for each i ∈ Π , then ∆ is locally constant

on R .

This uses the fact that the parabolic fixed point of a group ̺(Gi) varies
continuously with ̺ (see Section 4). Putting this together with Theorem 1.5, we
deduce:

Proposition 1.8. If r(Gi) ≥ n−2 for each i ∈ Π , then RF is open in R .

As remarked in the introduction, Theorem 1.5 and its corollaries would remain
valid if RF were everywhere replaced by the set R0

F of faithful geometrically
finite representations. This follows from the following observation (which works
equally well in variable curvature). Let R0

D ⊆ RD be the set of discrete faithful
representations.

Lemma 1.9. The set R0
D is open and closed in RD .

Proof. To see that R0
D is open, suppose that the sequence ̺i ∈ RD \ R0

D

converges to ̺ ∈ RD . The fact that Γ admits a discrete representation tells us
that it contains a maximal finite normal subgroup which contains all other finite
normal subgroups. We can therefore assume that ker ̺i is constant—equal to
F ⊳ Γ. Since each ̺i | F is trivial, we see that ̺ | F is trivial, and so ̺ /∈ R0

D .
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To see that R0
D is closed, suppose that the sequence ̺i ∈ R0

D converges
on ̺ ∈ RD . Now, the trivial representation of a finite group is isolated in the
algebraic topology, and so ̺i | ker ̺ is trivial for all sufficiently large i . Thus ker ̺
is trivial, and so ̺ ∈ R0

D .

As mentioned in the introduction, there are several circumstances under which
the hypotheses of Proposition 1.8 are satisfied.

One obvious case is if Π = ∅ , so the space of convex cocompact representations
is always open in the algebraic topology. To see this directly one can bypass most of
the proof of Theorem 1.5, as is done in the first part of Section 4 (Proposition 4.1).
The technical details arise mainly in dealing with parabolics.

We also see that the space of finite covolume representations of a group are
open. In fact, we know by Mostow rigidity that this space consists of an isolated
point.

The hypotheses are also satisfied for n ≤ 3. In the case n = 2, all dis-
crete representations are geometrically finite, though they might contain accidental
parabolics. In the finite coarea case, however, we see that RF = RD , and so RF

is both open and closed. In fact, we get two copies of Teichmüller space (one for
each choice of orientation). For a compact surface, it is known that the connected
components of the representation space correspond to the possible values of the
Euler class of a representation [G1]. The discrete representations correspond to
the extreme cases where the Euler class is plus or minus the Euler characteristic
of the surface.

In the case n = 3, we recover Marden’s result [Mard], that RF is open in R .
It has been conjectured that RF is dense in RD , though (as far as I know) the only
cases for which this is known are the finite covolume groups, where both spaces
reduce to a point, (or of course if RD = ∅). It can be shown, by a roundabout
argument using Thurston’s geometrisation theorem for Haken manifolds, that if
RD 6= ∅ then RF 6= ∅ . In general, the space RD admits two other natural
topologies, namely the “geometric topology” and the “quasiconformal topology”.
These are discussed in [Th]. On the space RF , all three topologies agree.

In dimension n = 4, the RF need not be open in R , or even in RD . In
Section 5, we give examples of sequences in R \ RD which converge to a point of
RF , and a sequence in RD \ RF which also converges to a point of RF .

There are other constraints under which the space of geometrically finite rep-
resentations will be open; for example if we demand that all parabolic elements
should have zero rotational part. This however, seems rather unnatural.

We finish this section with a few remarks about the result that RD(Γ) is
closed if Γ is non-elementary. The term “elementary” can be interpreted to mean
virtually abelian in the constant curvature case. This result is due, with varying
generality to Chuckrow [C], Marden, Jørgensen and Wielenberg [Wi]. In fact it
is true for pinched Hadamard manifolds, if “elementary” is interpreted to mean
virtually nilpotent. Note that the type preserving assumption is irrelevant here
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(so we might as well take Γ to have empty peripheral structure). Our situation is
slightly different to that described in [Wi], in that we are not assuming that discrete
representations are faithful—just that they have finite kernels. For completeness,
we give an argument below, which works in variable curvature. The result we want
is:

Proposition 1.10. Suppose that X is a pinched Hadamard manifold, and

that Γ is a finitely generated group. If ̺: Γ −→ IsomX is an algebraic limit of

discrete representations, then either ̺ is discrete, or Γ is virtually nilpotent.

Proof. The fact that Γ admits a discrete representation tells us immediately
that any locally finite subgroup of Γ is finite. Suppose that ̺: Γ −→ IsomX is
not discrete. If U is a neighbourhood of the identity in IsomX , then ̺−1U is an
infinite subset of Γ. Thus we can find β1, . . . , βp ∈ ̺−1U such that 〈β1, . . . , βp〉
is infinite (otherwise 〈̺−1U〉 would be an infinite locally finite subgroup of Γ).

Now let ε > 0 be less than the Margulis constant. Let {γ1, . . . , γq} be a finite
generating set for Γ. Choose any x ∈ X , and let

K = max
{

d
(

x, ̺(γj)x
)

| 1 ≤ j ≤ q
}

.

Let U be a neighbourhood of the identity in IsomX such that if g ∈ U and
y ∈ N(x,K + 1) then d(y, gy) ≤ ε/2. Let β1, . . . , βp ∈ ̺−1U be chosen as above.
Let ̺′ be a discrete representation, close to ̺ , such that d

(

y, ̺′(βi)y
)

≤ ε for all

y ∈ N(x,K + 1) and i ∈ {1, . . . , p} , and such that d
(

x, ̺′(γj)x
)

≤ K + 1 for all
j ∈ {1, . . . , q} .

Let Tε = {y ∈ X | Γε(y) is infinite} , where

Γε(y) = 〈γ ∈ Γ | d
(

y, ̺′(γ)y
)

≤ ε〉.

Let T0 be the connected component of Tε containing the point x (i.e. the “Mar-
gulis region” containing x). Now, N(x,K + 1) ⊆ Tε and so T0 ∩ γjT0 6= ∅ for
each j ∈ {1, . . . , q} . Thus, T0 is ̺′(Γ)-invariant. From the structure of Margulis
regions, it follows that ̺′(Γ) is virtually nilpotent (see Section 3.5 of [Bo3]). Now
̺′(Γ) ∼= Γ/ ker ̺′ , and ker ̺′ is finite. A theorem of P. Hall tells us that a nilpotent
extension of a finite group is virtually nilpotent. (This is not hard in the finitely
generated case.) It follows that Γ is virtually nilpotent.

Proposition 1.10 remains valid if we replace “discrete” by “discrete and faith-
ful” in both the hypothesis and conclusion. This is a corollary of the above result
and Lemma 1.9. Note that, in the case of constant curvature, every nilpotent sub-
group of IsomHn is virtually abelian, so we recover the statement given in [Wi].

Note that we have not made much use of the curvature bound away from
0, other than the convenience of referring to [Bo3]. We suspect that the above
argument can be modified to work for any Hadamard manifold with curvature
bounded away from −∞ .
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Other proofs of Proposition 1.10 can be found in [GM] for complex hyperbolic
space, and in [Mart] in the case of pinched negative curvature (where the metric
is also allowed to vary).

2. Euclidean groups

In this section we prove some results relating to discrete representations into
euclidean space.

For convenience of notation, we shall use Rm to denote euclidean space Em

with a preferred basepoint 0 ∈ T . Thus, Rm is an inner-product space, and
we can identify Sm−1 with the unit sphere in Em . In this way IsomSm−1 acts
by isometry on Rm . Also, there is a natural homomorphism rot: IsomEm −→
IsomSm−1 , where rot(g) is the rotational part of g .

Given p ∈ {0, . . . , m} , we write Fp for the Grassmannian of p-dimensional
vector subspaces of Rm , and we write F =

⊔m
p=0 Fp . Given V ∈ Fp , we write

V ⊥ ∈ Fm−p for the orthogonal complement. Clearly, the map [V 7→ V ⊥] is
continuous.

It will be convenient to introduce a “parameter space”, T , which might, in
specific cases, be the whole or part of the representation space we are dealing with.
All we really need to assume about T is that it is a hausdorff topological space,
though it is convenient to assume also that it is first countable. This will allow us
to speak about continuity in terms of sequences.

In view of the fact that F is compact, we can define “upper semicontinuity”
as follows. Suppose we have some function V : T −→ F . We say that V is upper

semicontinuous if whenever we have a sequence (ti)i∈N converging to some t ∈ T ,
and with V (ti) converging to some V∞ ∈ F , then V∞ ⊆ V (t) . Note that one can
also characterise continuous maps in this fashion by demanding that we always
have V∞ = V (t) .

The following are simple observations:

Lemma 2.1. If V : T −→ F is upper semicontinuous, then the map [t 7→
dimV (t)]: T −→ N is also upper semicontinuous. If dimV (t) is constant on T ,

then V is continuous.

Lemma 2.2. If V,W : T −→ F are upper semicontinuous, then so is the

map [t 7→ V (t) ∩W (t)] .

Given g ∈ IsomSm−1 , let fix(g) ∈ F be the set of fixed points of g in Rm .
We see easily that:

Lemma 2.3. The map fix: IsomSm−1 −→ F is upper semicontinuous.

More generally, given a subset A ⊆ IsomSm−1 , we write fix(A) =
⋂

g∈A fix(g) .
Let G be any finitely generated group. Suppose to each t ∈ T we associate

a representation ̺t: G −→ IsomSm−1 .
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Lemma 2.4. If the map [t 7→ ̺t] is continuous (with respect to the algebraic

topology), then the map
[

t 7→ fix
(

̺t(G)
)]

is upper semicontinuous.

Proof. Choose a finite generating set, {γ1, . . . , γk} for G . Then fix
(

̺t(G)
)

=
⋂k

i=1 ̺t(γi) . For each i , the map [t 7→ ̺t(γi)] is continuous, so the result follows
by Lemmas 3.2 and 3.3.

We now consider general euclidean groups. Given x, y ∈ Em , we write
−→
xy ∈

Rm for the vector from x to y .
Given p ∈ {0, . . . , m} , let Ep be the set of all p-dimensional subspaces of Em .

Let E =
⊔m

p=0 Ep . Given τ ∈ Fp , set D(τ) = {
−→
xy | x, y ∈ τ} ∈ Fp . We

put a topology on Ep by choosing as base the collection of all sets of the form
{τ ∈ Ep | τ ∩ U 6= ∅, D(τ) ∈ O} , where U runs over all open subsets of Em , and
O runs over all open subsets of Fp . We give E the topology as a disjoint union.
In this way, the map D: E −→ F is continuous.

We shall need the following observation about convergence in E . Suppose that
(τi)i∈N is a sequence of elements of E , and τ ∈ E . Suppose that D(τi) → D(τ) ,
and that there are points xi ∈ τi and x ∈ τ , with xi → x . Then τi → τ .

Now, suppose G is a finitely generated virtually abelian group, and ̺: G −→
IsomEm is a discrete representation. There are several natural subspaces one
can associate to ̺ . Recall that σ(̺) ∈ E is foliated by the set Σ(̺) of parallel
crystallographic subspaces (Theorem 1.2). We write M(̺) = D(µ) ∈ F for some
(hence any) such subspace µ ∈ Σ. Let S(̺) = D

(

σ(̺)
)

. Clearly, M(̺) ⊆ S(̺) .

By definition, dim
(

S(̺)
)

= s(̺) . Let F (̺) = fix
(

rot
(

̺(G)
))

.

Lemma 2.5. S(̺) = M(̺) + F (̺) .

Proof. We know that M(̺) ⊆ S(̺) . We claim that F (̺) ⊆ S(̺) .
To see this, suppose ζ ∈ F (̺) . Choose x ∈ µ ∈ Σ, and let y ∈ En be the

point such that
−→
xy = ζ . Let µ′ be the subspace through y parallel to µ (i.e.

D(µ′) = D(µ)). Note that this is defined independently of the choice of x ∈ µ .
If γ ∈ G , then ζ = rot

(

̺(γ)
)

(ζ) is also the vector from ̺(γ)x to ̺(γ)y . But
̺(γ)x ∈ µ , so ̺(γ)y ∈ µ′ . Thus µ′ is ̺(G)-invariant. Since dim(µ′) = dim(µ) =
r(G) , we see that µ′ ∈ Σ, and so y ∈ µ′ ⊆ σ(̺) . Thus ζ =

−→
xy ∈ D

(

σ(̺)
)

= S(̺)
as claimed.

It remains to show that S(̺) ⊆M(̺)+F (̺) . Suppose that ζ ∈ S(̺) . Choose
x, y ∈ σ(̺) with ζ =

−→
xy . Let x ∈ µ ∈ Σ and y ∈ µ′ ∈ Σ. Let z ∈ µ be the

nearest point on µ to y . Thus
−→
xy =

−→
xz+

−→
zy , and

−→
xz ∈M(̺) and

−→
zy ∈

(

M(̺)
)⊥

.
Now, µ and µ′ are ̺(G)-invariant, and the action of G commutes with orthogonal
projection between them (Theorem 1.2). Thus, if γ ∈ G , then ̺(γ)z is the nearest
point on µ to ̺(γ)y . In other words, rot

(

̺(γ)
)

(
−→
zy) =

−→
zy and we deduce that

−→
zy ∈ F (̺) . Thus ζ =

−→
xy =

−→
xz +

−→
zy ∈M(̺) + F (̺) .

(Note that the argument shows in fact that the subspaces M(̺) and F (̺)
meet orthogonally along their intersection. In other words, we can write S(̺) as an
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orthogonal direct sum S(̺) =
(

F (̺)∩M(̺)
)

⊕F ′(̺)⊕M ′(̺) , where F ′(̺) ⊆ F (̺)
and M ′(̺) ⊆M(̺) .)

As in Section 1, S = S (G,m) denotes the set of discrete representations
from G into IsomEm . Using Lemma 2.3, and the fact that rotational part is
continuous, we deduce:

Lemma 2.6. The map F : S −→ F is upper semicontinuous.

Let us restrict attention to the case of crystallographic groups for the moment.
Suppose that r(G) = m , and that ̺, ̺′ ∈ S (G,m) are faithful. Now one of the
Bieberbach Theorems [Wo] tells us that there is an affine transformation, A , of
Em , which conjugates ̺ to ̺′ , i.e. ̺′(γ) = A̺(γ)A−1 for all γ ∈ G . (In fact,
as observed elsewhere, this follows from Theorem 1.2.—Take the product action
of Γ on Em × Em ≡ E2m . A crystallographic subspace for this action is a graph
of the desired affine transformation.) Now such an affine transformation has a
“rotational part” which in this case is a linear endomorphism, B , of Rm . Thus,
ζ ∈ fix

(

rot ̺(γ)
)

if and only if Bζ ∈ fix
(

B
(

rot ̺(γ)
)

B−1
)

= fix
(

rot
(

A̺(γ)A−1
))

.

We see that F (̺′) = B
(

F (̺)
)

. In particular, we see that f(̺′) = f(̺) .
Now suppose ̺ ∈ S (G,m) , still with r(G) = m . We claim that ker(̺) is

the unique maximal finite normal subgroup of G . (For if H were a finite normal
subgroup of G , then fix

(

̺(H)
)

would be a non-empty ̺(G)-invariant subspace of
Em , and hence the whole of Em . Thus, H ≤ ker(̺) .) In particular, the kernel is
completely determined by the group structure of G . Thus the previous paragraph
applies equally well to non-faithful discrete representations. In summary, we have
shown:

Lemma 2.7. If r(G) = m , then f is constant on S (G,m) .

In this case, we can define h(G) = f(̺) for some, and hence any, ̺ ∈
S (G,m) .

We now drop the constraint on dimension. If ̺ ∈ S (G,m) , then we have
r(G) = dimµ for any µ ∈ Σ. Applying the above result to the action of G on µ ,
we see that h(G) = dim

(

F (̺) ∩M(̺)
)

.
In summary, if ̺ ∈ S (G,m) we have dimM(̺) = r(G) , dimF (̺) = f(̺) ,

dimS(̺) = s(̺) and dim
(

F (̺) ∩M(̺)
)

= h(G) . Moreover, by Lemma 2.5, we

have S(̺) = M(̺) + F (̺) . Using the formula dimS(̺) + dim
(

F (̺) ∩M(̺)
)

=
dimM(̺)+dimF (̺) , we arrive at the identity s(̺) = r(G)−h(G)+ f(̺) . Since,
by Lemma 2.6, f is upper semicontinuous, so we deduce that s is also upper
semicontinuous. This proves Lemma 1.3.

It remains to consider the way in which the subspaces, σ(̺) vary with σ .
Given q ∈ {r(G), . . . , m} , we shall write Sq = s−1(q) .

Note that, by Lemma 2.6, F is upper semicontinuous on S . Now, by the
above identity, f(̺) = dimF (̺) is constant on Sq . By Lemma 1.2, we see that
F : Sq −→ F is continuous.
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Moreover, we shall show:

Proposition 2.8. For each q ∈ {r(G), . . . , m} , the map σ: Sq −→ Eq is

continuous.

Proof. Suppose that (̺i)i∈N is a sequence of representations in Sq , con-
verging on some ̺∞ ∈ Sq . From the continuity of F on Sq , we know that
F (̺i) → F (̺∞) . We write σi = σ(̺i) . We want to show that σi → σ(̺∞) .

Suppose that σi fails to converge to σ(̺∞) . Then, passing to a subsequence,
we can assume that either σi → σ∞ ∈ E with σ∞ 6= σ(̺∞) , or else σi tends to
infinity in the sense that for any compact set K ⊆ Em , {i ∈ N | σi ∩K 6= ∅} is
finite.

Let us consider the first case. Again passing to a subsequence, we can suppose
that M(̺i) converges to some M∞ ∈ Fr(G) . Now D(σi) → D(σ∞) and for each
i , we have M(̺i) ⊆ D(σi) . It follows that M∞ ⊆ D(σ∞) .

Given x ∈ σ∞ , let µ ∈ E be the subspace through x with D(µ) = M∞ .
Since D(µ) ⊆ D(σ∞) , we have µ ⊆ σ∞ . Now, since σi → σ∞ , there are points
xi ∈ σi with xi → x . Let µi be the subspace through xi with D(µi) = M(̺i) .
Since D(µi) → D(µ) , we see that µi → µ .

Now, µi ∈ Σ(̺i) . In particular, µi is ̺i(G)-invariant. It now follows that µ
is ̺(G)-invariant. To see this, suppose y ∈ µ , and choose a sequence yi ∈ µi with
yi → y . Now given γ ∈ G , we have ̺i(γ) → ̺∞(γ) and so ̺i(γ)yi → ̺∞(γ)y .
We have ̺i(γ)yi ∈ µi and so ̺∞(γ)y ∈ µ . This shows that µ is ̺∞(G)-invariant
as claimed. Now since dimµ = r(G) , we see that µ ∈ Σ(̺∞) , and so µ ⊆ σ(̺∞) .
In particular x ∈ σ(̺∞) .

We have thus shown that σ∞ ⊆ σ(̺∞) . But since dimσ∞ = dimσ(̺∞) , we
get that σ∞ = ̺(σ∞) .

We now move on to consider the second case, namely where σi tends to
infinity.

Given any x ∈ Em , let yi = yi(x) ∈ σi be the nearest point in σi to x . We
can suppose (for sufficiently large i) that x /∈ σi . Let ζi(x) be the unit vector
in the direction

−→
xyi . Now, passing to a subsequence, we can suppose that ζi(x)

converges to some ζ ∈ Rm . Now, if x′ ∈ Em is any other point, we see that
deuc

(

yi(x), yi(x
′)

)

≤ deuc(x, x
′) . Since the distance between x and σi is tending

to infinity, we see that the angle between ζi(x) and ζi(x
′) tends to 0. We see that

ζi(x
′) also tends to ζ as i → ∞ . Note that for each i , ζi(x) is perpendicular

to σi . In other words, ζi(x) ∈ D(σi)
⊥ = S(̺i)

⊥ ⊆ F (̺i)
⊥ . Now F (̺i) → F (̺∞)

and so we see that ζ ∈ F (̺∞)⊥ .
Now suppose γ ∈ G . We have ̺i(γ) → ̺∞(γ) and so ̺i(γ)x → ̺∞(γ)x .

Now, since σi is ̺i(G)-invariant, we see that ξi = rot ̺i(γ)
(

ζi(x)
)

is the unit

vector from ̺i(γ)x to the nearest point yi

(

̺i(γ)x
)

= ̺i(γ)
(

yi(x)
)

in σi . Since
̺i → ̺∞ and ζi(x) → ζ , we see that ξi → rot ̺∞(γ)(ζ) . Now, since ̺i(γ)x →
̺∞(γ)x , we see that the angle between ξi and ζi

(

̺∞(γ)x
)

tends to 0. But (as
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discussed earlier with x′ = ̺∞(γ)x) the latter vector tends to ζ . We see that
ξi → ζ . Thus rot ̺∞(γ)(ζ) = ζ . We thus conclude that ζ ∈ F (̺∞) contradicting
the earlier statement that ζ ∈ F (̺∞)⊥ .

Lemma 2.9. The map M : Sq −→ F is continuous.

Proof. Fix some point x0 ∈ Em . Given ̺ ∈ Sq , let x0(̺) ∈ σ(̺) be the
nearest point in σ(̺) to x0 . Using Proposition 2.8, we see easily that x0(̺)
depends continuously on ̺ . Let µ(̺) be the crystallographic subspace in Σ(̺)
containing the point x0(̺) . We claim that [̺ 7→ µ(̺)]: Sq −→ E is continuous.
It then follows that M(̺) = D

(

µ(̺)
)

varies continuously in ̺ as required.
To prove the claim, choose a set of generators, {γ1, . . . , γr} for a finite index

free abelian subgroup of G , where r = r(G) . For 1 ≤ i ≤ r , let xi(̺) =
̺(γi)

(

x0(̺)
)

. Thus each of the points xi(̺) vary continuously in ̺ . But µ(̺)
is the subspace spanned by the points x0(̺), x1(̺), . . . , xr(̺) , and has constant
dimension r . The claim now follows.

Given r, s ∈ N , with r ≤ s , we shall write

L (r, s) = {(V, τ) | V ∈ Fr, τ ∈ Es, V ⊆ D(τ)}.

We give L (r, s) the subspace topology as a subset of Fr × Es . Intuitively, we
can think of a point of L (r, s) as consisting of an s -dimensional subspace of Em

(namely τ ) foliated by parallel r -dimensional subspaces (whose direction is given
by V ).

Given ̺ ∈ S (G,m) , we define λ(̺) =
(

M(̺), σ(̺)
)

∈ L (r, s) where r =
r(G) and s = s(G) . Thus, we get a map λ: Ss −→ L (r, s) where s = m − d .
Putting Proposition 2.8 and Lemma 2.9 together, we see that:

Proposition 2.10. The map λ: Ss −→ L (r, s) is continuous.

We shall also need the following observation:

Lemma 2.11. Suppose ̺ ∈ Ss . Given any x ∈ Em , and η > 0 , there is

a neighbourhood, U , of ̺ in Ss such that for all ̺′ ∈ U and γ ∈ G , we have

deuc

(

x, ̺′(γ)x
)

≥ (1 − η)deuc

(

x, ̺(γ)x
)

.

We shall only need this result for crystallographic groups, for which it is a
fairly simple exercise. We state in general, since Proposition 2.10 allows us fairly
easily to reduce to that case anyway.

Finally, we give a proof of Lemma 1.6:

Proof of Lemma 1.6. Suppose that r(G) = m−1, and that ̺i → ̺∞ . Suppose
that s(̺i) = dimσ(̺i) = m− 1 for all i . We want to show that s(̺∞) = m− 1.
Since G is finitely generated, we can suppose (on passing to a subsequence) that
there is a fixed γ0 ∈ G , such that ̺i(γ0) swaps the two components of Em \σ(̺i) .
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Now, as in the proof of Proposition 2.8, we have either that σ(̺i) tends to
infinity as i → ∞ , or that σ(̺i) converges on some σ∞ ∈ Em−1 . But, in the
former case, we see easily that the isometries ̺i(γ0) move any fixed basepoint
an arbitrarily large distance, contradicting the fact that ̺i(γ0) converges to some
isometry ̺∞(γ0) . We thus have that σ(̺i) → σ∞ . Now it is easily seen that
σ∞ is ̺∞(G)-invariant, and hence a crystallographic subspace, and that ̺∞(γ0)
swaps the two components of Em \ σ∞ . Thus σ∞ = σ(̺∞) . In particular,
dimσ(̺∞) = m− 1 as required.

3. Coverings by connected sets

In this section, (X, d) can be any simply-connected metric space in which
open metric balls N(x, r) = {y ∈ X | d(x, y) < r} are connected for all x ∈ X
and r > 0. (In fact it would be enough to assume this for all r less than some
fixed positive constant.) Our principal application will be to hyperbolic space:
X = Hn .

Suppose that (I, E) is a connected graph with vertex set I , and edge set E .
We shall denote by ij the edge with endpoints i, j ∈ I . For convenience we shall
assume that ii ∈ E for all i ∈ I . (In other words, E is a reflexive symmetric
relation on I , whose transitive closure has just one equivalence class.)

The main result of the this section is used in the proof Theorem 1.5.

Theorem 3.1. Suppose that (I, E) is a non-empty connected graph, and

that (Ai)i∈I is a collection of non-empty open connected subsets of X , indexed

by the vertex set I , satisfying :

(A1) if ij ∈ E , then Ai ∩Aj 6= ∅ ,

(A2) if ij, ik ∈ E and Ai ∩Aj ∩ Ak 6= ∅ then jk ∈ E , and

(A3) (∃ε > 0)(∀i ∈ I)(∀x ∈ Ai)(∃j ∈ I)(ij ∈ E and N(x, ε) ⊆ Aj) .

Then, X =
⋃

i∈I Ai and if Ai ∩ Aj 6= ∅ then ij ∈ E .

The rest of this section is devoted to proving this result. The idea is to
construct abstractly a covering space for X out of the sets Ai , together with the
combinatorial information from (I, E) telling us how to glue them together.

We give I the discrete topology, and X × I the product topology. Given
i ∈ I , we set Ξi = {(x, i) ∈ X × I | x ∈ Ai} , and set Ξ =

⋃

i∈I Ξi ⊆ X × I . We
give Ξ the subspace topology. Thus Ξ can be thought of as a disjoint union of
the sets Ai .

We define a relation ∼ on Ξ by (x, i) ∼ (y, j) if and only if x = y and
ij ∈ E . Using hypothesis (A2), we see easily that ∼ is an equivalence relation
on Ξ. We let Σ = Ξ/∼ with the quotient topology, and let π: Ξ −→ Σ be the
quotient map. Given (x, i) ∈ Ξ, write [x, i] = π

(

(x, i)
)

∈ Σ for the equivalence
class. If U ⊆ Ai , write [U, i] = {[x, i] | x ∈ U} ⊆ Ξi . Let Bi = [Ai, i] = π(Ξi) .
Thus, Bi is connected. Define the map φ: Σ −→ X by φ([x, i]) = x .
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Lemma 3.2. The map φ is continuous.

Proof. If U ⊆ X is open, then for all i ∈ I , Ξi ∩ π
−1φ−1U = (U ∩ Ai) × {i}

is open in Ξi = Ai ×{i} . Thus, π−1φ−1U is open in Ξ, so φ−1U is open in Σ.

Lemma 3.3. The set Σ is connected.

Proof. Suppose [x, i], [y, j] ∈ Σ. By hypothesis, (I, E) is connected, so there
is a sequence i = i(0), i(1), . . . , i(n) = j in I , with i(m − 1)i(m) ∈ E for each
m ∈ {1, . . . , n} . By hypothesis (A1), for each m ∈ {1, . . . , n} , we can choose
x(m) ∈ Ai(m−1) ∩Ai(m) . Now [x(m), i(m− 1)] = [x(m), i(m)] ∈ Bi(m−1) ∩Bi(m) .
In particular, Bi(m) ∩ Bi(m−1) 6= ∅ . Now each Bi(m) is connected, and so B =
⋃n

m=1Bi(m) is connected. But now, [x, i] ∈ Bi(0) ⊆ B and [y, i] ∈ Bi(n) ⊆ B . We
have shown that every pair of points of Σ lie inside a connected subset of Σ. This
shows that Σ itself is connected.

We next claim that φ is a covering map. We begin with a couple of preliminary
observations. If U ⊆ Ai is open, then [U, i] ⊆ Σ is open. This follows since
Ξj ∩ π−1([U, i]) = (U ∩ Ai) × {j} is open in Ξj for each j ∈ I . Also if U ⊆
Ai ∩ Aj , then [U, i] = [U, j] if ij ∈ E , and [U, i] ∩ [U, j] = ∅ if ij /∈ E . Also
x ∈ N = N(x, ε/2). Using hypothesis (A3), we see that if N ∩ Ai 6= ∅ , then
N ⊆ Aj for some j ∈ I with ij ∈ E .

Lemma 3.4. The map φ is a covering map.

Proof. Suppose x ∈ X . Let N = N(x, ε/2). We aim to show that φ−1N
is topologically a disjoint union of its connected components, each of which is
mapped homeomorphically to N under φ .

Suppose [y, i] ∈ φ−1N ⊆ Σ. Now y ∈ Ai , so N ∩ Ai 6= ∅ , and so N ⊆ Aj

for some j ∈ I with ij ∈ E . Thus [y, i] = [y, j] ∈ [N, j] . We see that, as a set,
φ−1N is a disjoint union of sets of the form [N, i] for certain i ∈ I . Now each
such set [N, i] is open in Σ and hence in φ−1N . It follows that each [N, i] is also
closed in φ−1N . Now [N, i] = π(N × {i}) is connected, and is thus a connected
component of φ−1N .

Now, φ | [N, i] maps bijectively onto N . We know that φ is continuous.
Also any subset of [N, i] has the form [U, i] with U ⊆ N . If [U, i] is open in
[N, i] , then Ξi ∩ π

−1([U, i]) = U ∩ {i} is open in N × {i} . It follows that U is an
open subset of X , and so φ([U, i]) = U is open. This shows that φ maps [N, i]
homeomorphically onto N .

Proof of Theorem 3.1. By hypothesis, Σ is non-empty. By Lemma 3.3, it is
connected. By Lemma 3.4, φ: Σ −→ X is a covering map. By hypothesis, X is
simply connected. It follows that φ is a homeomorphism.

By construction, we have Σ =
⋃

i∈I Bi and Bi∩Bj 6= ∅ if and only if ij ∈ E .
Also, φ maps Bi homeomorphically onto Ai . We deduce that X =

⋃

i∈I Ai and
Ai ∩ Aj 6= ∅ if and only if ij ∈ E .
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4. Proofs of the main results

The main object of this section is to give a proof of Theorem 1.5. We shall
motivate the argument by first giving a direct proof along similar lines in the
convex cocompact case, i.e. where the peripheral structure is empty. The only
input we need for this is Theorem 3.1. Afterwards we shall worry about how to
deal with parabolics. For this, we shall also need the results of Section 2.

Suppose that Γ is a finitely generated group (with empty peripheral struc-
ture). Thus, R(Γ, n) is the space of all representations, ̺: Γ −→ IsomHn , and
R(Γ, n) the subset of convex cocompact representations (where “convex cocom-
pact” means “geometrically finite without parabolics”). In this special case we
shall show:

Proposition 4.1. The set RF is open in R .

This result is not new (at least in constant curvature, or for symmetric spaces).
For example, it can be deduced from the Holonomy Theorem, versions of which are
proven in [L] and [G2]. (To do this, one may need a slight variant of the Holonomy
Theorem for manifolds with boundary. The manifold in question is then viewed
as locally modelled on compactified hyperbolic space. If Γ is a convex cocompact
group, with discontinuity domain Ω, then the quotient of Hn ∪ Ω by Γ is a
compact manifold having a structure of this type.)

The argument we give here can be applied equally well in the case of variable
negative curvature with curvature bounded away from 0. (In case there is no
curvature bound away from −∞ one should reinterpret “convex” as “quasiconvex”
in some sense. This adds some technical complications, but the argument should
still go through.) For the sake of simplicity, we shall give the argument here only
with reference to hyperbolic space, Hn .

We begin with some general discussion of convex sets in Hn . Given a subset
Q ⊆ Hn , we write Q for its closure in the ball Hn ∪ ∂Hn . If Q1 and Q2 are
convex, then Q1 ∩Q2 = ∅ if and only if dhyp(Q1, Q2) > 0. In such a case we shall
say that Q1 and Q2 are strictly disjoint.

We shall phrase everything in terms of continuous families of representations.
Let T be a “parameter space”, i.e. a first countable Hausdorff topological space,
with a preferred basepoint 0 ∈ T . We shall speak about a parameter t ∈ T being
“small” if it lies in some small neighbourhood of 0.

Suppose that the map [t 7→ Q(t)] associates to each t ∈ T a set Q ⊆ Hn .
We say that Q(t) is a continuous translation (of some fixed set Q), if there is a
continuous map [t 7→ g(t)]: T −→ IsomHn such that Q(t) = g(t)Q for all t ∈ T .
Without loss of generality, we can take Q = Q(0).

Suppose that K ⊆ Q is closed, and that Q is a collection of closed convex
subsets of Hn . We say that Q properly ε-covers K if for all x ∈ K there is some
Q ∈ Q such that N(x, ε) ⊆ Q , and if every point ofK lies in the interior ofQ for
some Q ∈ Q . One easily verifies the following:
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Lemma 4.2. Suppose that I is some finite indexing set, and that for each

i ∈ I , we have a continuous translation [t 7→ Qi(t)] of a closed convex set Qi(0) .
Suppose that K ⊆ Hn is closed and is properly ε-covered by {Qi(0) | i ∈ I} .

Then K is properly (ε/2) -covered by {Qi(t) | i ∈ I} for all sufficiently small

t ∈ T .

Returning to our finitely generated group, Γ, we can characterise convex
cocompact representations as follows:

Lemma 4.3. Suppose ̺ ∈ R(Γ) , then ̺ ∈ RF (Γ) if and only if there is a

closed convex set Q ⊆ Hn such that {γ ∈ Γ | Q ∩ ̺(γ)Q 6= ∅} is finite, and such

that the sets {̺(γ)Q | γ ∈ Γ} form a locally finite cover of Hn .

If ̺ ∈ RF , we could take Q to be, for example, a Dirichlet domain. Note that
the sets {̺(γ)Q | γ ∈ Γ} are necessarily locally finite on Hn ∪ Ω(Γ) (see [Bo1]).
Note that we can “thicken up” Q a bit so that ∂Q is properly ε-covered by the sets
̺(γ)Q as γ ranges over the finite set of non-trivial γ ∈ Γ such that Q∩̺(γ)Q 6= ∅ .
(This can be done by replacing Q by some convex neighbourhood of itself in Hn∪
Ω(Γ), using, for example, the Klein model. By the above remark, the finiteness
properties of the cover remain valid.) We can now thicken up Q a bit further so
that it has the additional properties that if Q∩̺(γ)Q = ∅ then Q and ̺(γ)Q are
strictly disjoint, whereas if Q ∩ ̺(γ)Q 6= ∅ then this intersection contains a non-
empty open set. (This can be done, without affecting the ε-covering property, by
replacing Q by a small uniform neighbourhood of itself in the hyperbolic metric.)
The point of imposing these additional conditions is that they are stable with
respect to small perturbations (cf. Lemma 4.2).

To avoid notational confusion later on, we shall imagine the the elements of
Γ as indexed by a set Υ. Thus, for each i ∈ Υ, we have a corresponding element
g(i) ∈ Γ. Thus Γ acts on Υ by left multiplication, i.e. such that g(γi) = γg(i)
for all i ∈ Υ and γ ∈ Γ.

Now suppose that ̺0 ∈ RF , and that Q ⊆ Hn , is as described by Lemma 4.3
and the subsequent discussion. Given i ∈ Υ, set Ai = ̺0

(

g(i)
)

Q . Thus, if γ ∈ Γ,
Aγi = ̺0(γ)Ai . We define a graph (I, E) by setting I = Υ, and letting ij ∈ E if
and only if Ai ∩ Aj 6= ∅ (so that Ai and Aj are strictly disjoint). Note that this
graph is connected, every vertex has finite degree, and that E/Γ is finite. Note
that the hypotheses of Theorem 3.1 are satisfied. In particular, (A3) follows from
the fact that ∂Ai is properly ε-covered by the sets {Aj | ij ∈ E, i 6= j} . Of
course, we deduce nothing new from the conclusion in this case.

Suppose that [t 7→ ̺t]: T −→ IsomHn is a continuous family of represen-
tations, with ̺0 ∈ RF . Given t ∈ T and i ∈ I , let Ai(t) = ̺t

(

g(i)
)

Q . Thus,
Ai(0) = Ai , and Aγi(t) = ̺t(γ)Ai(t) for all i ∈ I , γ ∈ Γ and t ∈ T . Also
[t 7→ Ai(t)] is a continuous translation of Ai(0).

Fix any i ∈ I . We can assume (after conjugating by ̺t

(

g(i)
)

) that Ai(t) = Ai

is constant. (In fact, by taking i so that g(i) is the identity, we need not bother
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with this here, but the principle will be used in the proof of the general case.)
Now, applying Lemma 4.2, we see that for all sufficiently small t ∈ T , the sets
{Aj(t) | ij ∈ E, i 6= j} give a proper (ε/2)-cover of ∂Ai = Ai(t) . From the
̺t(Γ)-equivariance, we see that this is true simultaneously for all i ∈ I , and so we
see that the hypothesis (A3) is satisfied for the collection {Ai(t) | i ∈ I} .

If ij ∈ E , we arranged that Ai(0) ∩ Aj(0) contains a non-empty open set,
and so Ai(t) ∩Aj(t) 6= ∅ for all sufficiently small t ∈ T . But, since E/Γ is finite,
we see, again from the ̺t(Γ)-equivariance, that hypothesis (A1) is satisfied for all
sufficiently small t .

Finally, suppose ij, ik ∈ E and jk /∈ E . Then Aj(0) and Ak(0) are strictly
disjoint, and so Aj(t) ∩ Ak(t) = ∅ for all sufficiently small t . Now, for a given i ,
there are only finitely many such pairs j, k , and so there are only finitely many
such triples, i, j, k , up to the action of Γ. We see that hypothesis (A2) is satisfied
for all sufficiently small t .

In summary, we see that for all sufficiently small t ∈ T , the hypotheses of
Theorem 3.1 are satisfied, and so Hn =

⋃

i∈I Ai(t) =
⋃

γ∈Γ ̺t(γ)Q . Moreover,
we have Ai(t) ∩ Aj(t) 6= ∅ if and only if ij ∈ E . It follows that the collection
{Ai(t) | i ∈ I} = {̺t(γ)Q | γ ∈ Γ} is a locally finite cover of Hn , with Q meeting
only finitely many images of itself under the action of ̺t(Γ). Lemma 4.2 now tells
us that ̺t ∈ RF .

By taking T to be the whole representation space R , this proves Proposi-
tion 4.1.

We now do the same thing again in the general case. This time, we have to
deal with parabolic groups. The idea will be to include a set of “standard parabolic
regions” in our family of covers,

(

Ai(t)
)

i∈I
.

As before, let Rn
+

be the upper half space model, and identify ∂Rn
+
≡ Rn−1 ≡

En−1 . Given any r ∈ {0, . . . , n− 1} , we write τ(r) ⊆ En−1 ⊆ Rn
+
∪ ∂Rn

+
for the

“standard” r -dimensional subspace τ(r) = {(ξ1, . . . , ξn−1, 0) | (∀k > r)(ξk = 0)} .
We write C(r) =

{

x ∈ Rn
+
| deuc

(

x, τ(r)
)

≥ 1
}

, where deuc is the usual euclidean
metric on Rn

+
.

Now suppose that G is a finitely generated virtually abelian group with
r(G) = r . Let S (G, n − 1) be the space of discrete representations into En−1

(as described in Section 2). Suppose that ̺ ∈ S (G, n − 1). By the Bieberbach
Theorem (Theorem 1.3), we can conjugate ̺ by an element of IsomEn−1 so that
τ(r) is a crystallographic subspace. In particular, τ(r) is ̺(G)-invariant. Also, if
H(r) is the closure of Rn

+
\ C(r) in Rn

+
∪ ∂Rn

+
, then the quotient H(r)/̺(G) is

compact. We refer to C(r) as a standard parabolic region for the group ̺(G) .

More generally, suppose that ̺: G −→ IsomHn is a parabolic representation,
as discussed in Section 1, with fixed point p ∈ ∂Hn . By a parabolic region, C ,
we shall mean a closed convex ̺(G)-invariant subset of Hn such that H/̺(G) is
compact, where H is the closure of Hn \ C in Hn ∪ ∂Hn \ {p} .
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There is an isometry, β: Hn −→ Rn
+

with β(p) = ∞ . Let ̺β ∈ S (G, n− 1)
be the conjugate representation, defined by ̺β(γ) = β̺(γ)β−1 . Now, we can also
assume that β is chosen so that τ(r) is a crystallographic subspace for ̺β(G) .
We shall say that C ⊆ Hn is a standard parabolic region for ̺ if it has the form
C = β−1C(r) for some such isometry β .

Suppose Γ is a finitely generated group, with peripheral structure (Gi)i∈Π .
Recall that R is the space of type-preserving representations, and RF is the
subset of geometrically finite representations without accidental parabolics. We
may characterise elements of RF as follows:

Proposition 4.4. Suppose that ̺ ∈ R . Then ̺ ∈ RF if and only if there is

a collection (Ci)i∈Π of closed convex subsets of Hn , together with another closed

convex set Q ⊆ Hn , satisfying the following :

(1) (∀γ ∈ Γ)(∀i ∈ Π)(Cγi = ̺(γ)Ci) ,

(2) If i 6= j , then Ci ∩ Cj = ∅ ,

(3) For all i ∈ Π , Ci is a cusp region corresponding to the parabolic repre-

sentation ̺ | Gi ,

(4) The collection {Ci | i ∈ Π} ∪ {̺(γ)Q | γ ∈ Γ} form a locally finite cover

of Hn .

This is essentially Marden’s definition of geometrical finiteness [Mard], (or
“GF1” as described in [Bo1]). Note that we could obtain Q , for example, by
taking a Dirichlet domain, removing its intersection with the standard parabolic
regions, and then taking the convex hull.

The local finiteness part of condition (4) should be interpreted to mean that
given any compact set K ⊆ Hn , the sets {i ∈ Π | K ∩ Ci 6= ∅} and {γ ∈ Γ |
K ∩ ̺(γ)Q 6= ∅} are finite. In fact, it follows that the collection is locally finite on
Hn ∪ Ω(Γ) (see [Bo1]). It follows that Q , or indeed any neighbourhood of Q in
Hn which is relatively compact in Hn ∪ Ω(Γ), meets only finitely many images
of itself under Γ, and only finitely many of the sets Ci . Similarly, each Ci meets
only finitely many images of Q , up to the action of ̺(Gi) . There is no loss in
assuming that each Ci is in fact a standard cusp region, and that if i 6= j then
Ci and Cj are strictly disjoint. It then follows, in fact, that there is some fixed
ε > 0 such that if i 6= j , then dhyp(Ci, Cj) ≥ ε .

There are further conditions we could impose on Q , similar to those in the
cocompact case. Thus, by “thickening” it up a bit we can assume that ∂Q is
properly ε-covered by the (finite) collection of those γQ and Ci which meet Q .
Also, for each i , ∂Ci is “properly ε-covered” the set of those images of Q which
meet ∂Ci . We are abusing terminology slightly here, since the parabolic fixed
point pi lies in the closure of ∂Ci , but is not contained in the interior of any
set ̺(γ)Q. What we really mean can be expressed by saying that there is a set
P ⊆ ∂Ci , whose images under ̺(Gi) cover ∂Ci and which is properly ε-covered
by the set of those images of Q which meet P . Finally, we can assume that if Q
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meets a given set ̺(γ)Q or Ci then the intersection contains a non-empty open
set, whereas if these sets are disjoint, then they are strictly disjoint.

Suppose that ̺0 ∈ RF , and that Q ⊆ Hn and (Ci)i∈Π satisfy all the condi-
tions described above (with ̺ = ̺0 ). Let I = Υ ⊔ Π. Given i ∈ I , we define the
convex set Ai ⊆ Hn by Ai = Ci if i ∈ Π, and Ai = ̺0

(

g(i)
)

Q if i ∈ Υ. We define
a graph (I, E) be letting ij ∈ E if and only if Ai ∩ Aj 6= ∅ . Note that there is a
natural Γ-action on this graph. Given i ∈ I , write I(i) = {j ∈ I | ij ∈ E, i 6= j} .
Thus, if i ∈ Υ, then I(i) is finite. If i ∈ Π, then I(i) ⊆ Υ, and I(i)/Gi is finite.
Also, I/Γ is finite, and so E/Γ is finite. Note that the sets (Ai)i∈I satisfy the
hypotheses of Theorem 3.1.

The idea of the proof of Theorem 1.5 is to consider a continuous family [t 7→
̺t]: T −→ R , of deformations of ̺0 , such that ∆(̺t) = ∆(̺0) for all t . We
construct a family of continuous translations [t 7→ Ai(t)] , so that Ai(0) = Ai , and
Aγi(t) = ̺t(γ)Ai(t) , for all γ , i and t . We verify that for all sufficiently small t ,
the collection

(

Ai(t)
)

i∈I
satisfies the hypotheses of Theorem 3.1. It then follows

by Proposition 4.4, that ̺t ∈ RF .

Given p ∈ ∂Hn , we can find a hyperbolic isometry θp: Hn −→ Rn
+

which
extends to a map Hn ∪ ∂Hn −→ Rn

+
∪ ∂Rn

+
∪ {∞} such that θp(p) = ∞ . For

notational convenience, we shall choose a preferred point of Hn which we shall
denote by ∞ , and identify Hn and Rn

+
in such a way that θ∞ is the identity

map. Moreover, we can assume that θp varies continuously in a neighbourhood
of ∞ . More precisely, there is a neighbourhood, U , of ∞ in ∂Hn , such that the
map [(p, x) 7→ θp(x)]: U ×Hn −→ Hn is continuous.

Now, given points p, q ∈ ∂Hn , we set θp,q = θθp(q)◦θp . Thus, θp,q is an isom-

etry of Hn . Note that θp,q(q) = θθp(q)

(

θp(q)
)

= ∞ . Also, θ∞,q = θq . Moreover,
for a fixed p , θp,q varies continuously in q , as q varies over a neighbourhood of p
(namely θ−1

p U ).

There is a similar construction in euclidean space. Recall, from Section 2, that
L (r, s) = {(V, τ) | V ∈ Fr, τ ∈ Es, V ⊆ D(τ)} . We fix a “standard” element
of L (r, s) , namely λ0 = λ0(r, s) =

(

D
(

τ(r)
)

, τ(s)
)

, where τ(k) is the standard
k -dimensional subspace of En−1 as defined earlier. Now, given any λ ∈ L (r, s) ,
we can find φλ ∈ IsomEn−1 such that φλ(λ) = λ0 . We can assume that φλ0

is
the identity, and that φλ varies continuously on a neighbourhood of λ0 in L (r, s) .
Given κ, λ ∈ L (r, s) , we set φλ,κ = φφλ(κ) ◦ φλ . Thus φλ,κ(κ) = λ0 , φλ0,κ = φκ ,
and φλ,κ varies continuously in κ in a neighbourhood of λ in L (r, s) . We extend
φλ,κ to a hyperbolic isometry fixing ∞ .

Suppose that [t 7→ ̺t]: T −→ R is a continuous family, with ̺0 ∈ RF and
∆(̺t) = ∆(̺0) for all t ∈ T . Let Q , (Ci)i∈Π , (I, E) and (Ai)i∈I be as described
earlier.

Now given i ∈ Π, ̺t | Gi is parabolic. Let pi(t) be the fixed point of ̺t(Gi) .
Note that pi(t) is the unique fixed point of ̺t(γ) for some fixed γ ∈ Gi , and so
we see that it varies continuously in t . Let ri = r(Gi) and si = ∆(̺t)(i) .
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Let Π0 ⊆ Π be a transversal to the action of Γ on Π. Thus, Π0 is fi-

nite. Given i ∈ Π0 , let θi(t) = θpi(0),pi(t) , and let ̺
θi(t)
t be the representation

̺t conjugated by θi(t) . Now ̺
θi(t)
t | Gi is parabolic representation with fixed

point θi(t)
(

pi(t)
)

= ∞ . In other words, we can consider ̺
θi(t)
t as an element of

S (Gi, n − 1). Let λi(t) = λ(̺
θi(t)
t ) ∈ L (ri, si) . By Proposition 2.10, λi(t) is

continuous in t . Let φi(t) = φλi(0),λi(t) , so that ̺
(φi(t)◦θi(t))
t | Gi ∈ S (Gi, n− 1),

and λ
(

̺
(φi(t)◦θi(t))
t

)

= λ(ri, si) .

There is a fixed hyperbolic isometry (or euclidean homothety), ψi such that
ψi ◦ φi(0) ◦ θi(0)(Ci) is the standard parabolic region C(ri) (in Rn

+
). Let βi(t) =

ψi ◦ φi(t) ◦ θi(t) . Thus, ̺
βi(t)
t | Gi ∈ S (Gi, n− 1), and λ(̺

βi(t)
t ) = λ0 .

Each i ∈ Π has the form γj for some γ ∈ Γ and j ∈ Π0 . We choose one
such γ for each i /∈ Π0 . Now, Gi = γGjγ

−1 , so ̺t | Gi is parabolic with fixed
point ̺t(γ)

(

pj(t)
)

. In this case, we set βi(t) = βj(t) ◦ ̺t(γ
−1) . Again, we get

̺
βi(t)
t | Gi ∈ S (Gi, n− 1).

For each i ∈ Π, set Ci(t) = βi(t)
−1C(ri) . Thus, Cγi(t) = ̺t(γ)Ci(t) , and

Ci(t) is a standard cusp region for the parabolic representation ̺t | Gi . Also
Ci(0) = Ci , and Ci(t) = hi(t)Ci(0), where hi(t) = βi(t)

−1βi(0). Thus, [t 7→
Ci(t)] is a continuous translation (for sufficiently small t).

Let I = Υ ⊔ Π be as above. We define the collection
(

Ai(t)
)

i∈I
by setting

Ai(t) = Ci(t) for i ∈ Π and Ai(t) = ̺t

(

g(i)
)

Q for i ∈ Υ. Thus,
(

Ai(t)
)

i∈I
has

all the properties outlined earlier. We want to show that it satisfies the hypotheses
of Theorem 3.1 for all sufficiently small t .

Now hypothesis (A1) follows exactly as in the cocompact case, given that
I/Γ and E/Γ are finite. Hypothesis (A3), in the case where i ∈ Υ, also follows
as in the cocompact case, given that I(i) is finite. Hypothesis (A3), in the case
where i ∈ Π, calls for some comment. Note that after conjugating the family of
representations by a continuous family of elements of IsomHn (namely βi(t)) we
can suppose that Ai(t) = Ci is constant. Now since ̺t | Gi varies continuously,
we can find a constant set P ⊆ ∂Ci such that the images of P under each group
̺t(Gi) cover Ci . Now P is properly ε-covered by some finite subset of the sets
Aj(0) for j ∈ I(i) ⊆ Υ. We now apply Lemma 4.2 to show that it is properly
(ε/2)-covered by the corresponding sets Aj(t) for all sufficiently small t .

Again, property (A2) in the case where i ∈ Υ follows as in the cocompact
case, given that I(i) is finite. The case where i ∈ Π requires a bit more work.

Again up to a continuous conjugacy, we can assume that Ai(t) is constant,
and equal to the standard cusp region C(ri) in Rn

+
. In particular, τ = τ(ri) is

a crystallographic subspace. Let 0 ∈ τ ⊆ En−1 ≡ Rn−1 be the origin, and let
N(0, h) denote the euclidean h-neighbourhood of 0 in Rn

+
∪ ∂Rn

+
.

Now, I(i)/Gi is finite. Let I0 ⊆ I(i) be a (finite) transversal to the Gi -
action. For each j ∈ I0 , the set Aj(0) is relatively compact in Rn

+
∪ ∂Rn

+
, and
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so Aj(0) ⊆ N(0, Rj) for some Rj > 0. Thus, for all sufficiently small t , we have
Aj(t) ⊆ N(0, Rj + 1). Let R = max{Rj + 1 | j ∈ I0} . Thus, we can assume that
Aj(t) ⊆ N(0, R) for all j ∈ I0 and t ∈ T .

Let H = {γ ∈ Γ | deuc(0, ̺0(γ)0) ≤ 4R} . Applying Lemma 2.11, we see that
for all γ ∈ Gi , and for all sufficiently small t , deuc

(

0, ̺t(γ)0
)

≥ 1
2deuc

(

0, ̺0(γ)0
)

.

In particular, for all γ ∈ Gi \H , we have deuc

(

0, ̺t(γ)0
)

≥ 2R .

Suppose that γ ∈ H , j, l ∈ I0 , and Aj(0) ∩ Aγl(0) = ∅ . For all sufficiently
small t , we have Aj(t) ∩ Aγl(t) = ∅ . Since there are only finitely many such j , l
and γ , we can suppose this is true for all t ∈ T .

Now suppose that j, k ∈ I(i) with Aj(t) ∩ Ak(t) 6= ∅ . Up to the action
of Gi , we can suppose that j ∈ I0 and that k = γl , where γ ∈ Gi and l ∈ I0 .
Thus Ak(t) = Aγl(t) = ̺t(γ)Al(t) . Now, Aj(t)∩̺t(γ)Al(t) 6= ∅ and Aj(t), Al(t) ⊆
N(0, R) and so deuc

(

0, ̺t(γ)0
)

≤ 2R . Thus γ ∈ H . From the previous paragraph,
we see that Aj(0) ∩Ak(0) 6= ∅ , so jk ∈ E .

Since there are only finitely many such i up to the action Γ, this verifies
hypothesis (A2). Thus all the hypotheses of Theorem 3.1 are satisfied for all
sufficiently small t . It follows that

(

Ai(t)
)

i∈I
forms a locally finite cover for Hn ,

and that if Ai(t)∩Aj(t) 6= ∅ then ij ∈ E . In particular, we see that the parabolic
regions Ci(t) and Cj(t) for i, j ∈ Π are disjoint unless i = j . Proposition 4.4
now tells us that ̺t ∈ RF as required. This proves Theorem 1.5.

5. Examples

In this section we give examples of geometrically finite representations into
IsomH4 which are limits of non-geometrically finite representations. By Theo-
rem 1.5, we know that this has to be the result of the canonical subspaces associ-
ated to the cusps jumping up in dimension in the limit.

In the first example, we describe type-preserving representations ̺n: Z∗Z −→
IsomH4 , such that ̺n → ̺ , where ̺ is faithful and geometrically finite without
accidental parabolics, but where ̺n(Z ∗ Z) is not discrete for any n .

In the second example, we describe type-preserving representations ̺n: Z∗Z∗
Z −→ IsomH4 , again converging to a faithful geometrically finite representation
̺: Z ∗ Z ∗ Z −→ IsomH4 . This time, each ̺n is discrete but not geometrically
finite.

In each case, there is just one conjugacy class of peripheral subgroup, namely
the set of conjugates of one of the free factors isomorphic to Z .

To construct these representations, we shall need the following elementary
combination lemmas. Given a discrete subgroup, Γ ⊆ IsomH4 , we write Ω(Γ) ⊆
∂H4 for the discontinuity domain. We write M(Γ) =

(

H4∪Ω(Γ)
)

/Γ. If Q ⊆ Ω(Γ)
we say that Q is dispersed by Γ if Q ∩ γQ = ∅ for all non-trivial γ ∈ Γ.

We shall say that a pair of round balls, D1, D2 ∈ ∂H4 , are complementary if
they meet along their common boundary D1 ∩D2 = ∂D1 = ∂D2 .



Spaces of geometrically finite representations 411

Lemma 5.1. Suppose that D1 and D2 are complementary round balls in

∂H4 , and Γ1,Γ2 ⊆ IsomH4 are discrete groups. Suppose that D2 ⊆ Ω(Γ1)
and that D1 ⊆ Ω(Γ2) , and are dispersed by Γ1 and Γ2 respectively. Then

Γ = 〈Γ1,Γ2〉 ∼= Γ1 ∗ Γ2 , and Γ is discrete. Moreover, if Γ1 and Γ2 are both

geometrically finite, then so is Γ .

Proof. Let Hi be the convex hull of Di , so that Hi is a half-space in H4∪∂H4 .
Now H2 projects to a half space in M(Γ1) , and we form the manifold M ′

1 by
removing the interior of H2 from M(Γ1) . We construct M ′

2 similarly, and form a
another manifold M by gluing together M ′

1 and M ′
2 along their common boundary

(a copy of hyperbolic 3-space). If we do this right, then M =
(

Hn ∪ Ω(Γ)
)

/Γ,
so that Γ is discrete. Now, using Marden’s description of geometrical finiteness
[Mard] (“GF1” in [Bo1]), we see that if Γ1 and Γ2 are geometrically finite, then
so is Γ.

The following variation can be proved by a similar argument:

Lemma 5.2. Suppose that Γ1,Γ2,Γ3 ⊆ IsomH4 are discrete, and that

D2, D3 ⊆ Ω(Γ1) are round balls. Suppose that D2 and D3 are both dispersed by

Γ1 and that their complements are dispersed by Γ2 and Γ3 respectively. Suppose

that D2 ∩ γD3 = ∅ for all γ ∈ Γ . Then, Γ = 〈Γ1,Γ2,Γ3〉 ∼= Γ1 ∗ Γ2 ∗ Γ3 , and Γ is

discrete. Moreover, if Γ1 , Γ2 and Γ3 are all geometrically finite, then so is Γ .

Let R4
+

be the upper-half-space model for H4 . We identify E3 ≡ R3 ≡ ∂R4
+
.

Given any h > 0, let Xh and Zh be, respectively, the translations of E3 given
by [(x, y, z) 7→ (x+ h, y, z)] and [(x, y, z) 7→ (x, y, z + h)] . Given r > 0, let α(r)
be the line parallel to the z -axis given by α(y) = {(0, r, z) | z ∈ R} . If r, h > 0,
let T (r, θ, h) be the “screw motion” on E3 given by a rotation through an angle
of θ about the axis α(r) composed with the translation Zh . Note that each these
maps extend to a parabolic isometry of H4 fixing ∞ , which we shall denote by
the same symbols.

Suppose ζ, ξ > 0 are constants (to be described later). For each n ∈ N , let
Tn = Tn(ζ, ξ) = T (ζn/2π, 2π/n, ξ/n) . Thus Tn

n = Zξ . Also, as n → ∞ , the map
Tn converges to Xζ .

Let D be the ball of radius 1 about the origin, 0 in E3 , and let D′ be the
complementary ball in ∂H4 . We fix any ζ > 2. Note that the ball D is dispersed
by the cyclic parabolic group 〈Xζ〉 .

First example. Choose ε > 0 to be some number less than the Margulis
constant in dimension 4. Then there is some η > 0 such that if β, β′ ⊆ H4 are
two distinct loxodromic axes in a discrete subgroup of IsomHn , which are each
translated a distance less that ε by the corresponding loxodromic elements, then
dhyp(β, β′) > η .

Let 0 < t < 1, and let β ⊆ H4 be the bi-infinite geodesic joining the ideal
points (−t, 0, 0) and (t, 0, 0). Let γ ∈ IsomH4 be a hyperbolic isometry which
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translates the axis β by a hyperbolic distance ε . (For definiteness, we can take
(t, 0, 0) to be the attracting fixed point, and assume that γ has trivial rotational
part.) By choosing t small enough, we can ensure that the ball D′ is dispersed
by the group Γ2 = 〈γ〉 .

Let Γ1 = 〈Xζ〉 , so that D is dispersed by Γ1 . Thus, by Lemma 5.1, 〈Γ1,Γ2〉 ∼=
Z ∗ Z is geometrically finite.

Suppose ξ > 0. Now, Zξβ is the bi-infinite geodesic joining the ideal points
(−t, 0, ξ) and (t, 0, ξ) . We fix ξ small enough so that dhyp(β, Zξβ) < η . Thus,
the isometries ZξγZ

−1
ξ generate a non-discrete group.

Let Γ = Z∗Z with free generators a and b . We choose a peripheral structure
for Γ consisting of the cyclic subgroup 〈a〉 and all its conjugates in Γ. We define
a type-preserving representation, ̺: Γ −→ IsomH4 , by setting ̺(a) = Xζ and
̺(b) = γ . As described above, ̺ is faithful and geometrically finite.

Given n ∈ N , we define the type-preserving representation ̺n: Γ −→ IsomH4

by setting ̺n(a) = Tn = Tn(ζ, ξ) and ̺n(b) = γ . Now Zξ = Tn
n ∈ ̺n(Γ), and so

γ, ZξγZ
−1
ξ ∈ ̺n(Γ). Thus ̺n(Γ) is not discrete.

We also have that ̺n(a) = Tn converges to Xζ = ̺(b) , and that ̺n(b) = ̺(b)
for all n . Thus ̺n converges to ̺ .

Second example. For this we shall need the following fact [C]:

Lemma 5.3. There exists a discrete subgroup of IsomH3 isomorphic to

Z ∗ Z , which has no parabolics and which is not geometrically finite.

Proof. (Sketch) There is a homeomorphism from R = R(Z ∗ Z) onto
(IsomH3)2 given by

[

̺ 7→
(

̺(a), ̺(b)
)]

, where a, b are free generators of Z ∗ Z .
(Here Z ∗ Z is taken to have empty peripheral structure, so that every repre-
sentation is type-preserving.) Thus, R is a 12-manifold. If γ ∈ Z ∗ Z , then
P (γ) = {̺ ∈ R | tr ̺(γ) = ±2} is a 10-dimensional subvariety of R . Thus,
P =

⋃

γ∈Z∗Z
P (γ) has Hausdorff dimension 10 (with respect to any Riemannian

metric on R ).
Let R0

F and R0
D be, respectively, the sets of faithful geometrically finite and

faithful discrete representations. Now, R0
F and R \ R0

D are both non-empty and
open in R . It follows that the closed set R0

D \ R0
F has dimension at least 11,

and so R0
D \ (R0

F ∪ P ) 6= ∅ . The image of any representation in this set has the
desired property. For further details, see [C].

We now embed H3 as a subspace of H4 . Let γ, δ ∈ IsomH3 be free gener-
ators of a non geometrically finite group as described by Lemma 5.3, and extend
this action to H4 as a 4-dimensional Fuchsian group, Γ′ = 〈γ, δ〉 . Now, Γ′ acts
properly discontinuously on ∂H4 \∂H3 , so we can find a round ball in ∂H4 \∂H3

which is dispersed by Γ′ . After conjugating by a suitable element of IsomH4 , we
can assume that D′ is such a ball (i.e. the complementary ball to the unit ball,
D , centred at the origin of E3 ).
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Fix any ζ, ξ > 2, and let Tn = Tn(ζ, ξ) . For all sufficiently large n , we see
that the ball D is dispersed by the group 〈Tn〉 . It follows by Lemma 5.1, that
〈Γ′, Tn〉 ∼= Γ′ ∗ 〈Tn〉 ∼= Z ∗ Z ∗ Z is discrete (but not geometrically finite).

Suppose Γ1 = 〈Xζ〉 , Γ2 = 〈γ〉 , and Γ3 = 〈ZξδZ
−1
ξ 〉 . Thus, Γ1 , Γ2 and Γ3

are geometrically finite cyclic groups, with Γ1 parabolic, and Γ2,Γ3 loxodromic.
Now D is dispersed by Γ1 , and D′ is dispersed by Γ2 (since Γ2 ≤ Γ′ ). Since
Zξ and Xζ commute, ZξD is also dispersed by Γ1 . Moreover, Zξ = Tn

n ∈ Γ′ ,
and so Γ3 ⊆ Γ′ = ZξΓ

′Z−1
ξ . Thus, ZξD

′ is dispersed by Γ3 . We also note that
D ∩ γZξD = ∅ for all γ ∈ Γ1 . Thus, the hypotheses of Lemma 5.2 are satisfied,
so we see that 〈Γ1,Γ2,Γ3〉 ∼= Z ∗ Z ∗ Z is geometrically finite.

Let Γ ∼= Z ∗ Z ∗ Z with free generators a , b and c . We take a peripheral
structure of the cyclic group 〈a〉 together with all its conjugates in Γ. We define
a representation ̺: Γ −→ IsomH4 by setting ̺(a) = Xζ , ̺(b) = γ and ̺(c) =
ZξδZ

−1
ξ . We see that ̺ is faithful, type preserving and geometrically finite without

accidental parabolics.

Now, given n ∈ N , we define a type-preserving representation ̺n: Γ −→
IsomH4 by setting ̺n(a) = Tn , ̺n(b) = γ and ̺n(c) = ZξδZ

−1
ξ . Now, Zξ = Tn

n ,

and so δ = ̺n(a−ncan) ∈ ̺n(Γ). Thus ̺n(Γ) = 〈Tn, γ, δ〉 = 〈Tn,Γ1〉 . From
the earlier discussion, we see that for all sufficiently large n , we have that ̺n is
discrete and faithful, but not geometrically finite.

Finally note that as n→ ∞ , Tn → Xζ , and so ̺n converges to ̺ .
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