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Abstract. A 3-manifold is tame if it is homeomorphic to the interior of a compact manifold
with boundary. Marden’s conjecture asserts that any hyperbolic 3 -manifold M = H3/Γ with
π1(M) finitely-generated is tame.

This paper presents a criterion for tameness. We show that wildness of M is detected
by large-scale knotting of orbits of Γ . The elder sibling property prevents knotting and implies
tameness by a Morse theory argument. We also show the elder sibling property holds for all convex
cocompact groups and a strict form of it characterizes such groups.

1. Introduction

Let M = H3/Γ be a complete hyperbolic 3-manifold, presented as a quotient
of hyperbolic 3-space by the action of a Kleinian group Γ. We say M is tame if
it is homeomorphic to the interior of a compact manifold with boundary.

Clearly π1(M) is finitely generated if M is a tame manifold. Marden’s con-

jecture asserts the converse: any hyperbolic 3-manifold with finitely generated
fundamental group is tame.

In this paper we discuss a geometric criterion for tameness. To give some
feel for Marden’s conjecture, we begin in Section 2 by describing what a wild
Kleinian group, if it exists, would look like. It turns out any orbit of Γ would be
knotted at arbitrarily large scales. We then introduce the elder sibling property

for a configuration of balls in hyperbolic space. This condition prevents knotting
by a Morse theory argument (Section 3).

Our main result states that if the Γ-orbit of a ball satisfies the elder sibling
property, then M is tame (Section 5).

We do not expect the elder sibling property to hold for all hyperbolic 3-
manifolds; rather, we hope it identifies a class of well-behaved manifolds that will
serve as a point of departure for a deeper study of tameness. In Section 6, we show
a strict form of the elder sibling property holds for all convex cocompact Kleinian
groups, and in fact characterizes such groups.
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A brief history. In the early 1960s, Ahlfors and Bers showed finitely gener-
ated Kleinian groups are analytically agreeable; for example, the quotient Riemann
surface Ω/Γ always has finite hyperbolic area (where Ω ⊂ Ĉ is the domain of dis-
continuity) [Ah], [Bers]. Ahlfors proposed that the limit set of a finitely generated
Kleinian group should be either the whole sphere, or of measure zero.

In his work on the 3-dimensional topology of Kleinian groups, Marden showed
that geometrically finite manifolds are tame [Mar], and raised the question of
tameness in general.

Through work of Thurston and Bonahon, the Marden and Ahlfors conjectures
were both established for 3-manifolds with incompressible ends [Bon], [Th]. (These
are manifolds admitting a Scott core with incompressible boundary.) The proofs
use pleated surfaces sweeping out the geometrically infinite ends.

Canary showed, using branched coverings, that tame manifolds with com-
pressible ends can also be equipped with sufficiently many pleated surfaces. Thus
Marden’s conjecture implies Ahlfors’ conjecture [Can].

At present, both conjectures remain open in the compressible case, even for
the simplest case of manifolds with π1(M) ∼= Z ∗ Z .

The yet stronger ending lamination conjecture of Thurston proposes a com-
plete isometric classification of hyperbolic 3-manifolds with finitely generated fun-
damental group, in terms of topology, a combinatorial lamination and the Riemann
surface at infinity.

For a more detailed account of work towards this classification, see [Mc].

2. Seeing wildness in an orbit of Γ

Let M = H3/Γ be a hyperbolic 3-manifold with π1(M) finitely generated.
The manifold M is determined by the finitely generated Kleinian group Γ ∼=
π1(M) ⊂ Isom(H3) .

We say M is tame if it is homeomorphic to the interior of a compact 3-
manifold with boundary; otherwise it is wild . The issue of tameness of M was
raised in [Mar], so we refer to the following as the Marden conjecture.

Conjecture 2.1. Any hyperbolic 3 -manifold with finitely generated funda-

mental group is tame.

In this section we point out that wildness of M , if it occurs, is reflected in
large-scale knotting behavior of an orbit Γx ⊂ H3 .

For any set X ⊂ H3 , let

Nr(X) = {y ∈ H3 : d(x, y) < r for some x ∈ X }

denote an r -neighborhood of X . In the case X = Γx we will be interested in the
following:
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Engulfing condition. For every r > 0 there exists an R ≥ r such that

every homotopy class of map

f : (I, ∂I) →
(
H3 − Nr(X), ∂Nr(X)

)

has a representative with f(I) contained in NR(X) .

Here I = [0, 1] . The engulfing condition says that the inclusion of pairs
(
NR(X) − Nr(X), ∂Nr(X)

)
→֒

(
H3 − Nr(X), ∂Nr(X)

)

induces an epimorphism on relative π1 , provided we adopt the convention that no
basepoints are marked in the (possibly disconnected) subspace ∂Nr(X) .

Theorem 2.2. The manifold M is tame if and only if some orbit X = Γx
satisfies the engulfing condition.

The main tool in the proof is [Tu]:

Theorem 2.3 (Tucker). A 3 -manifold M is tame if and only if for every

compact submanifold K ⊂ M , every component of M −K has finitely generated

fundamental group.

Proof of Theorem 2.2. Let x be the image of x in M = H3/Γ. By Tucker’s
theorem, π1

(
M − Nr(x), y

)
is finitely generated for all r and all y ∈ ∂Nr(x) if

and only if M is tame.
Let y ∈ H3 be a lift of y . Then π1

(
M −Nr(x), y

)
may be interpreted as the

group of arcs in H3 −Nr(Γx) starting at y and ending on Γy . These arcs should
be taken up to deformation in H3 − Nr(Γx) , and composition of arcs is defined
with the help of the covering translation group π1(M) .

The condition that π1

(
M−Nr(x), y

)
is finitely generated for all r is equivalent

to: for all r > 0, there exists R > r such that

π1

(
NR(x) − Nr(x), y

)
→ π1

(
M − Nr(x), y

)

is surjective. Using the above interpretation of π1 , we see this surjectivity is
equivalent to the engulfing condition for Γx .

Recalling that knotting of a solid torus K ⊂ S3 results when π1(∂K) →
π1(S

3 − K) is not onto, it may be appreciated that the failure of the engulfing
condition means an orbit of Γ is “coarsely knotted at arbitrarily large scales”.
This is an elementary but graphic way to understand what a wild Kleinian group
would have to look like.

It is fascinating that, as far as one knows, the orbit of x ∈ H3 under two
generators α, β ∈ Isom(H3) might be a discrete set exhibiting such large-scale
knotting. A computer search for such knotting in the 3-dimensional parameter
space of such groups might be complicated by the fact that the set of wild 〈α, β〉
has no interior. Indeed, any open set of discrete groups consists of geometrically
finite groups [Sul].
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3. Elder siblings

Motivated by the preceding section, we now consider an arbitrary discrete set
X = 〈xi〉 in H3 and the collection of open balls Br = 〈B(xi, r)〉 = 〈Bi〉 . We
denote the complement of these balls by

Cr = H3 −∪Br

and say Br is unknotted if

π1(∂Cr, ∗) → π1(Cr, ∗)

is surjective for every choice of basepoint. Unknotting is a strong form of the
engulfing condition (with r = R), at least when ∪Br is connected.

The elder sibling property. We say Br has the elder sibling property if
there is some ball, say B1 ∈ Br , such that any Bi disjoint from B1 meets another
ball Bj with d(Bj , B1) < d(Bi, B1) .

Equivalently, any Bi can be joined to B1 by a finite chain of balls moving
monotonically closer to B1 . Thus:

The elder sibling property implies ∪Br is connected.

To explain the terminology, consider the Poincaré ball model, where H3 is
realized as the unit ball in R3 with the metric 2 |dx|/(1 − |x|2) . Normalize co-
ordinates so that B1 = B(x1, r) is centered at x1 = 0. Then the elder sibling
property says any ball Bi 6= B1 meets another ball Bj , its elder sibling, with
diam Bj > diamBi in the Euclidean metric.

In our applications we will have X = Γx so any ball can equally well play the
role of B1 . Note also:

Once Br has the elder sibling property, so does Bs for any s > r .

Our goal is to show that configurations of balls with the elder sibling property
are unknotted. For the proof, which is based on Morse theory, it is convenient to
arrange that Cr is a piecewise smooth manifold with boundary. Thus we will
exclude from consideration countably many values of r to achieve the following
generic conditions on the spheres ∂Bi :

– any two spheres meet transversally in a 1-manifold (∼= ∅ or S1 );
– any three spheres meet transversally in a finite set (∼= ∅ or S0 ); and
– any four spheres have empty intersection.

In the statement below, “almost every s ≥ r” means at most countably many
values are excluded.

Theorem 3.1. Suppose Br has the elder sibling property. Then for almost

every s ≥ r , Bs is unknotted; that is,

π1(∂Cs, ∗) → π1(Cs, ∗)

is surjective for every choice of basepoint.
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Proof. Let h(x) = |x|2 denote the radial coordinate in the ball model for
H3 ∼= B3 ⊂ R3 . For simplicity of notation, set C = Cs . We will describe (C, ∂C)
using ambient Morse theory for the (height) function h .

Let

Bs = {B1, B2, . . .}

and let a be the height of ∂B1 . For b ≥ a consider the pair

(
Cb, (∂C)b

)
=

(
C ∩ h−1[a, b], (∂C)∩ h−1[a, b]

)
.

Whenever b > a is not a critical value of h , Cb is a piecewise smooth 3-
manifold and (∂C)b is a submanifold of ∂(Cb) . For b > a small enough, the
pair

(
Cb, (∂C)b

)
is homeomorphic to a product

(
D × [a, b], D × {a}

)
, where

D = (∂C) ∩ (∂B1) .

C
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∂C

∂C
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∂C
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Figure 1. Classification of critical points and handles.
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As b increases towards 1, critical points of h on ∂C are encountered. For
almost every s the balls Bs are in general position, and therefore the critical
points of h are topologically nondegenerate. We classify the critical points into
six types, labeled by (±, i) , where i = 0, 1 or 2 indicates the index of the critical
point, (+, i) indicates the critical point lies above the interior of C (with respect
to h), and (−, i) indicates it lies below.

A complete table of critical point transitions appears in Figure 1. As the
height increases past a critical point of type (+, i) , a 2-dimensional i-handle is
attached to ∂C . At a critical point of type (−, i) , an i-handle pair is attached to
(C, ∂C) ; that is, a 3-dimensional i-handle is attached to C and a 2-dimensional
i-handle is attached to ∂C .

The configurations of balls associated with these critical point types are
sketched in Figure 2. At a critical point of type (±, i) , (i + 1) spheres come
together on ∂C .

Before studying the Morse theory of C , we make a simplification to remove
all critical points of the type (+, 0). This simplification is possible because of the
elder sibling assumption, and it is the key to proving unknottedness.

Let us index the balls Bi for i > 1 in order of increasing maximum height,
so Bi moves away from B1 as i increases. Define %Bi ⊆ Bi inductively by
%B1 = B1 and

%Bi = {x ∈ Bi : h(x) ≥ infimum of h on Qi}, where Qi = Bi ∩
i−1⋃
j=1

%Bj .

We call %Bi the truncation of Bi ; note that we may have %Bi = Bi .
critical point

h

(+, 0)

(+, 1)

(+, 2)

(−, 2)

(−, 1)

(−, 0)

Figure 2. Critical point configurations.
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Now thinking of Bi as a planet orbiting B1 , cut along the hyperbolic sphere
S(x1, si) whose radius is tangent to Bi , to partition Bi into a light side Li and
a dark side Di . The light side

Li = {x ∈ Bi : d(x, x1) ≤ si}

has the property that ∂Li ∩ ∂Bi consists of those points on ∂Bi that can be illu-
minated by a light source at the center x1 of B1 . The dark side is the complement
Di = Bi − Li .

Lemma 3.2. If j < i and Bj meets Bi , then the dark side of Bj meets the

light side of Bi .

Proof. Direct; see Figure 3.

Bi

x1

Bj

H3

Figure 3. The light and dark sides.

Corollary 3.3. The dark side is always preserved in the truncated ball; that

is, Di ⊂ %Bi ⊂ Bi .

Proof. By induction on i . By the elder sibling property, every Bi , i > 1,
meets a Bj with j < i . By induction, Dj ⊂ %Bj , and by the lemma above, Dj

meets Li . Thus the infimum of h on Qi is obtained on the light side of Bi , so
Di is preserved in the truncation %Bi .

Lemma 3.4. A pair of truncated balls %Bi and %Bj meet if and if the

original balls Bi and Bj meet.

Proof. We may assume j < i . Then Dj meets Bi by the lemma, so %Bj

meets Bi ; since truncation preserves the intersection with balls of smaller index,
%Bi meets %Bj .

After completing the truncation procedure, the complement C becomes %C =
H3 −∪%Bi .

Lemma 3.5. The pair
(
%C, ∂(%C)

)
is homeomorphic to (C, ∂C) .

Proof. We will construct an ambient isotopy φ: [0, 1] × H3 → H3 moving C
to %C . This isotopy will be a concatenation of isotopies φi: [0, 1] × H3 → H3

such that φi has the effect of replacing Bi by %Bi . That is, φi will move Ci to
Ci+1 , where

Ci = H3 −

(
i−1⋃
1

%Bi ∪
∞⋃
i

Bi

)
.
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To construct φi , consider a geodesic ray γ based at x1 and passing through
Ci+1 − Ci . We claim δ = γ ∩ (Ci+1 − Ci) is convex.

Indeed, if γ meets no Bj between Bi and %Bi , then δ is convex because
Bi − %Bi is convex. Otherwise, let Bj be the first ball γ meets. Then j > i
by the definition of %Bi . Since Bj is farther from x1 than Bi , as the ray γ
continues through Bj it meets the dark side of Bi before exiting Bj . But the
dark side of Bi is contained in %Bi by Corollary 3.3, so δ is a segment running
between ∂Bi and ∂Bj .

It is now evident that we may construct φi by pushing radially from x1 to
move from Ci to Ci+1 . The isotopy can be supported arbitrarily close to Bi , and
within the cone of rays from x1 to Bi . A given point in H3 is moved by only
finitely many of the φi , so the concatenation of these isotopies gives the desired
motion φ .

Now on %C the height function h has no critical points of type (+, 0) but
instead h has nongeneric flat spots on ∂(%C) . Each such flat spot consists of
material belonging to (possibly) several truncated balls %Bi1 , . . . , %Bin

, with
i1 < i2 < · · · < in . By the elder sibling property and Lemma 3.4, %Bi1 meets
a ball %Bj , j < i1 , along a sheet of ∂(%C) where ∇h 6= 0. This allows the
height function to be perturbed to remove the flat spots, at the cost of possibly
introducing new critical points of types other than (+, 0) (see Figure 4).

%Bi

h

Figure 4. Removal of flat spots.

Combining Lemma 3.5 and the preceding paragraph, we obtain a Morse func-
tion on (C, ∂C) relative to

(
Ca, (∂C)a

)
with no (+, 0) critical points. The 3-

manifold
(
Cb, (∂C)b

)
satisfies the conclusion of Theorem 3.1 for b > a small

enough. It remains to consider the effect of passing critical points of types (−, 0),
(+, 1), (−, 1), (−, 2) and (+, 2).

By a perturbation of h we may assume distinct critical points have distinct
critical values. For a given critical value c let

(M, B) =
(
Cb, (∂C)b

)
,

(M ′, B′) =
(
Cd, (∂C)d

)
,
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where b < c < d and [b, d] is disjoint from other critical values. We will show
that in passing from (M, B) to (M ′, B′) , the surjectivity of π1(B, ∗) → π1(M, ∗)
is preserved.

A (−, 0) critical point adds a new simply-connected component to each of M
and B , so surjectivity is preserved.

A (+, 1) critical point enlarges B by a 1-handle without changing M , so we
have a surjection

π1(B
′, ∗) ։ π1(M

′, ∗) ∼= π1(M, ∗)

as before.

A (−, 1) critical point adds a (1, 1)-handle pair which either joins two compo-
nents of M or joins the same component to itself. In the case of two components,

π1(B, pi) ։ π1(M, pi), i = 1, 2,

becomes

π1(B, p1) ∗ π1(B, p2) ∼= π1(B
′, ∗) ։ π1(M

′, ∗) ∼= π1(M, p1) ∗ π1(M, p2).

In the case of one component,

π1(B, ∗) ։ π1(M, ∗)

becomes

π1(B, ∗) ∗ Z ∼= π1(B
′, ∗) ։ π1(M

′, ∗) ∼= π1(M, ∗) ∗ Z.

In either case, surjectivity is preserved.

Finally a critical point of type (+, 2) adds a relation to π1(B) which already
represents a relation in π1(M) ; and a (−, 2) critical point adds a pair of compatible
relations to π1(B) and π1(M) . In either case surjectivity is preserved. This
completes the proof of Theorem 3.1.

Sources of knotting. It is a general principle that knotting and linking in
the classical dimension can be traced back to the presence of extra (+, 0) handles
or local maxima in the Morse theory of the closed complement. For example, the
same principle shows a one-bridge knot K ⊂ R3 is unknotted.
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4. Horoballs

The elder sibling property has a natural generalization to horoballs, which
can be thought of as the limiting case where the centers of the balls move off to
infinity.

To state this generalization, let H = 〈Hi〉 be a collection of open horoballs
in H3 . We say H has the elder sibling property if there is a horoball in H ,
say H1 , such that any Hi disjoint from H1 meets another horoball Hj with
d(Hj, H1) < d(Hi, H1) .

For horoballs, the elder sibling property is conveniently visualized in the upper
half-space model H3 = C × R+ , normalized so H1 = {(z, t) : t > 1} . Then
the horoballs Hi , i > 1, are finite Euclidean balls resting on C , and any ball
disjoint from H1 meets another ball (its elder sibling) of greater height in the
t -coordinate.

We also need an assumption on H to replace the discreteness of the centers
of balls in Br from the previous section. To state this assumption, for r ≥ 0 let
Hi(r) = Nr(Hi) ⊃ Hi denote the expanded horoball formed by an r -neighborhood
of Hi .

We say H is locally finite if for any i, r > 0, Hi(r) meets only finitely
many Hj . For example, in the ball model for H3 , suppose the bases of the
horoballs form a discrete subset of S2

∞
, and the Euclidean diameter of Hi tends

to zero as i → ∞ ; then H is locally finite.

Let Hr = {Hi(r)} , and denote the complement by

Cr = H3 − ∪Hr.

Theorem 4.1. Suppose H is a locally finite collection of horoballs with the

elder sibling property. Then for almost every r > 0 , Hr is unknotted; that is,

π1(∂Cr, ∗) → π1(Cr, ∗)

is surjective for every choice of basepoint.

Sketch of the proof. The proof follows the same lines as that of Theorem 3.1.
Countably many values of r must be excluded to obtain generic intersections
between the horospheres ∂Hi . Normalizing so H1 = {(z, t) : t > 1} in H3 =
C×R , we can use h(z, t) = 1− t as a Morse function on Cr . Then (+, 0) handles
can be removed by truncation as before. The remainder of the analysis is the
same, with the added simplification that (−, 2) handles do not occur.
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5. Tameness

Let M = H3/Γ be a hyperbolic 3-manifold with π1(M) finitely generated.
In this section we apply the elder sibling property to deduce tameness.

Theorem 5.1. Suppose there is a ball B(x, r) ⊂ H3 such that

B = Γ · B(x, r) = {B(γx, r) : γ ∈ Γ}

has the elder sibling property. Then M = H3/Γ is tame.

Proof. Let X = Γx ; we will verify the engulfing condition. For s ≥ r let

f : (I, ∂I) →
(
H3 − Ns(X), ∂Ns(X)

)

be an arc. Since Ns(X) is connected for all s ≥ r , this arc can be deformed to
start and end at a single basepoint ∗ ∈ ∂Ns(X) . By Theorem 3.1 the map

π1

(
∂Ns(X), ∗

)
→ π1

(
H3 − Ns(X), ∗

)

is surjective for almost every s ≥ r ; so f can be deformed into ∂Ns(X) . Thus
the engulfing condition is verified and M is tame by Theorem 2.2.

Theorem 5.2. Suppose there is a horoball H ⊂ H3 tangent to the domain

of discontinuity Ω of Γ , such that H = Γ ·H has the elder sibling property. Then

M is tame.

Proof. Let H(r) = Nr(H) and let H ′(r) be the image of H(r) in M . Since
H rests on the domain of discontinuity, Hr = Γ ·H(r) is a locally finite collection
of horoballs. Since H has the elder sibling property, so does Hr . By Theorem 4.1
and the interpretation of π1 as in the proof of Theorem 2.2, for almost every r > 0,
each component of M − H ′(r) has finitely generated fundamental group.

Let K ⊂ M be a compact submanifold; then K ⊂ H ′(r) for all r sufficiently
large, so we have almost verified Tucker’s criterion for tameness. The only problem
is that H ′(r) is not compact, since it touches the Riemann surface at infinity Ω/Γ
of M . To fix this, consider a small 3-disk neighborhood D of the base of H
in H3 ∪ S2

∞
. Choose D small enough that D ∩ H3 embeds in M disjointly

from K . Then subtracting the image of D from H ′(r) renders it compact, while
topologically adding a 2-handle to M−H ′(r) . Thus π1 remains finitely generated
and Tucker’s criterion is verified.

Horoballs on the limit set. The same argument shows M is tame if there
is an H such that H = Γ · H is locally finite and has the elder sibling property.
But it is hard to guarantee local finiteness when the base z of H is in the limit
set; for example, local finiteness fails if z is in the horocyclic limit set of Γ.
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6. Convex cocompact groups

In this section we show the elder sibling property is achieved for a large class
of Kleinian groups, namely those which are convex cocompact (geometrically finite
without cusps). In fact, a strict form of the elder sibling property characterizes
these groups.

Definitions. A Kleinian group Γ is cocompact if M = H3/Γ is compact. It
is convex cocompact if the convex core of M ,

K(M) = hull(Λ)/Γ,

is compact. Here hull(Λ) ⊂ H3 is the smallest convex set containing all geodesics
with both endpoints in the limit set. We modify this definition slightly if Γ is
elementary: then Γ is convex cocompact if |Λ| 6= 1, or equivalently if Γ contains
no parabolic elements.

A collection of balls B = 〈Bi〉 has the strict elder sibling property if there is
a B1 ∈ B and an r > 0 such that every Bi meets a Bj with Bj ∩B1 6= ∅ or with

d(Bj, B1) ≤ d(Bi, B1) − r.

A similar definition applies to horoballs H = 〈Hi〉 . In the upper half-space
model H3 = C×R+ with H1 = {(z, t) : t > 1} , the strict elder sibling property
means the elder sibling Hj is at least exp(r)-times taller than Hi . Thus Hi can
be connected to H1 by a chain of horoballs whose heights grow at least as fast as
a geometric series.

Theorem 6.1. Let Γ be a finitely generated Kleinian group. Then the

following are equivalent:

(1) Γ is convex cocompact.

(2) Γ · B has the strict elder sibling property for some ball B ⊂ H3 .

(3) Γ is cocompact, or Γ·H has the strict elder sibling property for some horoball

H tangent to its domain of discontinuity.

Proof. We will assume the convex core K(M) is nonempty; otherwise Γ is
elementary and the equivalence is easily checked.

(2) =⇒ (1). This is the most interesting implication. Suppose Γ · B =
〈B(xi, R)〉 has the strict elder sibling property. Pick y ∈ hull(Λ). Since the limit
set, as seen from y , does not lie in a visual half-space, there are two points in Λ
separated by visual angle at least 1

4
π . The geodesic α joining them passes within

distance O(1) of y .
Since Γ ·B accumulates on Λ, we can approximate α by a geodesic segment

β joining a pair of balls B′, B′′ ∈ Γ · B , and still passing close to y .
Now recall that any ball in Γ ·B can play the role of B1 for the elder sibling

property. Letting B′ = B1 , the strict elder sibling property implies there is a chain
of balls connecting B′′ to B′ and moving towards B′ at a linear rate (Figure 5).
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B1
x1 β

y

Bi

BN
xN

Figure 5. A quasigeodesic chain.

In other words, we have a finite sequence

〈B1 = B′, B2, . . . , BN = B′′〉

such that Bi meets Bi+1 and

d(B1, Bi+1) ≥ d(B1, Bi) + r.

This implies

r|i − j| − 2R ≤ d(Bi, Bj) ≤ 2R|i− j|.

The chain of balls 〈Bi〉
N
1 therefore forms a quasigeodesic. By a well-known prin-

ciple (cf. [Th, §5.9], [BP, §C.1], a quasigeodesic is contained within a bounded
neighborhood of a geodesic. Thus the Bi are contained in a bounded tube around
β , so some ball passes close to y .

This shows d(y, Γ · B) ≤ D where D does not depend on y . It follows that
K(M) = hull(Λ)/Γ is contained within a D -neighborhood of the image of B in
M , so K(M) is compact and Γ is convex cocompact.

(1) =⇒ (2). Let D denote the diameter of the convex core K(M) , let x ∈
hull(Λ) be any point in the universal cover of K(M) , and let B = B(x, R) where
R ≫ D . We claim Γ · B = 〈B(xi, R)〉 has the strict elder sibling property.

To check this, consider any Bi disjoint from B1 , and let α be the geodesic
segment joining xi to x1 . Construct the ball B(y, D) ⊂ Bi tangent to ∂Bi at
the point where α exits Bi (see Figure 6). Then y is in the convex hull of the
limit set (since x1 and xi are), and therefore B(y, D) contains a point xj in the
orbit Γx . Then Bj = B(xj, R) either meets B1 or is strictly closer to B1 than
Bi was. In fact if Bj and B1 are disjoint, then

d(Bj , B1) ≤ d(xj , B1) − R ≤ d(xj , y) + d(y, B1) − R

≤ D +
(
D + d(Bi, B1)

)
− R ≤ d(Bi, B1) − (R − 2D).

So the strict elder sibling property holds so long as we choose R > 2D .
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B1BjBi

x1αyxi

xj

Figure 6. Verifying the strict elder sibling property.

(1) =⇒(3). If the domain of discontinuity Ω is nonempty, we can enclose the
ball B(x, R) just constructed in a large horoball H tangent to Ω. It is easy to
see that H also satisfies the strict elder sibling property.

(3) =⇒ (2). Suppose Γ · H are horoballs tangent to Ω satisfying the strict
elder sibling property. Since H meets only finitely many of its translates, we can
push it slightly into H3 to obtain a configuration of balls Γ · B with the same
incidence pattern. The distances between balls are nearly the same as the dis-
tances between the corresponding horoballs, so the strict eldering sibling property
continues to hold.

Remark. The proof shows that for a convex cocompact group, the ball B in
(2) can be chosen with any desired center, and the horoball H in (3) tangent to
any given point in Ω.
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