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Abstract. In this paper we prove that for 0 < p < ∞ , the norm of a function f in the
Bergman space Lp

a on the unit ball B of Cn , n ≥ 1 , is equivalent to the quantity

∫

B

|∇̃f(z)|2|f(z)|p−2h(|z|) dτ(z),

where ∇̃ and τ denote the invariant gradient and invariant measure on B , respectively, and

h(|z|) =

∫ 1

|z|

(1 − t2)n−1(1 − t2n)

t2n−1
dt.

If n > 1 , this result allows us to extend the characterization J2 of the Bloch space obtained in
[OYZ, Theorem 2] to the range 0 < p < ∞ . We also get this kind of description of Bloch functions
for n = 1.

Moreover, we generalize the result obtained in [CKP] and show that f ∈ H(B) is a Bloch

function if and only if for some p , 0 < p < ∞ , |∇̃f(z)|pdv(z) is a Bergman–Carleson measure.
Finally, we get some results for spaces Hp and BMOA, e.g. an extension of the classical Littlewood–
Paley inequality to the case of the unit ball.

1. Introduction

Let B denote the unit ball in Cn , dv the normalized Lebesgue measure on
B and dσ the normalized surface measure on the boundary S of B . Let H(B)
be the space of all holomorphic functions on B . For 0 < p < ∞ , the Bergman
space Lp

a and the Hardy space Hp are defined respectively as

Lp
a =

{
f : f ∈ H(B), ‖f‖p

Lp
a

=

∫

B

|f(z)|p dv(z) < ∞

}

and

Hp =

{
f : f ∈ H(B), ‖f‖p

Hp = sup
0<r<1

∫

S

|f(rζ)|p dσ(ζ) < ∞

}
.
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For f ∈ H(B) , set

Qf (z) = sup

{
|〈∇f(z), x̄〉|

(
Hz(x, x)

)1/2
: 0 6= x ∈ Cn

}
,

where ∇f(z) = (∂f/∂z1, . . . , ∂f/∂zn) is the complex gradient of f and Hz(x, x)
is the Bergman metric on B , i.e.

Hz(x, x) =
n + 1

2

(1 − |z|2)|x|2 + |〈x, z〉|2

(1 − |z|2)2
.

The Bloch space B (introduced by R. Timoney, [T]) is the set of holomorphic
functions f on B for which

‖f‖B = sup{Qf (z) : z ∈ B} < ∞.

R. Timoney [T] has proved that the norms

‖f‖1 = sup{|∇f(z)|(1 − |z|2) : z ∈ B},

‖f‖2 = sup{|〈∇f(z), z̄〉|(1 − |z|2) : z ∈ B}

and ‖f‖B are equivalent.

Let ∇̃ denote the invariant gradient on B , that is,

(∇̃f)(z) = ∇(f ◦ ϕz)(0),

where ϕz denotes the involutive automorphism of B satisfying ϕz(0) = z , ϕz(z) =
0.

Recently C. Ouyang, W. Yang and R. Zhao [OYZ] gave the following charac-
terization of the Bloch space.

Theorem A. Let n > 1 , p ≥ 2; then the following quantities are equivalent:

(a) ‖f‖p
B

,

(b) J2 = sup
a∈B

∫
B
|∇̃f(z)|2|f(z) − f(a)|p−2

(
1 − |ϕa(z)|2

)n+1
|ϕa(z)|−2n+2 dτ(z) ,

(c) J3 = sup
a∈B

∫
B
|∇̃f(z)|2|f(z) − f(a)|p−2[G(z, a)]1+(1/n) dτ(z) ,

where G(z, a) is the Green function of B and dτ(z) = (n + 1)dv(z)/(1 − |z|2)n+1 .

The authors [OYZ, p. 4310, Remark 3] conjectured that Theorem A holds for
all p > 0, that is, also for 0 < p < 2. Here we show that the quantities given by
formulas (a) and (b) are equivalent for all positive p . Moreover, we prove
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Theorem 1. Let 0 < p < ∞ and n > 1; then ‖f‖p
B

and J2 , defined in

Theorem A, and the following quantities are equivalent

J4 = sup
a∈B

∫

B

|∇̃f(z)|2|f(z) − f(a)|p−2G(z, a)
(
1 − |ϕa(z)|2

)
dτ(z),

J5 = sup
a∈B

∫

B

|∇̃f(z)|2|f(z) − f(a)|p−2h
(
|ϕa(z)|

)
dτ(z),

where the function h is given by the formula

h(|z|) =

∫ 1

|z|

(1 − t2)n−1(1 − t2n)

t2n−1
dt.

For the case n = 1 we get

Theorem 2. Let 0 < p < ∞ and f be a holomorphic function on the unit

disc D in the complex plane. Then f is a Bloch function if and only if

(1) sup
a∈D

∫

D

|f(z) − f(a)|p−2|f ′(z)|2g(z, a)
(
1 − |ϕa(z)|2

)
dv(z) < ∞

where g(z, a) is the Green function log
∣∣(1 − āz)/(z − a)

∣∣ of D with logarithmic

singularity at a ∈ D .

Our next characterization of Bloch functions is connected with a Bergman–
Carleson measure. For η ∈ S and δ > 0, let

Dδ(η) = {z ∈ B : |1 − 〈z, η〉| < δ}.

A positive measure µ on B is called a Bergman–Carleson measure (Carleson
measure) if and only if µ

(
Dδ(η)

)
= O(δn+1) (µ

(
Dδ(η)

)
= O(δn)). It has been

proved in [CKP] that a holomorphic function f on B is a Bloch function if and only

if |∇̃f(z)|2 dv(z) is a Bergman–Carleson measure. Here we obtain the following
generalization of this result.

Theorem 3. Let 0 < p < ∞ . If f ∈ H(B) , then the following statements

are equivalent:

(a) ‖f‖B < ∞ ,

(b) |∇̃f(z)|p dv(z) is a Bergman–Carleson measure,

(c) |∇f(z)|p(1 − |z|2)p dv(z) is a Bergman–Carleson measure.

Section 4 of this paper contains the proof of Theorem 3 and some results
for the Hardy space Hp and BMOA functions in the unit ball, e.g. a higher
dimensional version of the classical Littlewood–Paley result [LP]: if f ∈ Hp , 2 ≤
p < ∞ , then ∫

D

|f ′(z)|p(1 − |z|)p−1 dv(z) < ∞.

The author would like to express her sincere thanks to the referee for helpful
comments and remarks which greatly improved the final version of this paper.
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2. Preliminaries

For a ∈ B , let ϕa be the involutive automorphism of B given by the formula

(2) ϕa(z) =
a − Paz − (1 − |a|2)1/2Qaz

1 − 〈z, a〉
,

where Pa is the orthogonal projection into the space spanned by a i.e.

Paz =
〈z, a〉

|a|2
a, P0z = 0,

and
Qa = I − Pa.

It has been shown in [R] that

(3) ϕ′
a(0) = −(1 − |a|2)Pa −

√
1 − |a|2 Qa.

Now, by the chain rule and the symmetry of matrix (3) we get

(4)

|∇̃f(z)|2 = |∇(f ◦ ϕz)(0)|2 = |∇f(z)ϕ′
z(0)|2 = |ϕ′

z̄(0)∇f(z)|2

= (1 − |z|2)2|Pz̄∇f(z)|2 + (1 − |z|2)|Qz̄∇f(z)|2

= (1 − |z|2)
(
|∇f(z)|2 − |〈∇f(z), z̄〉|2

)

= (1 − |z|2)
(
|∇f(z)|2 − |Rf(z)|2

)
,

where Rf is the radial derivative of f .
For u ∈ C2(B) , let ∆̃u denote the invariant Laplacian on B , i.e.

(∆̃u)(z) = ∆(u ◦ ϕz)(0),

where ∆ is the ordinary Laplacian.
K. Hahn and E. Youssfi [HY] proved that for f ∈ H(B)

Qf (z) =
1√

2(n + 1)

√
∆̃|f |2(z) =

√
2

n + 1

∣∣∇̃f(z)
∣∣.

Hence the following statements are equivalent:

(i) f ∈ B ,

(ii) sup{∆̃|f |2 : z ∈ B} < ∞ ,

(iii) sup{|∇̃f(z)| : z ∈ B} < ∞ .
We will say that the quantities Af and Bf that depend on f are equivalent

if there exists a positive constant C independent of f such that

Af/C ≤ Bf ≤ CAf for every f ∈ H(B).

In this paper C and Cj will always denote positive constants, independent of f ,
not necessarily the same at each occurrence.

The next lemma is the generalization of the result due to S. Axler (see also [S])
to the several variables case. For p ≥ 1, this lemma has been proved in [O2].
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Lemma 1. Let 0 < p < ∞ . A holomorphic function f is in the Bloch space

B if and only if

(5) sup
a∈B

‖f ◦ ϕa − f(a)‖Lp
a

< ∞.

Proof. Assume that f ∈ B . Then we have

|f(z) − f(0)| =

∣∣∣∣
∫ 1

0

〈∇f(tz), z̄〉 dt

∣∣∣∣ ≤
∫ 1

0

|∇f(tz)| |z| dt

≤ C‖f‖B

∫ 1

0

|z|

(1 − |zt|)
dt = C‖f‖B ln

1

1 − |z|
.

The Möbius invariance property of the Bloch space implies

|f ◦ ϕa(z) − f(a)| ≤ C‖f‖B ln
1

1 − |z|
.

This gives

∫

B

|f ◦ ϕa(z) − f(a)|p dv(z) ≤ C‖f‖p
B

∫

B

(
ln

1

1 − |z|

)p

dv(z) ≤ C‖f‖p
B

< ∞.

Now, suppose that supa∈B ‖f ◦ϕa−f(a)‖Lp
a

< ∞ . It was shown in [Shi, p. 623 (9)]
that for f ∈ H(B) and 0 < p < ∞

(6) |∇f(0)|p ≤ C

∫

B

|f(z)|p dv(z).

Replacing f by f ◦ ϕa − f(a) we obtain

|∇̃f(a)|p = |∇(f ◦ ϕa)(0)|p ≤ C

∫

B

|f ◦ ϕa(z) − f(a)|p dv(z),

which implies supa∈B |∇̃f(a)|p < ∞ .

3. Proof of Theorems 1 and 2

For f ∈ H(B) , let

f#
p (z) = p2|f(z)|p−2|∇̃f(z)|2.

The proof of Theorem 1 is based on the following
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Lemma 2. If 0 < p < ∞ , f ∈ Lp
a and f(0) = 0 , then

‖f‖p
Lp

a
=

1

(2n)2

∫

B

f#
p (z)h(|z|) dτ(z),

where

h(|z|) =

∫ 1

|z|

(1 − t2)n−1(1 − t2n)

t2n−1
dt.

Proof. Combining formulas (3) and (4) of [OYZ, p. 4305] we get
∫

S

|f(rζ)|p dσ(ζ) =
1

2n

∫ r

0

(1 − t2)n−1

t2n−1

(∫

Bt

f#
p (z) dτ(z)

)
dt,

where Bt = {z ∈ Cn : |z| < t} .
Multiplying both sides of this equality by r2n−1 and integrating with respect

to r give
∫

B

|f(z)|p dv(z) =
1

2n

∫ 1

0

r2n−1 dr

(∫ r

0

(1 − t2)n−1

t2n−1
dt

∫

Bt

f#
p (z) dτ(z)

)
.

By Fubini’s theorem
∫

B

|f(z)|p dv(z) =
1

2n

∫ 1

0

(∫ 1

t

r2n−1 dr
(1 − t2)n−1

t2n−1

∫

Bt

f#
p (z) dτ(z)

)
dt

=
1

(2n)2

∫ 1

0

(1 − t2n)(1 − t2)n−1

t2n−1

∫

Bt

f#
p (z) dτ(z) dt.

Let

χ|z|(t) =

{
1, |z| < t,
0, otherwise,

then the right side of the last equality can be be written as

1

(2n)2

∫

B

∫ 1

0

(1 − t2n)(1 − t2)n−1

t2n−1
χ|z|(t)f

#
p (z) dt dτ(z)

=
1

(2n)2

∫

B

h(|z|)f#
p (z) dτ(z).

Proof of Theorem 1. Let n > 1 and 0 < p < ∞ be fixed. By Lemma 1 ‖f‖p
B

is equivalent to supa∈B ‖f ◦ ϕa − f(a)‖Lp
a

. Next, using Lemma 2 we obtain

sup
a∈B

‖f ◦ ϕa−f(a)‖Lp
a

= sup
a∈B

p2

(2n)2

∫

B

h(|z|)|f ◦ ϕa(z) − f(a)|p−2|∇̃(f ◦ ϕa)(z)|2 dτ(z)

= sup
a∈B

p2

(2n)2

∫

B

h
(
|ϕa(z)|

)
|f(z) − f(a)|p−2|∇̃f(z)|2 dτ(z).
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Since

lim
|z|→1

h(|z|)

(1 − |z|2)n+1|z|−2n+2
=

n

2(n + 1)

and

lim
|z|→0

h(|z|)

(1 − |z|2)n+1|z|−2n+2
=

1

2(n − 1)
,

and the function h(|z|) is continuous in the interval (0, 1) there are positive con-
stants C1 and C2 such that for all z ∈ B \ {0}

C1(1 − |z|2)n+1|z|−2n+2 ≤ h(|z|) ≤ C2(1 − |z|2)n+1|z|−2n+2.

Thus the quantities ‖f‖p
B

, J2 and J5 are equivalent. It follows immediately from
Lemma 1 of [OYZ] that also J4 is equivalent to each of these quantities.

Proof of Theorem 2. The proof is based on the Hardy–Stein identity [H, p. 42]

r
d

dr

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ

)
=

∫

|z|<r

f#(z) dv(z),

where
f#(z) = 1

2
p2|f(z)|p−2|f ′(z)|2.

If f(0) = 0 then we have (by integration)

1

2π

∫ 2π

0

|f(reiθ)|p dθ =

∫ r

0

(∫

|z|<t

1

t
f#(z) dv(z)

)
dt.

From this∫

D

|f(z)|p dv(z) = 2

∫ 1

0

r

(∫ r

0

(∫

|z|<t

1

t
f#(z) dv(z)

)
dt

)
dr

= 2

∫ 1

0

(
1

t

∫ 1

t

r dr

∫

|z|<t

f#(z) dv(z)

)
dt

=

∫ 1

0

1 − t2

t

(∫

|z|<t

f#(z) dv(z)

)
dt

=

∫

D

∫ 1

|z|

1 − t2

t
dtf#(z) dv(z) =

∫

D

h1(|z|)f#(z) dv(z),

where h1(r) = ln(1/r) − (1 − r2)/2, 0 < r < 1. Now, applying Lemma 1 and a
change of variables we conclude that f is a Bloch function if and only if

(7) sup
a∈D

∫

D

|f(z) − f(a)|p−2|f ′(z)|2h1

(
|ϕa(z)|

)
dv(z) < ∞.

Since

lim
r→1−

(1 − r2) ln(1/r)

h1(r)
= 2 and lim

r→0+

(1 − r2) ln(1/r)

h1(r)
= 1,

condition (7) is equivalent to (1).
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4. Carleson measure characterizations of Bloch and BMOA space

Proof of Theorem 3. The implications: (a) implies (c) and (b) implies (c)
follow immediately from the descriptions of the Bloch space presented in the in-
troduction and from Proposition 3.1 of [CKP]. In fact, for example,

sup
a∈B

∫

B

(
1 − |z|2

|1 − 〈z, a〉|2

)n+1

|∇̃f(z)|p dv(z)

≤ sup
z∈B

|∇̃f(z)|p sup
a∈B

∫

B

(
1 − |z|2

|1 − 〈z, a〉|2

)n+1

dv(z) < ∞.

Now assume that (for some positive p) |∇̃f(z)|p dv(z) is a Bergman–Carleson
measure. According to Proposition 3.1 of [CKP] this means that

(7) sup
a∈B

∫

B

(
1 − |z|2

|1 − 〈z, a〉|2

)n+1

|∇̃f(z)|p dv(z) < ∞.

Let 0 < r < 1 be arbitrarily fixed. The subharmonity of |∂f/∂zi|
p ◦ ϕa , i =

1, 2, . . . , n , implies

(8)

∣∣∣∣
∂f

∂zi
(a)

∣∣∣∣
p

≤
1

r2n

∫

Br

∣∣∣∣
∂f

∂zi

∣∣∣∣
p

◦ ϕa(z) dv(z) ≤
1

r2n

∫

Br

|∇f |p ◦ ϕa(z) dv(z).

In view of the inequality

|∇f(a)|p ≤






n∑

i=1

∣∣∣∣
∂f

∂zi
(a)

∣∣∣∣
p

if 0 < p ≤ 1,

np−1

n∑

i=1

∣∣∣∣
∂f

∂zi
(a)

∣∣∣∣
p

if p > 1,

(8) yields

|∇f(a)|p ≤ C
1

r2n

∫

Br

|∇f |p ◦ ϕa(z) dv(z).

The change of variables z = ϕa(w) gives

|∇f(a)|p ≤ C
1

r2n

∫

ϕa(Br)

|∇f(z)|p
(

1 − |a|2

|1 − 〈z, a〉|2

)n+1

dv(z).

The equality

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)

|1 − 〈z, a〉|2
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implies
1 − |z|2 > 1

4
(1 − r)(1 − |a|2) for z ∈ ϕa(Br).

This follows that

(1 − |a|2)p|∇f(a)|p ≤
4p

(1 − r)pr2n

∫

ϕa(Br)

|∇f(z)|p(1 − |z|2)p

(
1 − |a|2

|1 − 〈z, a〉|2

)n+1

dv(z)

≤
4p

(1 − r)pr2n

∫

B

|∇f(z)|p(1 − |z|2)p

(
1 − |a|2

|1 − 〈z, a〉|2

)n+1

dv(z)

≤
4p

(1 − r)pr2n

∫

B

|∇̃f(z)|p
(

1 − |a|2

|1 − 〈z, a〉|2

)n+1

dv(z)

which together with (7) imply f ∈ B .

Recall that f ∈ H2 is said to be a BMOA function if its radial limit function
f⋆ is a function of bounded mean oscillation on S with respect to nonisotropic
balls Qδ(ζ) = {η ∈ S : |1−〈η, ζ〉| < δ} , ζ ∈ S , 0 < δ ≤ 2. The following Carleson
measure characterizations of BMOA functions have been obtained in [J] and [CC].

Theorem B. Suppose f ∈ H2 . Then the following statements are equivalent:

(a) f ∈ BMOA ,

(b) |∇̃f(z)|2(1 − |z|2)−1 dv(z) is a Carleson measure,

(c) |∇f(z)|2(1 − |z|2) dv(z) is a Carleson measure.

In view of Theorem 3 it is natural to ask if there is also an analogous gener-
alization of this theorem. Here, we will give the following necessary conditions for
f to belong to BMOA.

Theorem 4. If p ≥ 2 and f ∈ BMOA then

(a) |∇̃f(z)|p(1 − |z|2)−1 dv(z) is a Carleson measure,

(b) |∇f(z)|p(1 − |z|2)p−1 dv(z) is a Carleson measure.

Remark 1. For n = 1, the results contained in Theorems 3 and 4 are
equivalent to those stated in [S, Theorem 1, D and p. 417]. Moreover, it is shown
in [M] that the function f(z) =

∑∞
n=1 n−1/2z2n

, z ∈ D , satisfies condition (a) (or
equivalently (b)) given in Theorem 4 with p > 2 but f /∈BMOA. So, we do not
think that in the case n > 1 and p > 2 these conditions are sufficient for f to
belong to BMOA.

To prove Theorem 4 we will need the below stated characterization of the
Hardy space Hp , p ≥ 2, which is an extension of a Littlewood–Paley classical
result to the setting of the unit ball B . Similarly to the case n = 1 this can be
proved by using the M. Riesz–Thorin theorem (see e.g. [Z, pp. 95, 216])

For F ∈ C1(B) let

DF =

(
∂F

∂x1
,
∂F

∂y1
, . . . ,

∂F

∂xn
,

∂F

∂yn

)
, zk = xk + iyk, k = 1, . . . , n,
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be the real gradient of F and let D̃F (z) = D(F ◦ ϕz)(0). If, as above,

∇F =

(
∂F

∂z1
, . . . ,

∂F

∂zn

)

is the complex gradient of F then, as one can easily check,

2|DF |2 = |∇F |2 + |∇F |2.

As in [R] the Poisson integral P [f ] of a function f ∈ L1(S, dσ) is defined, for
z ∈ B , by

P [f ](z) =

∫

S

(1 − |z|2)nf(ζ)

|1 − 〈z, ζ〉|2n
dσ(ζ).

The next lemma is an analogue of Theorem 3.24 of [Z, p. 216].

Lemma 3. If 2 ≤ p ≤ ∞ , f ∈ Lp(S, dσ) and F = P [f ] , then

(9)

∫

B

|D̃F (z)|p(1 − |z|2)−1 dv(z) ≤ C

∫

S

|f(ζ)|p dσ.

Proof. We assume that n > 1. For f ∈ Lp(S, dσ) , define the operator T by
the formula

Tf = D̃(F ).

Inequality (9) can be written in the form

‖Tf‖p ≤ C‖f‖p, 2 ≤ p ≤ ∞,

where the norm ‖Tf‖p is taken with respect to the measure (1 − |z|2)−1 dv(z) .
In view of the Riesz–Thorin theorem it is enough to show that T is both of type
(2, 2) and of type (∞,∞) . Since F is an M -harmonic function in B (see [R,
p. 49]) Lemma 3.2 in [CC] and (4) give

(10)
∆̃|F |2 = 4(1 − |z|2)(|∇F |2 − |RF |2 + |∇F |2 − |RF |2)

= 4(|∇̃F |2 + |∇̃F |2) = 8|D̃F |2.

By Theorem A in [CC]

∫

B

G∆̃|F |2 dτ = (n + 1)2
∫

S

|f − F (0)|2 dσ ≤ 4(n + 1)2
∫

S

|f |2 dσ

where

G(z) =
n + 1

2n

∫ 1

|z|

r−2n+1(1 − r)n−1 dr.
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From (10) and Lemma 1 in [OYZ]

∫

B

|D̃F (z)|2(1 − |z|2)−1 dv(z) =
1

8

∫

B

∆̃|F (z)|2(1 − |z|2)−1 dv(z)

≤ C1

∫

B

|∇̃F (z)|2G(z) dτ(z)

≤ C2

∫

S

|f(ζ)| dσ(ζ),

which proves that T is of type (2, 2).
Let

P (z, ζ) =
(1 − |z|2)n

|1 − 〈z, ζ〉|2n

denote the Poisson kernel. To prove that T is of type (∞,∞) it is enough to show
that

(11)

∫

S

|D̃P (z, ζ)| dσ(ζ) ≤ C < ∞.

Notice first that since P (z, ζ) =P (z, ζ)

(12) |D̃P (z, ζ)| = |∇̃P (z, ζ)|.

To calculate |∇̃P (z, ζ)| we will use formula (4). We have

∇P (z, ζ) = −n

(
(1 − |z|2)n−1

|1 − 〈z, ζ〉|2n
z̄ −

(1 − |z|2)n(1 − 〈z, ζ〉 )

|1 − 〈z, ζ〉|2n+2
ζ̄

)

and

Pz̄∇P (z, ζ) = −n

(
(1 − |z|2)n−1

|1 − 〈z, ζ〉|2n
−

(1 − |z|2)n(1 − 〈z, ζ〉 )〈ζ̄, z̄〉

|z|2|1 − 〈z, ζ〉|2n+2

)
z̄,

Qz̄∇P (z, ζ) = −n
(1 − |z|2)n(1 − 〈z, ζ〉 )(|z|2ζ̄ − 〈ζ̄, z̄〉z̄)

|z|2|1 − 〈z, ζ〉|2n+2

Hence

|∇̃P (z, ζ)| ≤ (1 − |z|2)|Pz̄∇P (z, ζ)| + (1 − |z|2)1/2|Qz̄∇P (z, ζ)|

≤ n

(
(1 − |z|2)n

|1 − 〈z, ζ〉|2n
+

(1 − |z|2)n+1

|1 − 〈z, ζ〉|2n+1
+

(1 − |z|2)n+(1/2)

|1 − 〈z, ζ〉|2n+(1/2)

)
.

Now, Proposition 1.4.10. in [R, p. 17] and [12] imply [11].
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If 1 ≤ p < ∞ , then Hp is the space of the Poisson integrals of Lp functions
that are holomorphic on B (see e.g. [R, pp. 87–88]). Therefore, Lemma 3 implies
immediately the following

Corollary. If f ∈ Hp , 2 ≤ p < ∞ , then

∫

B

|∇̃f(z)|p(1 − |z|2)−1 dv(z) < ∞,(a)

∫

B

|∇f(z)|p(1 − |z|2)p−1 dv(z) < ∞.(b)

Proof of Theorem 4. The theorem follows from the corollary and from the
following characterization of BMOA functions [O1]. For f ∈ H2 and for any p ,
0 < p < ∞

f ∈ BMOA if and only if sup
a∈B

‖f ◦ ϕa − f(a)‖Hp < ∞.

Moreover, the change of variables gives

f ∈ BMOA if and only if

sup
a∈B

∫

B

|∇̃(f ◦ ϕa)(z)|p(1 − |z|2)−1 dv(z)

= sup
a∈B

∫

B

|∇̃f(z)|p(1 − |z|2)−1 (1 − |a|2)n

|1 − 〈z, a〉|2n
dv(z) < ∞.

In view of Lemma 4.1 in [CC] the last condition means that |∇̃f(z)|p(1−|z|2)−1 dv(z)
is a Carleson measure and (a) is proved. But (a) implies (b) since, by (4),

|∇f(z)|(1 − |z|2) ≤ |∇̃f(z)| .

Remark 2. As in the case n = 1 (see [S]) condition (a) (or (b)) of Theorem 4
with some p , 0 < p ≤ 2, is sufficient for f ∈BMOA. To prove this show first that
if 0 < p ≤ 2 then

‖f‖p
Hp ≤ C

(
|f(0)|p +

∫

B

|∇f(z)|p(1 − |z|)p−1 dv(z)

)

≤ C

(
|f(0)|p +

∫

B

|∇̃f(z)|p(1 − |z|)−1 dv(z)

)

and next proceed as in the proof of Theorem 4.
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[J] Jevtič, M.: A note on the Carleson measure characterization of BMOA functions on the
unit ball. - Complex Variables Theory Appl. 17, 1992, 189–194.

[LP] Littlewood, J.E., and R.E.A.C. Paley: Theorems on Fourier series and power series
(II). - Proc. London Math. Soc. (2) 42, 1937, 52–89.

[M] Miao, J.: A property of analytic functions with Hadamard gaps. - Bull. Austral. Math.
Soc. 45, 1992, 105–112.

[O1] Ouyang, C.H.: Some classes of functions with exponential decay in the unit ball of Cn .
- Publ. Res. Inst. Math. Sci. 25, 1989, 263–277.

[O2] Ouyang, C.H.: An extension theorem for Bloch functions in the unit ball. - Acta Math.
Sci. 10, 1990, 455–461 (Chinese).

[OYZ] Ouyang, C., W. Yang, and R. Zhao: Characterizations of Bergman spaces and Bloch
space in the unit ball of Cn . - Trans. Amer. Math. Soc. 374, 1995, 4301–4312.

[R] Rudin, W.: Function Theory in the Unit Ball of Cn . - Springer-Verlag, 1980.

[Shi] Shi Ji-Huai: Inequalities for the integral means of holomorphic functions and their deriva-
tives in the unit ball of Cn . - Trans. Amer. Math. Soc. 328, 1991, 619–637.

[S] Stroethoff, K.: On Besov-type characterizations for the Bloch space. - Bull. Austral.
Math. Soc. 39, 1989, 405–420.

[T] Timoney, R.M.: Bloch functions in several complex variables. - Bull. London Math. Soc.
12, 1980, 241–267.

[Z] Zygmund, A.: Trigonometric Series, Vol. II. - Cambridge University Press, 1959.

Received 7 January 1997


