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Abstract. We investigate equations of the form (1.1) that possess solutions which have a
Borel exceptional value at zero.

1. Introduction

For n ≥ 1 consider the nonhomogeneous linear differential equation

(1.1) f (n) + Pn−1(z)f (n−1) + · · ·+ P0(z)f = H(z)

where P0(z) , P1(z), . . . , Pn−1(z) are polynomials (P0(z) 6≡ 0), and H(z) 6≡ 0 is
an entire function. It is well known that every solution f of equation (1.1) is an
entire function.

For an entire function f , we let ̺(f) denote the order of f , and when f 6≡ 0,
we let λ(f) denote the exponent of convergence of the sequence of zeros of f .
Several authors have recently investigated the possible values of ̺(f) and λ(f)
when f is a solution of an equation of the form (1.1).

In this paper we investigate equations of the form (1.1) which possess solutions
f satisfying

λ(f) < ̺(f),

i.e., solutions which have a Borel exceptional value at zero.
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2. Main results

Most of our results concern equations of the form (1.1) where H(z) satisfies
λ(H) < ̺(H) < ∞ . These are equations of the form

(2.1) f (n) + Pn−1(z)f (n−1) + · · ·+ P0(z)f = h(z)eQ(z)

where n ≥ 1, P0(z) , P1(z), . . . , Pn−1(z) are polynomials (P0(z) 6≡ 0), h(z) 6≡ 0
is entire, and Q(z) is a nonconstant polynomial, such that

(2.2) λ(h) = ̺(h) < deg Q.

We need some notation for equation (2.1). Set β = deg Q ≥ 1, and let b 6= 0
be the constant satisfying

(2.3) Q(z) =
1

β
bzβ + · · · .

Let dk = deg Pk for 0 ≤ k ≤ n , where we set Pn(z) ≡ 1. Let Ak be the leading
coefficient of Pk :

Pk(z) = Akzdk + · · · .

Set

(2.4) τ = max
0≤k≤n

{dk + k(β − 1)}.

For each 0 ≤ k ≤ n , let A∗
k be the constant defined by

A∗
k =

{

Ak if dk + k(β − 1) = τ ,
0 otherwise.

Now let S(t) be the polynomial defined by

(2.5) S(t) =

n
∑

k=0

A∗
ktk.

We use the above notation in the results below.

Theorem 1. For equation (2.1) , suppose that the constant b in (2.3) is a
zero of multiplicity m ≥ 0 of the polynomial S(t) in (2.5) . Then equation (2.1)
can admit at most m+1 linearly independent solutions f satisfying λ(f) < ̺(f) .
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The number “m + 1” in Theorem 1 cannot be replaced with any integer less
than m + 1; see Examples 1 and 2 in Section 3. In particular, Example 2 shows
that for any given choice of the integers m and n (0 ≤ m ≤ n , n ≥ 1), it is
possible to obtain exactly m + 1 solutions as described in Theorem 1. Hence
Theorem 1 is sharp for all possible values of m and n . On the other hand, in
the statement of Theorem 1, the words “can admit at most” cannot be improved
upon in general because there exist equations of the form (2.1) that do not possess
m + 1 solutions as described in Theorem 1; see Examples 9 and 10 in Section 3
and Corollary 3 below.

A natural question is: which equations of the form (2.1) have the property
that every solution f of the equation satisfies λ(f) < ̺(f)? Theorem 2 and
Corollary 1 below completely characterize these equations.

Theorem 2. Every solution f of equation (2.1) satisfies λ(f) < ̺(f) if and
only if S(t) = (t − b)n .

We obtain the following result from Theorem 2 and the definition of S(t)
in (2.5).

Corollary 1. Every solution f of equation (2.1) satisfies λ(f) < ̺(f) if and
only if

Pk(z) =

(

n

k

)

(−b)n−kz(n−k)(β−1) + · · · for each k = 0, 1, . . . , n − 1,

where b and β are given in (2.3) .

Thus Corollary 1 gives the necessary and sufficient conditions on the coeffi-
cients in (2.1), so that every solution f of (2.1) satisfies λ(f) < ̺(f) . Examples 3
and 6 in Section 3 illustrate Theorem 2 and Corollary 1.

We also mention the following result, which is a corollary of Theorem 1, the
definition of S(t) , and Theorem 2.

Corollary 2. If equation (2.1) possesses n + 1 linearly independent solu-
tions f1, f2, . . . , fn+1 , satisfying λ(fk) < ̺(fk) for k = 1, 2, . . . , n + 1 , then every
solution f of the equation satisfies λ(f) < ̺(f) .

Corollary 2 can also be proved by using Theorem 4 below.
In the case when S(b) 6= 0 for equation (2.1), it follows from Theorem 1 that

every solution f of (2.1) satisfies λ(f) = ̺(f) with at most one exceptional solu-
tion f0 . The next result gives information about such an exceptional solution f0 .

Theorem 3. Suppose that S(b) 6= 0 for equation (2.1) . Then every solution
f of (2.1) satisfies λ(f) = ̺(f) with at most one exceptional solution f0 . For
such an exceptional solution f0 , the following statements hold:

(i) If h(z) is transcendental, then λ(f0) = λ(h) < ̺(f0) .
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(ii) If h(z) is a polynomial, then deg h ≥ τ where τ is the constant in (2.4) , and
f0 has the form f0 = geQ where Q is the polynomial in (2.1) and g is a
polynomial satisfying deg g = deg h − τ .

Examples 4, 5, 6, and 7 in Section 3 illustrate Theorem 3. Examples 5, 6,
and 7 show that the condition “S(b) 6= 0” cannot be deleted from the hypothesis
of Theorem 3.

We obtain the following result from Theorem 3(ii), and it gives examples
of equations of the form (2.1) which do not possess any solutions with a Borel
exceptional value at zero.

Corollary 3. Suppose that S(b) 6= 0 for equation (2.1) where h(z) is a
polynomial. If deg h < τ , then every solution f of (2.1) satisfies λ(f) = ̺(f) .

It is easy to construct examples of Corollary 3. The converse of Corollary 3
does not hold; see Example 11 in Section 3.

In [9, Theorem 3.1], Laine considered equations of the form (2.1) where h(z)
is a polynomial, and where the following conditions are satisfied:

(2.6)
dk

n − k
≤ β − 1 for k = 1, 2, . . . , n − 1, and β < 1 +

d0

n
.

For these equations we have S(t) ≡ A0 where A0 is the leading coefficient of P0(z) .
Hence S(b) = A0 6= 0, and so we can apply Theorem 3(ii) and Corollary 3 to
these equations. By using Theorem 3(ii) and Corollary 3, a different proof of [9,
Theorem 3.1] can be given.

Furthermore, by using Theorem 3(ii) and Corollary 3, it can be shown that
if, in [9, Theorem 3.1], the condition (2.6) is replaced by the weaker condition

dk

n − k
≤ d0

n
for k = 1, 2, . . . , n − 1, and β < 1 +

d0

n
,

then [9, Theorem 3.1] still holds.

Now consider equations of the form (2.1) where the following condition holds:

(2.7) β > 1 + max
0≤k≤n−1

dk

n − k
.

For these equations we have S(t) = tn . Thus S(b) = bn 6= 0, and so we can apply
Theorem 3 and Corollary 3 to these equations.

Gao [4, Theorem 1] considered equations of the form (2.1) where h(z) is a
polynomial and where (2.7) holds. By using Theorem 3(ii) and Corollary 3, a
different proof of [4, Theorem 1] can be given.

In [1, Theorem 1(iii)], Chen and Gao showed that if (2.7) holds for equa-
tion (2.1), then every solution f of (2.1) satisfies λ(f) = ̺(f) with at most one
exceptional solution f0 . For such an exceptional solution f0 , they showed that
λ(f0) = λ(h) . These two statements follow from Theorem 3.

We use the next result as a lemma, although it has independent interest.
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Theorem 4. If f is a solution of (2.1) satisfying λ(f) < ̺(f) , then f has
the form

f = geQ

where Q is the polynomial in (2.1) , and g is an entire function satisfying ̺(g) <
deg Q .

Regarding Theorem 4, the result of Frank and Hellerstein [2] gives very specific
information when f is a solution of (2.1) that has only finitely many zeros, where
h(z) is a polynomial in (2.1), and where Q(z) is allowed to be any entire function.

We now consider equations of the form (1.1) which do not have the form (2.1).
The next result is a consequence of Theorems 1 and 2 in [3].

Theorem A. If H(z) in equation (1.1) satisfies λ(H) = ̺(H) < ∞ , then
every solution f of (1.1) satisfies λ(f) = ̺(f) .

For the case when ̺(H) = ∞ , we prove the following result.

Theorem 5. If H(z) in equation (1.1) satisfies ̺(H) = ∞ , then every
solution f of (1.1) satisfies λ(f) = ̺(f) = ∞ with at most one exceptional
solution f0 .

It is possible to have an exceptional solution f0 in Theorem 5. In fact, it is
possible to have an exceptional solution f0 in Theorem 5 for each of the following
three cases: (i) λ(H) = 0 < ̺(H) = ∞ , (ii) 0 < λ(H) < ̺(H) = ∞ , and
(iii) λ(H) = ̺(H) = ∞ ; see Example 8 and the discussion before Example 8 in
Section 3. The result of Frank and Hellerstein [2] gives very specific information
for the particular case when f0 is an exceptional solution in Theorem 5 under the
conditions that both f0 and H(z) have only finitely many zeros.

In this paper a meromorphic function always means meromorphic in the whole
complex plane. We assume the reader is familiar with the standard definitions and
results of Nevanlinna theory (see [8]). Throughout the paper we make the following
two notations:

(i) We let D ⊂ [0,∞) denote a set of finite linear measure, where the set D
may not necessarily be the same set each time it appears.

(ii) We let E = E0 ∪ [0, 1] where E0 ⊂ (0,∞) is a set of finite logarithmic
measure, where the set E may not necessarily be the same set each time it appears.

3. Examples

In this section we give examples to illustrate our theorems. Some of these ex-
amples show the sharpness of our theorems, while others exhibit some possibilities
that can occur. We use the notations for b , β , τ , and S(t) given in Section 2.
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Example 1. The three linearly independent functions f1 = ez , f2 = zez ,
f3 = z2ez are solutions of the equation

(3.1) f (4) − 2f ′′′ + (z2 − 2z + 1)f ′′ + (−2z2 + 2z + 2)f ′ + z2f = 2ez.

For equation (3.1) we have β = 1, τ = 2, b = 1, and S(t) = (t− 1)2 . Thus b = 1
is a double zero of S(t) . This example shows that it is possible to obtain exactly
m + 1 solutions as described in Theorem 1.

In general, the next example shows that for any given choice of the integers
m and n (0 ≤ m ≤ n , n ≥ 1), there exist equations of the form (2.1) that possess
exactly m+ 1 solutions as described in Theorem 1. Hence Theorem 1 is sharp for
all possible values of m and n .

Example 2. First we consider the case when m = 0 in Theorem 1. Let n ≥ 1
be an integer. For some polynomial P (z) 6≡ 0, the function f1(z) = exp

{

1
2z2

}

will be a solution of the equation

(3.2) f (n) + znf = P (z) exp
{

1
2
z2

}

.

For equation (3.2) we have β = 2, τ = n , b = 1, and S(t) = tn + 1. Thus
S(b) = 2 6= 0 and m = 0 in Theorem 1. Hence from Theorem 1, equation (3.2)
can admit at most one solution f satisfying λ(f) < ̺(f) . Since f1(z) = exp{ 1

2
z2}

is a solution of (3.2) satisfying λ(f1) < ̺(f1) , this shows that Theorem 1 is sharp
when m = 0 and n ≥ 1.

Next we consider the cases when m ≥ 1 in Theorem 1. Let m and n be
integers satisfying 1 ≤ m ≤ n . Consider the equation

(3.3) f (m) +

m−1
∑

k=0

(

m

k

)

(−z)m−kf (k) = exp
{

1
2z2

}

.

For equation (3.3) we have β = 2, τ = m , b = 1, and S(t) = (t − 1)m . Hence
from Theorem 2, every solution f of (3.3) satisfies λ(f) < ̺(f) . It follows that
there exist m+1 linearly independent solutions f1, f2, . . . , fm+1 of (3.3) satisfying
λ(fk) < ̺(fk) for k = 1, 2, . . . , m + 1.

By differentiating equation (3.3) n − m times, we obtain an equation of the
form

(3.4) f (n) + Bn−1(z)f (n−1) + · · · + B0(z)f = D(z) exp
{

1
2
z2

}

where D(z) 6≡ 0 is a polynomial, and B0(z), B1(z), . . . , Bn−1(z) are polynomials
satisfying

deg Bk < n − k when 0 ≤ k ≤ n − m − 1,

Bk(z) =

(

m

k − n + m

)

(−z)n−k + · · · when n − m ≤ k ≤ n − 1.
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For equation (3.4) we have β = 2, τ = n , b = 1, and

S(t) = tn−m(t − 1)m.

Since b = 1 is a zero of multiplicity m of S(t) , we obtain from Theorem 1
that equation (3.4) can admit at most m + 1 linearly independent solutions f
satisfying λ(f) < ̺(f) . On the other hand, the functions f1, f2, . . . , fm+1 are
exactly m + 1 linearly independent solutions of (3.4) satisfying λ(fk) < ̺(fk) for
k = 1, 2, . . . , m + 1. Hence for equation (3.4), we obtain exactly m + 1 solutions
as described by Theorem 1. This shows that Theorem 1 is sharp for all m and n
satisfying 1 ≤ m ≤ n . Since we also showed that Theorem 1 is sharp when m = 0
and n ≥ 1, this proves that Theorem 1 is sharp for all possible values of m and n .

The next example illustrates Theorem 2 and Corollary 1.

Example 3. The function f0(z) = exp{z + z4} satisfies the equation

(3.5) f ′′ + (z − 8z3)f ′ + (16z6 − 4z4 − 12z2 + z)f = (2z + 1) exp{z + z4}.

Now set w(z) = g(z)ez4

where g is any solution of the equation

(3.6) g′′ + zg′ + zg = 0.

Then w satisfies the corresponding homogeneous equation to (3.5):

w′′ + (z − 8z3)w′ + (16z6 − 4z4 − 12z2 + z)w = 0.

It follows that every solution f of (3.5) has the form

(3.7) f(z) = w(z) + f0(z) =
(

g(z) + ez
)

ez4

where g is a solution of (3.6). From Lemma 3 in Section 5, it follows that every
solution g of (3.6) satisfies ̺(g) ≤ 2. Hence from (3.7), every solution f of (3.5)
satisfies

λ(f) ≤ 2 < ̺(f) = 4.

For equation (3.5) we have β = 4, τ = 6, b = 4, and S(t) = (t − 4)2 . This is an
example of Theorem 2 and Corollary 1.

Examples 4, 5, 6, and 7 below illustrate Theorem 3. Examples 5, 6, and 7
show that the condition “S(b) 6= 0” cannot be deleted from the hypothesis of
either Theorem 3(i) or Theorem 3(ii). In contrast with Theorem 3(i), Examples 5
and 6 show that there exist equations of the form (2.1) where S(b) = 0, which
possess a solution f satisfying 0 < λ(h) < λ(f) < ̺(f) .
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Example 4. Let g be the transcendental entire function defined by

g(z) =
∞
∑

n=1

anzn, an =
1

nn2
.

Then ̺(g) = 0 = limn log n/log(1/|an|) (see [13, p. 253]). Now let h be the entire
function defined by

(3.8) h = g′′ + (2z + 1)g′ + (2z2 + z + 1)g.

If h were a polynomial, then it would follow from equation (3.8) that [14, pp. 106–
108] either ̺(g) > 0 or g is a polynomial, which is a contradiction. Hence h is
transcendental. Since ̺(g) = 0, it follows from (3.8) that ̺(h) = 0.

Now consider the equation

(3.9) f ′′ + f ′ + z2f = h(z) exp
{

1
2
z2

}

For equation (3.9) we have β = 2, τ = 2, b = 1, and S(t) = t2 + 1. Thus
S(b) = 2 6= 0.

Now set f0(z) = g(z) exp
{

1
2z2

}

. From (3.8) we obtain that f0 is a solution
of equation (3.9). We have λ(f0) = 0 < ̺(f0) = 2 and λ(f0) = λ(h) = 0. This is
an example of Theorem 3(i).

Example 5. For any constant c ,

fc(z) =
(

cez2

+ ez + 1
)

ez3

satisfies the equation

(3.10) f ′′−(9z4+12z3+4z2+6z+2)f =
[

(−12z3+2z2−1)ez−(12z3+4z2+2)
]

ez3

.

If c 6= 0, then (3.10) is an equation of the form (2.1) which possesses the solution
fc , such that

0 < λ(h) < λ(fc) < ̺(fc).

For equation (3.10) we have β = 3, τ = 4, b = 3, and S(t) = t2−9. Here b = 3 is
a simple zero of S(t) . This example shows that the condition “S(b) 6= 0” cannot
be deleted from the hypothesis of Theorem 3(i).

Example 6. The function f(z) =
(

ez2

+ ez + 1
)

ez3

satisfies the equation

(3.11) f ′′ − (6z2 + 2z + 1)f ′ + (9z4 + 6z3 + 3z2 − 4z − 2)f =
(

−2ez + 2z − 2
)

ez3

.

Thus like Example 5, this is an example of an equation of the form (2.1) which
possesses a solution f satisfying 0 < λ(h) < λ(f) < ̺(f) .

However, there are some differences with Example 5. For equation (3.11)
we have β = 3, τ = 4, b = 3, and S(t) = (t − 3)2 . Thus from Theorem 2,
every solution f of equation (3.11) satisfies λ(f) < ̺(f) . In contrast, it follows
from Theorem 2 that this property does not hold for equation (3.10), because
S(t) = t2 − 9 for (3.10).
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Example 7. The function f(z) = (z3 + z)ez satisfies the following two
equations:

f ′′′ + zf ′′ + f = (z4 + 8z3 + 16z2 + 22z + 9)ez,(3.12)

f ′′′ + zf ′′ − zf = (7z3 + 15z2 + 21z + 9)ez.(3.13)

For equation (3.12) we have β = 1, τ = 1, deg h = 4, b = 1, S(t) = t2 , and
S(b) = 1 6= 0. This is an example of Theorem 3(ii).

For equation (3.13) we have β = 1, τ = 1, deg h = 3, b = 1, S(t) = t2 − 1,
and S(b) = 0. In this example, the conclusion in Theorem 3(ii) does not hold.
Hence this example shows that the condition “S(b) 6= 0” cannot be deleted from
the hypothesis of Theorem 3(ii).

We next note [2, p. 409] that

f0(z) = exp

{
∫ z

0

exp(t2) dt − z2

}

is a solution of the equation

f ′′′ + 4(1 − z2)f ′ − 4zf = f0(z)e3z2

.

(Note: the term −4zf in this equation seems to be written incorrectly as −8zf
on page 409 of [2].) This is an example of an exceptional solution f0 in Theorem 5
where λ(H) = 0 < ̺(H) = ∞ . We note that this function f0(z) also satisfies the
equation

f ′′′ + 4(1 − z2)f ′ − 3zf = f0(z)
(

e3z2

+ z
)

,

which is an example of an exceptional solution f0 in Theorem 5 where 0 < λ(H) <
̺(H) = ∞ . The next example gives an exceptional solution f0 in Theorem 5 where
λ(H) = ̺(H) = ∞ .

Example 8. Let P (z) 6≡ 0 be any polynomial, and consider the equation

(3.14) f ′′ + P (z)f = H(z)

where

(3.15) H(z) =
[

P (z) + (e2z + ez)eez

+ e2ze2ez]

exp{eez}.

The function f0(z) = exp{eez} satisfies equation (3.14), and obviously λ(f0) =
0 < ̺(f0) = ∞ .

Since ̺(H) = ∞ , f0 is an example of an exceptional solution in Theorem 5.
We now prove that λ(H) = ∞ .
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In (3.15) we set

(3.16) G(z) = (e2z + ez)eez

+ e2ze2ez

.

Since (see [8, p. 7])

(3.17) T
(

r, eez)

=
(

1 + o(1)
) er

√
2π3r

as r → ∞ , it can be deduced that

(3.18) T (r, G) =
(

2 + o(1)
) er

√
2π3r

as r → ∞ . From (3.16) we see that

(3.19) N(r, 0, G) =N (r, 0, eez

+ 1 + e−z).

We now apply Lemma 4 in Section 5 with F (z) = eez

, a1(z) ≡ 0, and a2(z) =
−1 − e−z , and use (3.17) to obtain that

(3.20) N
(

r, 0, eez

+ 1 + e−z
)

=
(

1 + o(1)
)

T
(

r, eez)

as r → ∞ , r /∈ D . Hence from (3.20), (3.19), (3.18), and (3.17),

(3.21) N(r, 0, G) = 1
2

(

1 + o(1)
)

T (r, G)

as r → ∞ , r /∈ D . From (3.15) and (3.16),

(3.22) N(r, 0, H) = N(r, 0, G + P ).

Since P (z) 6≡ 0 is a polynomial, and since (3.18) holds, we can again apply
Lemma 4 with F (z) = G(z) , a1(z) ≡ 0, and a2(z) = −P (z) , and use (3.21)
to obtain that

(3.23) N(r, 0, G + P ) ≥ 1
2

(

1 + o(1)
)

T (r, G)

as r → ∞ , r /∈ D . From (3.23), (3.22), and (3.18), it follows that λ(H) = ∞ ,
which is what we wanted to prove.

Since λ(H) = ∞ and λ(f0) = 0, this example also shows that the words
“finite order” cannot be deleted from Lemma 9 in Section 5.

In contrast to Examples 1 and 2, the next two examples give equations of the
form (2.1) that do not possess m + 1 solutions as described in Theorem 1. This
shows that in the statement of Theorem 1, the words “can admit at most” cannot
be improved upon in general.
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Example 9. Consider the equation

(3.24) f ′′ + (−z6 − 3z2 + z)f = z exp
{

1
4z4

}

.

For equation (3.24) we have β = 4, τ = 6, b = 1, and S(t) = t2 − 1, and so b = 1
is a simple zero of S(t) . Thus from Theorem 1, it follows that equation (3.24)
can admit at most 2 linearly independent solutions f satisfying λ(f) < ̺(f) .
However, we now show that there exists exactly one solution f of (3.24) that
satisfies λ(f) < ̺(f) .

First note that f1(z) = exp
{

1
4z4

}

is a solution of (3.24). We now show that
if f is any solution of (3.24) where f 6≡ f1 , then λ(f) = ̺(f) .

Assume the contrary. Suppose that there exists a solution f2 of (3.24) satis-
fying λ(f2) < ̺(f2) and f2 6≡ f1 . From Theorem 4 we obtain that

f2 = g(z) exp
{

1
4z4

}

where g is entire and ̺(g) < 4.

Set F (z) = f1(z) − f2(z) . Then F = (1 − g) exp
{

1
4
z4

}

= G exp
{

1
4
z4

}

where

(3.25) ̺(G) < 4, G 6≡ 0.

Moreover, F is a solution of the homogeneous equation

(3.26) f ′′ + (−z6 − 3z2 + z)f = 0.

Substituting F = G exp
{

1
4z4

}

into (3.26), we find that w = G(z) is a solution of
the equation

(3.27) w′′ + 2z3w′ + zw = 0.

Obviously, equation (3.27) does not admit any nontrivial polynomial solutions.
Furthermore, all transcendental solutions of (3.27) are of order 4 (see [7, The-
orem 1(i)]). Thus either G ≡ 0 or ̺(G) = 4, which contradicts (3.25). This
contradiction shows that such a solution f2 of (3.24) cannot exist. Therefore,
there exists exactly one solution f of (3.24) satisfying λ(f) < ̺(f) .

Example 10. Consider the equation

(3.28) f ′′′ − z3f ′′ + (−z6 − 9z2)f ′ + (z9 + 3z5)f = h(z) exp
{

1
4z4

}

where h(z) 6≡ 0 is any entire function satisfying ̺(h) < 4. For equation (3.28) we
have β = 4, τ = 9, b = 1, and S(t) = t3 − t2 − t+1 = (t−1)2(t+1). Since b = 1
is a double zero of S(t) , it follows from Theorem 1 that equation (3.28) can admit
at most 3 linearly independent solutions f satisfying λ(f) < ̺(f) . However, we
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now show that there cannot exist more than one solution f of (3.28) that satisfies
λ(f) < ̺(f) .

We proceed as in Example 9 and assume the contrary. Suppose that there
exist two solutions f1 , f2 , of (3.28) satisfying λ(fi) < ̺(fi) for i = 1, 2, and
f1 6≡ f2 . From Theorem 4 we obtain that

fi = gi exp
{

1
4z4

}

where gi is entire and ̺(gi) < 4, i = 1, 2.

Set F (z) = f1(z)− f2(z) . A contradiction can now be deduced by using the same
reasoning as in Example 9. This contradiction shows that there can exist at most
one solution f of (3.28) satisfying λ(f) < ̺(f) .

The next example shows that the converse of Corollary 3 does not hold.

Example 11. Consider the equation

(3.29) f ′′ + zf = z2ez2

.

For equation (3.29) we have β = 2, τ = 2, deg h = 2, b = 2, S(t) = t2 , and
S(b) = 4 6= 0.

Suppose that f0 is a solution of (3.29) satisfying λ(f0) < ̺(f0) . Then from

(3.29) and Theorem 4, f0(z) = g0(z)ez2

where g = g0(z) is an entire function
satisfying the equation

(3.30) g′′ + 4zg′ + (4z2 + z + 2)g = z2,

and ̺(g0) < 2. If g0 is transcendental, then by applying the Wiman–Valiron
theory (see [14, pp. 105–108]) to equation (3.30), it can be deduced that ̺(g0) = 2,
which is a contradiction. Hence g0 must be a polynomial. But this is impossible
from inspection of (3.30). This contradiction proves that the assumption λ(f0) <
̺(f0) does not hold.

Therefore, every solution f of equation (3.29) satisfies λ(f) = ̺(f) . Since
S(b) 6= 0 and deg h = τ for equation (3.29), this shows that the converse of
Corollary 3 does not hold.

4. Proof of Theorem 4

Let f be a solution of (2.1) satisfying λ(f) < ̺(f) . Since ̺(f) < ∞ from
Lemma 6 in Section 5, it follows that f has the form

(4.1) f(z) = u(z)eR(z)

where u(z) 6≡ 0 is an entire function and R(z) is a nonconstant polynomial, such
that

(4.2) ̺(u) < deg R.
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With β = deg Q in (2.1), we set

(4.3) Q(z) = czβ + · · ·

where c 6= 0. Then by substituting (4.1) and (4.3) into (2.1), we obtain an equation
of the form

(4.4) A(z)eR(z) = B(z)eczβ

where A(z) is a polynomial in z, u, u′, . . . , u(n), R′, R′′, . . . , R(n) , and B(z) 6≡ 0 is
an entire function satisfying

(4.5) ̺(B) < β.

Since R(z) is a polynomial, and since (4.2) holds, it follows that

(4.6) ̺(A) < deg R.

Therefore, from (4.6) and (4.5), we can deduce from (4.4) that deg R = β and
R(z) = czβ + · · ·. Theorem 4 now follows from (4.3), (4.2), and (4.1).

5. Lemmas

In this section we give lemmas which are used in the proofs of Theorems 1, 2,
3, and 5.

In the following lemma we use the definitions of β , b , τ , and S(t) in (2.3),
(2.4), and (2.5).

Lemma 1. Let f be a solution of equation (2.1) , and let Q(z) be the
polynomial in (2.1) . Then g = fe−Q satisfies an equation of the form

(5.1) g(n) + an−1(z)g(n−1) + · · ·+ a0(z)g = h(z)

where h(z) is the function in (2.1) , and where each ak(z) is a polynomial satisfying

(5.2)

deg ak ≤ τ − k(β − 1) and

ak(z) =
S(k)(b)

k!
zτ−k(β−1) + · · · .

Proof. Since f = geQ , we obtain by induction that for each p = 1, 2, . . . , n,

(5.3) f (p) =

(

g(p) + pQ′g(p−1) +

p
∑

j=2

[(

p

j

)

(Q′)j + Hj−1(Q
′)

]

g(p−j)

)

eQ,
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where Hj−1(Q
′) is a differential polynomial of total degree at most j − 1 in

Q′, Q′′, Q′′′, . . ., with constant coefficients.
Substituting (5.3) into equation (2.1) we obtain that g satisfies an equation

of the form (5.1), where the coefficients a0(z), . . . , an−1(z) take the form

(5.4)

an−1 = Pn−1 + nQ′,

ak = Pk + (k + 1)Q′Pk+1 +

n−k
∑

j=2

[(

j + k

j

)

(Q′)j + Hj−1(Q
′)

]

Pj+k,

for k = 0, 1, . . . , n − 2. Here we set Pn(z) ≡ 1. Recalling the definition of A∗
k in

Section 2, we can write Pk(z) in the form

(5.5) Pk(z) = A∗
kzτ−k(β−1) + · · · , k = 0, 1, . . . , n.

By inspection of the leading term of each ak(z) in (5.4), we obtain (5.2) from
(5.5), (2.3), and the definition of S(t) in (2.5). This proves Lemma 1.

Lemma 2 [5]. Let f be a transcendental meromorphic function of finite
order ̺ , let k and j be integers satisfying k > j ≥ 0 , and let ε > 0 be a given
constant. Then

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(̺−1+ε), |z| /∈ E.

Lemma 3 [10, p. 127]. If f is a solution of the equation

f (n) + Pn−1(z)f (n−1) + · · · + P0(z)f = 0

where each Pk(z) is a polynomial (P0(z) 6≡ 0), then

̺(f) ≤ 1 + max
0≤k≤n−1

deg Pk

n − k
.

Lemma 4 below is essentially the three small functions theorem of Nevanlinna,
because it can be proved by using the proof of Theorem 2.5 on pp. 47–48 of [8]
together with a Möbius transformation. Although there are more general forms of
the small functions theorem (see [11, 12]), Lemma 4 is in a form that is suitable
for our purposes.

Lemma 4. Let F (z) be a nonconstant meromorphic function, and suppose
that a1(z) and a2(z) are two distinct meromorphic functions satisfying

lim
r→∞

r∈I

T (r, ak)

T (r, F )
= 0, k = 1, 2,

where I is some set of infinite linear measure. Then
(

1 + o(1)
)

T (r, F ) ≤N(r, F ) +N(r, 0, F − a1) +N (r, 0, F − a2)

as r → ∞ , r ∈ I \ D .
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The next lemma combines the method of reduction of order for linear differ-
ential equations with estimates of logarithmic derivatives. See Lemmas 6.4 and
6.5 in [7].

Lemma 5 [7]. Let f0,1, . . . , f0,m, f0,m+1 (m ≥ 1) be m+1 linearly indepen-
dent meromorphic solutions of an equation of the form

y(n) + A0,n−1(z)y(n−1) + · · · + A0,0(z)y = 0, n ≥ m + 1,

where A0,0(z), . . . , A0,n−1(z) are meromorphic functions. For q = 1, 2, . . . , m , set

(5.6) fq,j =

(

fq−1,j+1

fq−1,1

)′

, j = 1, 2, . . . , m + 1 − q.

Then for each q = 1, 2, . . . , m , the function fq,1 is not identically zero and is a
solution of the equation

(5.7) y(n−q) + Aq,n−q−1(z)y(n−q−1) + · · ·+ Aq,0(z)y = 0,

where

Aq,j(z) =

n−q+1
∑

k=j+1

(

k

j + 1

)

Aq−1,k(z)
f

(k−j−1)
q−1,1 (z)

fq−1,1(z)

for j = 0, 1, . . . , n − q − 1 . Here we set Ak,n−k(z) ≡ 1 for k = 0, 1, . . . , q .
Moreover, suppose that for each j , j = 0, 1, . . . , n − 1 , there exists a real

number τ0,j such that

(5.8) |A0,j(z)| ≤ |z|τ0,j , |z| /∈ E.

Suppose further that ̺(f0,j) < ∞ for each j , and set ̺0 = max1≤j≤m+1{̺(f0,j)} .
Let ε > 0 be any given constant. Considering equation (5.7) when q = m , we
have for j = 1, 2, . . . , n − m − 1 ,

(5.9) |Am,j(z)| ≤ |z|τm,j , |z| /∈ E,

where

(5.10) τm,j = max
m+j≤k≤n

{τ0,k + (k − m − j)(̺0 − 1) + ε},

while for Am,0(z) we have

(5.11) Am,0(z) = A0,m(z) + Gm(z),

where Gm(z) satisfies

(5.12) |Gm(z)| ≤ |z|τm , |z| /∈ E,

where

(5.13) τm = max
m+1≤k≤n

{τ0,k + (k − m)(̺0 − 1) + ε}.

Lemma 6. Every solution f of equation (1.1) satisfies

(5.14) ̺(H) ≤ ̺(f) ≤ max

{

̺(H), 1 + max
0≤k≤n−1

deg Pk

n − k

}

.

Theorem 1(i) and Theorem 2(i) in [1] are corollaries of Lemma 6.
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Proof of Lemma 6. The first inequality ̺(H) ≤ ̺(f) in (5.14) follows easily
from an elementary order consideration on both sides of equation (1.1).

To prove the second inequality in (5.14), we let f1, f2, . . . , fn be a fundamental
set of solutions of the corresponding homogeneous equation of (1.1). Then from
Lemma 3,

(5.15) ̺(fj) ≤ 1 + max
0≤k≤n−1

deg Pk

n − k
, j = 1, 2, . . . , n.

From the well-known method of variation of parameters, there exist n entire
functions A1(z), A2(z), . . . , An(z) , satisfying

(5.16) ̺(Aj) ≤ max{̺(H), ̺(f1), . . . , ̺(fn)}, j = 1, 2, . . . , n,

such that

(5.17) f0 = A1f1 + A2f2 + · · ·+ Anfn

is a solution of equation (1.1); see [10, pp. 144–145]. From (5.17) and (5.16),

(5.18) ̺(f0) ≤ max{̺(H), ̺(f1), . . . , ̺(fn)}.

Now let f be any solution of equation (1.1). Then f can be represented in
the form

(5.19) f = f0 + c1f1 + · · ·+ cnfn,

where c1, c2, . . . , cn are constants. Thus from (5.19), (5.18), and (5.15), we obtain

̺(f) ≤ max

{

̺(H), 1 + max
0≤k≤n−1

deg Pk

n − k

}

,

which is the second inequality in (5.14). This proves Lemma 6.

Remark. The Wiman–Valiron theory can be used to give an alternate proof
of Lemma 6.

Lemma 7 [6]. Suppose that U(r) and W (r) are monotone nondecreasing
functions on 0 ≤ r < ∞ such that U(r) ≤ W (r) for r /∈ E . Then for any given
constant α > 1 , there exists a constant R = R(α) > 0 such that U(r) ≤ W (αr)
for all r ≥ R .

Lemma 8. If g and h are entire functions satisfying ̺(g) > ̺(h) , then there
exists a set J ⊂ (0,∞) that has infinite logarithmic measure such that

(5.20) M(r, h) < M(r, g), r ∈ J.

Here M(r, h) denotes the usual maximum modulus function: M(r, h) =
max|z|=r |h(z)| .
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Proof. Suppose that (5.20) is not true. Then

M(r, g) ≤ M(r, h), r /∈ E.

By applying Lemma 7 with U(r) = M(r, g) and W (r) = M(r, h) , we obtain that
there exists a constant R > 0 such that

M(r, g) ≤ M(2r, h), r ≥ R.

But this implies ̺(g) ≤ ̺(h) , which contradicts ̺(g) > ̺(h) . This proves
Lemma 8.

The next result was proved by Gao in [3]. We provide a different proof.

Lemma 9. Let H(z) 6≡ 0 be an entire function of finite order. Then any
solution f of equation (1.1) satisfies λ(f) ≥ λ(H) .

Proof. Since ̺(H) < ∞ , we obtain from Lemma 6 that ̺(f) < ∞ . Hence

(5.21) m

(

r,
f (k)

f

)

= O(log r), k = 1, 2, . . . , n,

as r → ∞ . Since f satisfies (1.1), we have

(5.22)
H

f
= P0(z) + P1(z)

f ′

f
+ · · ·+ Pn−1(z)

f (n−1)

f
+

f (n)

f
.

It follows from (5.22) and (5.21) that

m

(

r,
H

f

)

= O(log r).

Then by using the first fundamental theorem, we obtain

O(1) = T

(

r,
H

f

)

− T

(

r,
f

H

)

≤ T

(

r,
H

f

)

− N

(

r,
f

H

)

= N

(

r,
H

f

)

− N

(

r,
f

H

)

+ m

(

r,
H

f

)

= N

(

r,
1

f

)

− N

(

r,
1

H

)

+ O(log r),

which gives

N

(

r,
1

f

)

≥ N

(

r,
1

H

)

− O(log r).

Hence λ(f) ≥ λ(H) , which proves Lemma 9.

Remark. The words “finite order” cannot be deleted from Lemma 9; see
Example 8 in Section 3.
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6. Proof of Theorem 1

Assume the contrary, i.e., suppose that an equation of the form (2.1) possesses
m+2 linearly independent solutions f1, f2, . . . , fm+2 , satisfying λ(fk) < ̺(fk) for
k = 1, 2, . . . , m + 2. Then from Theorem 4, we have

(6.1) fk = gkeQ, where ̺(gk) < deg Q = β, k = 1, 2, . . . , m + 2.

It is easy to see that g1, g2, . . . , gm+2 are also linearly independent. From Lemma 1
we obtain that g1, g2, . . . , gm+2 are m + 2 solutions of one particular equation of
the form

(6.2) g(n) + an−1(z)g(n−1) + · · · + a0(z)g = h(z),

where a0(z), . . . , an−1(z) are polynomials satisfying deg aj ≤ τ − j(β − 1) and

(6.3) aj(z) =
S(j)(b)

j!
zτ−j(β−1) + · · · , j = 0, 1, . . . , n − 1.

Now set

(6.4) f0,j(z) = gj(z) − gm+2(z), for j = 1, 2, . . . , m + 1.

It follows that f0,1, . . . , f0,m+1 are m + 1 linearly independent solutions of the
corresponding homogeneous equation of (6.2):

(6.5) g(n) + an−1(z)g(n−1) + · · · + a0(z)g = 0.

Since, by hypothesis, b is a zero of multiplicity m of S(t) , we obtain from
(6.3) that

(6.6)
αm := deg am = τ − m(β − 1),

αj := deg aj ≤ τ − j(β − 1), j 6= m.

For convenience, we set an(z) ≡ 1 and αn = 0. Denote A0,j(z) = aj(z) for
j = 0, 1, . . . , n . Then by applying Lemma 5 to equation (6.5), we obtain a function
fm,1(z) 6≡ 0 that satisfies equation (5.7) when q = m . This gives

(6.7) −Am,0(z) =
f

(n−m)
m,1

fm,1
+

n−m−1
∑

j=1

Am,j(z)
f

(j)
m,1

fm,1
.

From (5.6) we see that

(6.8) ̺(fm,1) ≤ ̺0
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where ̺0 = max1≤j≤m+1

{

̺(f0,j)
}

. Also, from (6.1) and (6.4) we have

(6.9) ̺0 < β.

Now let ε > 0 be a given small constant. Then

(6.10) |A0,j(z)| ≤ |z|αj+ε, |z| /∈ E, j = 0, 1, . . . , n.

We now obtain an estimate for |Am,0(z)| by using equation (6.7), and applying
the estimates in Lemma 2 and (5.9). Specifically, by using (6.8) and Lemma 2,
and also (6.10), (5.8), (5.9), and (5.10), we deduce that

(6.11) |Am,0(z)| ≤ |z|η, |z| /∈ E,

where

(6.12) η = max
1≤j≤n−m

{

τm,j + j(̺0 − 1 + ε)
}

,

where τm,n−m = 0, and where for 1 ≤ j ≤ n − m − 1, τm,j is given by (5.10)
with τ0,k = αk + ε for m + j ≤ k ≤ n in (5.10). From (6.12) and (5.10), it can be
deduced that

(6.13) η ≤ max
m+1≤k≤n

{

αk + (k − m)(̺0 − 1) + (n + 2)ε
}

.

Next, from (5.11) we have

(6.14) |A0,m(z)| ≤ |Am,0(z)| + |Gm(z)|
where Gm(z) satisfies (5.12) and (5.13). From (6.14), (5.12), (5.13), (6.11), and
(6.13), we obtain that

(6.15) |A0,m(z)| ≤ |z|µ, |z| /∈ E,

where

(6.16) µ = max
m+1≤k≤n

{

αk + (k − m)(̺0 − 1) + (n + 3)ε
}

.

Now we estimate µ in (6.16). By using (6.6) and (6.9), we obtain for each
k = m + 1, m + 2, . . . , n ,

αk + (k − m)(̺0 − 1) + (n + 3)ε ≤ τ − k(β − 1) + (k − m)(̺0 − 1) + (n + 3)ε

= αm + (k − m)(̺0 − β) + (n + 3)ε(6.17)

< αm,

when ε is chosen sufficiently small. Thus from (6.17) and (6.16),

(6.18) µ < αm.

But A0,m(z) = am(z) , and so deg A0,m = αm from (6.6). Thus (6.18) and (6.15)
give a contradiction. This contradiction proves Theorem 1.
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7. Proof of Theorem 2

Proof of necessity. Suppose that every solution f of (2.1) satisfies λ(f) <
̺(f) . Then equation (2.1) possesses n + 1 linearly independent solutions f , each
satisfying λ(f) < ̺(f) . Hence from Theorem 1, b must be a zero of S(t) of
multiplicity at least n . But S(t) is a polynomial of degree at most n . Thus from
(2.5), S(t) = (t − b)n .

Proof of sufficiency. Suppose that S(t) = (t− b)n . Then from the definitions
of S(t) and τ in (2.5) and (2.4), we obtain

(7.1) dk + k(β − 1) = τ, k = 0, 1, . . . , n.

It follows that

(7.2) τ = n(β − 1) and dk = (n − k)(β − 1) for k = 0, 1, . . . , n − 1.

Let f be any solution of (2.1). From Lemma 6 and (7.2) we obtain

β ≤ ̺(f) ≤ max

{

β, 1 + max
0≤k≤n−1

dk

n − k

}

= β,

which gives

(7.3) ̺(f) = β.

Set

(7.4) g = fe−Q.

Then from Lemma 1, g is a solution of an equation of the form

(7.5) g(n) + an−1(z)g(n−1) + · · · + a0(z)g = h(z),

where a0(z), . . . , an−1(z) are polynomials satisfying deg ak ≤ τ − k(β − 1) and

(7.6) ak(z) =
S(k)(b)

k!
zτ−k(β−1) + · · · , k = 0, 1, . . . , n − 1.

Since S(t) = (t − b)n , we obtain from (7.6) that

(7.7) deg ak < τ − k(β − 1), k = 0, 1, . . . , n − 1.

From (7.7) and (7.2) we have

(7.8) deg ak < (n − k)(β − 1), k = 0, 1, . . . , n − 1.

We now apply Lemma 6 to equation (7.5), and use (7.8) and the fact that
̺(h) < β , to obtain

(7.9) ̺(g) ≤ max

{

̺(h), 1 + max
0≤k≤n−1

deg ak

n − k

}

< β.

However, from (7.4) we have

(7.10) λ(f) = λ(g) ≤ ̺(g).

Hence from (7.10), (7.9), and (7.3), it follows that λ(f) < ̺(f) .
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8. Proof of Theorem 3

Since S(b) 6= 0, it follows from Theorem 1 that every solution f of (2.1)
satisfies λ(f) = ̺(f) with at most one exceptional solution.

Now suppose that f0 is such an exceptional solution. Then λ(f0) < ̺(f0) ,
and from Theorem 4, f0 has the form

(8.1) f0 = geQ,

where

(8.2) ̺(g) < deg Q = β.

From Lemma 1, g is a solution of an equation of the form

(8.3) g(n) + an−1(z)g(n−1) + · · · + a0(z)g = h(z),

where a0(z), . . . , an−1(z) are polynomials satisfying deg ak ≤ τ − k(β − 1) and

(8.4) ak(z) =
S(k)(b)

k!
zτ−k(β−1) + · · · , k = 0, 1, . . . , n − 1.

Since S(b) 6= 0, we obtain from (8.4) that

(8.5) deg a0 = τ and deg ak ≤ τ − k(β − 1) for k = 1, 2, . . . , n − 1.

From equation (8.3) we see that ̺(g) ≥ ̺(h) . We now prove that ̺(g) = ̺(h) .
Assume the contrary, and suppose that ̺(g) > ̺(h) . Then from Lemma 8, there
exists a set J ⊂ (0,∞) that has infinite logarithmic measure such that

(8.6) M(r, h) < M(r, g), r ∈ J.

For each r ∈ J , we now choose a point zr that satisfies |zr| = r and |g(zr)| =
M(r, g) . Then from (8.6) we obtain

(8.7)

∣

∣

∣

∣

h(zr)

g(zr)

∣

∣

∣

∣

< 1, r ∈ J.

Since g is a solution of equation (8.3), we have

(8.8) a0(zr) =
h(zr)

g(zr)
− g(n)(zr)

g(zr)
−

n−1
∑

k=1

ak(zr)
g(k)(zr)

g(zr)
, r ∈ J.
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We now estimate the right side of (8.8). Set µ = ̺(g) , and let ε > 0 be a
small fixed constant. Then from Lemma 2, it follows that

(8.9)

∣

∣

∣

∣

g(n)(zr)

g(zr)

∣

∣

∣

∣

+

n−1
∑

k=1

|ak(zr)|
∣

∣

∣

∣

g(k)(zr)

g(zr)

∣

∣

∣

∣

≤ |zr|σ for r ∈ J \ E,

where

(8.10) σ = max
1≤k≤n

{

deg ak + k(µ − 1) + ε
}

.

Here we set an(z) ≡ 1. Since µ < β from (8.2), it can be seen from (8.10) and
(8.5) that

(8.11) σ ≤ max
{

n(µ − 1) + ε, τ + µ − β + ε
}

.

Note that τ ≥ n(β − 1) from (2.4), and µ < β from (8.2). Thus if ε is chosen
sufficiently small, then we see from (8.11) that

(8.12) σ < τ.

Now we use (8.7) and (8.9) in (8.8), and obtain

(8.13) |a0(zr)| < 1 + |zr|σ, r ∈ J \ E,

where σ satisfies (8.12). However, from (8.5), a0(z) is a polynomial of degree τ ,
which contradicts (8.13) and (8.12). This contradiction proves that

(8.14) ̺(g) = ̺(h).

We consider two cases.

Case (i): h(z) is transcendental. From Lemma 9 and (2.2) we have

λ(f0) ≥ ̺(h).

On the other hand, from (8.1) and (8.14) we obtain

λ(f0) = λ(g) ≤ ̺(g) = ̺(h).

Thus λ(f0) = ̺(h) . Hence from (2.2), λ(f0) = λ(h) . This proves Theorem 3(i).

Case (ii): h(z) is a polynomial. In this case, ̺(g) = 0 from (8.14). Since any
transcendental solution of equation (8.3) has positive order (see [14, pp. 106–108]),
it follows that g is a polynomial. Since β ≥ 1 from (2.3), by inspection of (8.3)
and (8.5) we see that

(8.15) deg h ≥ τ and deg g = deg h − τ.

From (8.1) and (8.15) we obtain Theorem 3(ii).
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9. Proof of Theorem 5

Suppose that f0 is a solution of equation (1.1) satisfying λ(f0) < ∞ . Since
̺(H) = ∞ , we have ̺(f0) = ∞ from (1.1). Thus

(9.1) f0(z) = u(z)ew(z)

where u(z) 6≡ 0 and w(z) are entire functions satisfying ̺(u) < ∞ and ̺(ew) =
∞ .

Now suppose that f is a solution of (1.1) where f 6≡ f0 . We now show that
λ(f) = ∞ , which will prove Theorem 5. From (9.1) and (1.1) it follows that

(9.2) f(z) = g(z) + u(z)ew(z)

where g 6≡ 0 is a solution of the homogeneous equation

(9.3) g(n) + Pn−1(z)g(n−1) + · · · + P0(z)g = 0.

From Lemma 3 and (9.3), we have ̺(g) < ∞ . Since g and u are entire, we see
from (9.2) that

(9.4) N
(

r,−1,
u

g
ew) ≤ N(r, 0, f

)

.

We now make the assumption that λ(f) < ∞ . Set

(9.5) B(z) =
u(z)

g(z)
ew(z).

From the second fundamental theorem and (9.5) we obtain

(9.6)

(

1 + o(1)
)

T (r, B) ≤ N(r, B) + N(r, 0, B) + N(r,−1, B)

≤ N(r, 0, g) + N(r, 0, u) + N
(

r,−1,
u

g
ew

)

as r → ∞ , r /∈ D . Then from (9.6), (9.4), and the first fundamental theorem, we
obtain

(9.7)
(

1 + o(1)
)

T (r, B) ≤ T (r, g) + T (r, u) + N(r, 0, f)

as r → ∞ , r /∈ D . Since ̺(g) < ∞ , ̺(u) < ∞ , and λ(f) < ∞ , it follows from
(9.7) that there exists a constant α > 0 such that

(9.8) T (r, B) ≤ rα, r /∈ D.

Since a set of finite linear measure is also a set of finite logarithmic measure, we
can apply Lemma 7 to (9.8). We obtain that there exists a constant R > 0 such
that

T (r, B) ≤ (2r)α for all r ≥ R,

which implies that B(z) has finite order. Since g and u also have finite order, it
follows from (9.5) that ̺(ew) < ∞ , which is a contradiction. This contradiction
proves that our assumption λ(f) < ∞ must be false. Hence λ(f) = ∞ , which is
what we wanted to prove.
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