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Abstract. A theory of the Schwarzian for sufficiently smooth local transformations of the
euclidean n -space is developed using Clifford numbers. Various formulas relating the Schwarzian
to Möbius transformations are given, and it is shown that the Schwarzian derivative vanishes for
Möbius transformations.

The purpose of this paper is to develop a theory of the Schwarzian for local
transformations of class C3 of the euclidean n -space Rn .

Ahlfors has defined Schwarzian derivatives for such transformations in [1], in
connection with a generalized cross-ratio in Rn . In the paper Ahlfors generalizes
the real and imaginary parts of the classical Schwarzian derivative independently
in somewhat different ways. The definition of the Schwarzian proposed in this
paper takes values in the Clifford numbers, and thereby unifies the generalized
Schwarzian derivatives of Ahlfors.

We prove various formulas relating the Schwarzian to Möbius transforma-
tions. In particular it is shown that the Schwarzian derivative vanishes for Möbius
transformations.

For conformal mappings of Riemannian manifolds, other kinds of generalized
Schwarzian have been defined ([2], [3]). The relationship between these general-
izations and the Schwarzian studied in this paper will be addressed elsewhere.

1. Clifford numbers and Möbius transformations

Here we collect facts about Clifford numbers and Möbius transformations
needed later in this paper. The reader is refered to [4] for the details.

The Clifford algebra Cln is the real associative algebra generated by i1, . . . , in
satisfying the relations

{
i
2
j = −1 (j = 1, . . . , n),

ij ik = −ik ij (j, k = 1, . . . , n, j 6= k).

1991 Mathematics Subject Classification: Primary 53A55; Secondary 30G35, 53A20, 57R35.



454 Masaaki Wada

An element of Cln , called a Clifford number, is uniquely expressed as a linear
combination a =

∑
aI I of the products of generators of the form

I = ij1 · · · ijr
(j1 < · · · < jr).

The norm of a ∈ Cln is defined by |a|2 =
∑

a2
I .

We denote by Cl
(r)
n the subspace of Cln spanned by the products of genera-

tors I of length r . Thus, we have a direct sum decomposition

Cln =

n⊕

r=0

Cl(r)n .

Accordingly, every Clifford number is uniquely written as

a = a(0) + a(1) + · · · + a(n).

We call the component a(r) ∈ Cl
(r)
n the r -part of a . The subspace Cl

(0)
n is

naturally identified with R; thus the 0-part a(0) is also called the real part of a .

We embed the euclidean space Rn into Cln by identifying Rn with Cl
(1)
n , and

call elements of Rn = Cl
(1)
n vectors. In particular, products of vectors in this

paper are always Clifford numbers. For a vector v ∈ Rn , we have v2 = −|v|2 .
The multiplicative group consisting of the products of nonzero vectors in

Rn is denoted by Γn , and is called the Clifford group. We denote by a 7→ a∗

the reversion of Cln , namely the unique anti-automorphism of Cln which leaves
the vectors invariant. For an element of the Clifford group a ∈ Γn , we have
aa∗ = a∗a ∈ R , hence a−1 = (1/aa∗)a∗ .

Given a vector u ∈ Rn , we note that the transformation of Rn defined
by v 7→ uvu (v ∈ Rn ) is the composition of the reflection in the hyperplane
perpendicular to u , followed by the scalar multiplication by |u|2 . Thus if a ∈ Γn ,
the transformation of Rn given by v 7→ ava∗ (v ∈ Rn ) is a product of reflections
and scalar multiplications, therefore is a similarity transformation of Rn fixing
the origin.

A 2 × 2 matrix of Clifford numbers

(1-1) g =

(
a b
c d

)

satisfying the conditions

(1) a, b, c, d ∈ Γn ∪ {0} ,
(2) ab∗, cd∗, a∗c, b∗d ∈ Rn ,
(3) ad∗ − bc∗ = d∗a − b∗c = 1,

is called a Clifford matrix. Every Möbius transformation of Rn ∪ {∞} can be
expressed by a Clifford matrix as

g(x) = (ax + b)(cx + d)−1 (x ∈ Rn ∪ {∞}).



A generalization of the Schwarzian via Clifford numbers 455

2. Higher differentials

Given a smooth manifold X , we denote by #X the set of germs at 0 of
smooth paths in X ; namely #X consists of the smooth paths

x: R −→ X,

and two such paths are considered to be the same if they are identical on some
neighborhood of 0 ∈ R . The symbol t will be used exclusively for the parameter
of paths in this paper. The evaluation at t = 0 defines the projection

♭: #X −→ X, ♭(x) = x(0) (x ∈ #X ).

Every smooth map

f : X −→ Y

gives rise to the induced map by the composition

#f : #X −→ #Y , #f (x) = f ◦ x (x ∈ #X ).

We abbreviate #f to f ; this should not cause any confusion.

Now let X be an open subset of a finite dimensional vector space V . We
denote the differentiation by

#d: #X −→ #V , #dx =
dx

dt
(x ∈ #X ).

We then define the r -th order differential of x ∈ #X to be

drx = ♭(#drx) =
drx

dtr

∣∣∣∣
t=0

∈ V.

Again by an abuse of notation we abbreviate #dr to dr and denote both of them
simply by dr . In any case d is a linear operator.

Lemma. For x, y ∈ #Cln , we have

(1) d(xy) = dx y + x dy ,

(2) d(x−1) = −x−1 dx x−1 .

Proof. Since the Clifford multiplication is bilinear, (1) is obvious. By taking
“d ” of both sides of x x−1 = 1, and applying (1) above, we easily obtain (2).
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3. Schwarzian differentials

For x ∈ #Rn , we define the Schwarzian differentials s3x and s2x to be

s3x = d3x − 3
2 d2x dx−1 d2x ∈ Rn,

s2x = s3x dx−1 = d3x dx−1 − 3
2 (d2x dx−1)2 ∈ Cl(0)n ⊕ Cl(2)n .

Theorem 1. Let g be a Möbius transformation given by a Clifford matrix

(1-1). If x, y ∈ #Rn are related by g as

y = g(x) = (ax + b)(cx + d)−1,

then we have

(1) dy = (cx + d)∗−1 dx (cx + d)−1 ,

(2) s3y = (cx + d)∗−1 s3x (cx + d)−1 ,

(3) s2y = (cx + d)∗−1 s2x (cx + d)∗ .

Proof. The computation in the case c = 0 is easy, and is left as an exercise
for the reader. We assume that c 6= 0. First apply the lemma to

y (cx + d) = ax + b,

and we obtain

dy (cx + d) + yc dx = a dx.

Multiplication by (cx + d)∗ from the left then yields

(cx + d)∗ dy (cx + d) = (xc∗ + d∗) a dx − (ax + b)∗c dx

=
(
x (c∗a − a∗c) + (d∗a − b∗c)

)
dx.

Since c∗a = (a∗c)∗ = a∗c and d∗a − b∗c = 1, we have (1).
Before proceeding further, note that c−1d is a vector. In fact, let w denote

the vector (1/d∗d)cd∗ ∈ Rn , and we have wd = c . We then see that c−1d =
(1/cc∗)c∗d = (1/cc∗)d∗wd ∈ Rn .

Now denote the vector c−1d by v , and (1) becomes

dy = c∗−1 (x + v)−1 dx (x + v)−1 c−1.

Then by the lemma, we obtain

d2y = −2 c∗−1 (x + v)−1 dx (x + v)−1 dx (x + v)−1 c−1

+ c∗−1 (x + v)−1 d2x (x + v)−1 c−1,

and
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d3y = 6 c∗−1 (x + v)−1 dx (x + v)−1 dx (x + v)−1 dx (x + v)−1 c−1

− 3 c∗−1 (x + v)−1 d2x (x + v)−1 dx (x + v)−1 c−1

− 3 c∗−1 (x + v)−1 dx (x + v)−1 d2x (x + v)−1 c−1

+ c∗−1 (x + v)−1 d3x (x + v)−1 c−1.

A straightforward computation then shows

s3y = c∗−1(x + v)−1 s3x (x + v)−1c−1.

Finally, (3) is an obvious consequence of (1) and (2).

Since cx + d ∈ Γn , it then follows from the proposition and the lemma in [4]
that:

Corollary 2. The real part, (s2x)(0) , and the norm of the 2 -part, |(s2x)(2)| ,
of the Schwarzian differential s2x are invariant under Möbius transformations.

4. Schwarzian derivatives

Let f be a local mapping of class C3 of Rn to itself, and suppose that
x, y ∈ #Rn are related by f as

y = f(x) =
∑

i

ii fi(x1, . . . , xn), (x =
∑

j

xj ij ∈ Rn).

Then we have
dy = D1(x, dx),

d2y = D2(x, dx, d2x),

d3y = D3(x, dx, d2x, d3x),

where D1 , D2 , D3 denote the formal expressions of the variables rj , uj , vj , wj

(j = 1, . . . , n) defined by

D1(r, u) =
∑

i

ii
∑

j

∂fi

∂xj

(r)uj ,

D2(r, u, v) =
∑

i

ii

(∑

j,k

∂2fi

∂xj∂xk

(r)ujuk +
∑

j

∂fi

∂xj

(r)vj

)
,

D3(r, u, v, w) =
∑

i

ii

(∑

j,k,l

∂3fi

∂xj∂xk∂xl

(r)ujukul

+ 3
∑

j,k

∂2fi

∂xj∂xk

(r)vjuk +
∑

j

∂fi

∂xj

(r)wj

)
.
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Now let us define the expressions S̃3f and S̃2f by

S̃3f(r, u, v, w) = D3 − 3
2

D2 D−1
1 D2 ,

S̃2f(r, u, v, w) = D3 D−1
1 − 3

2
(D2 D−1

1 )2,

so that
s3y = S̃3f(x, dx, d2x, d3x),

s2y = S̃2f(x, dx, d2x, d3x).

Definition. For any local transformation f of Rn of class C3 , we define the
Schwarzian derivatives S3f and S2f by

S3f(x, dx, d2x) = S̃3f
(
x, dx, d2x, 3

2
d2x dx−1 d2x

)
,

S2f(x, dx, d2x) = S̃2f
(
x, dx, d2x, 3

2
d2x dx−1 d2x

)
.

We remark that the generalized Schwarzian derivatives given by Ahlfors in [1]
correspond to the real part and the 2-part of S2f(x, dx, 0).

Corollary 3. Suppose that f is a local transformation of Rn of class C3 ,

and g is a Möbius transformation. If g is given by a Clifford matrix (1-1), we

have

S3(g ◦ f)(x, dx, d2x) = (cf(x) + d)∗−1 S3f(x, dx, d2x)
(
cf(x) + d

)
−1

,

S2(g ◦ f)(x, dx, d2x) =
(
cf(x) + d

)
∗−1

S2f(x, dx, d2x)
(
cf(x) + d

)
∗

.

This is a direct consequence of Theorem 1. We also have

Corollary 4. If f is a Möbius transformation, then S3f ≡ S2f ≡ 0 .

Proof. Given vectors r, u, v ∈ Rn with u 6= 0, we define a path x ∈ #Rn by

x(t) = r + tu + 1
2
t2v + 1

4
t3vu−1v,

so that dx = u , d2x = v , d3x = 3
2vu−1v , and therefore s3x = 0. If f is a Möbius

transformation and y = f(x) , it follows from Theorem 1 that s3y = s2y = 0.
Namely we have

S3f(r, u, v) = S2f(r, u, v) = 0

for all r, u, v ∈ Rn with u 6= 0. This completes the proof of Corollary 4.

The converse to Corollary 4 is also expected to be true:

Conjecture. Suppose that a local transformation f of Rn of class C3

satisfies S3f(r, u, v) ≡ 0 at each point r in an open subset of Rn . Then, f is

locally a Möbius transformation.
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5. Low dimensional cases

Let us first consider the case of a complex analytic function f . We identify

the complex numbers with Cl
(1)
2 by the correspondence 1 ↔ i1 , i ↔ i2 , and

regard f as a transformation of Cl
(1)
2 . The “complex multiplication” under this

identification is the operation

(u, v) 7−→ u i
−1
1 v (u, v ∈ Cl

(1)
2 ).

Therefore if x, y ∈ #Cl
(1)
2 are related by f as

y = f(x),

we have
dy = f ′(x) i−1

1 dx,

where f ′ is the complex derivative function of f seen as a transformation of Cl
(1)
2 .

Similarly we have

d2y = f ′′(x) (i−1
1 dx)2 + f ′(x) i−1

1 d2x,

d3y = f ′′′(x) (i−1
1 dx)3 + 3 f ′′(x) i−1

1 d2x i−1
1 dx + f ′(x) i−1

1 d3x.

Using uvw = wvu for vectors u, v, w ∈ Cl
(1)
2 , we can further compute

s3y =
(
f ′′′(x) − 3

2f ′′(x)f ′(x)−1f ′′(x)
)
(i−1

1 dx)3 + f ′(x)i−1
1

(
d3x − 3

2d2x dx−1 d2x
)
,

s2y =
(
f ′′′(x)f ′(x)−1 − 3

2

(
f ′′(x)f ′(x)−1

)2)
(dx i

−1
1 )2 + d3x dx−1 − 3

2 (d2x dx−1)2.

The Schwarzian derivatives are then given by

S3f(x, dx, d2x) =
(
f ′′′(x) − 3

2f ′′(x)f ′(x)−1f ′′(x)
)
(i−1

1 dx)3,(5-1)

S2f(x, dx, d2x) =
(
f ′′′(x)f ′(x)−1 − 3

2

(
f ′′(x)f ′(x)−1

)2)
(dx i

−1
1 )2.(5-2)

The Schwarzian derivatives in this case do not depend on the second order dif-

ferential d2x . We note that the inverse of v ∈ Cl
(1)
2 with resptect to the com-

plex multiplication is i1 v−1 i1 , and therefore the classical Schwarzian derivative

Sf(x) ∈ Cl
(1)
2 of f is given by

Sf(x) = f ′′′(x)i−1
1 (i1f

′(x)−1i1)

− 3
2f ′′(x)i−1

1 (i1f
′(x)−1i1)i

−1
1 f ′′(x)i−1

1 (i1f
′(x)−1i1)

=
(
f ′′′(x)f ′(x)−1 − 3

2

(
f ′′(x)f ′(x)−1

)2)
i1.

The case of a real valued function f : R → R of class C3 is analogous to the
above, and the formulas (5-1) and (5-2) hold as they are.

For an arbitrary local transformation f of R2 of class C3 , the Schwarzian
derivatives S3f(x, dx, d2x) and S2f(x, dx, d2x) are much more complicated quan-
tities which do depend on d2x as well as on dx . However, in this case we have
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Corollary 5. Let f be a local transformation of R2 of class C3 , and g an

orientation preserving Möbius transformation of R2 . Then,

S2(g ◦ f)(x, dx, d2x) = S2f(x, dx, d2x).

Proof. Suppose that the Möbius transformation g is given by a Clifford matrix
(1-1). We note that g is orientation preserving if and only if

cx + d ∈ Cl
(ev)
2 ≡ Cl

(0)
2 ⊕ Cl

(2)
2 (x ∈ Cl

(1)
2 ).

Since Cl
(ev)
2 is a commutative subalgebra of Cl2 , and S2f(x, dx, d2x) ∈ Cl

(ev)
2 ,

it then follows from Corollary 3 that

S2(g ◦ f)(x, dx, d2x) =
(
cf(x) + d)∗−1 S2f(x, dx, d2x)

(
cf(x) + d

)
∗

= S2f(x, dx, d2x).
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