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Abstract. We consider quasiconformal selfmappings f of the disk with given boundary
values. For fixed z0 the set of image points {f0(z0)} for all extremal mappings f0 is called the
variability set V [z0] of z0 . Extremal mappings fm which take z0 into points wm /∈ V [z0] are called
point shift mappings. They are Teichmüller mappings associated with quadratic differentials ϕm of
norm ‖ϕm‖ = 1, called point shift differentials. It is shown that the ϕm form Hamilton sequences
for the extremal mappings which take z0 into boundary points of V [z0] . From that it follows,
using the frame mapping criterion, that the ϕm depend continuously in norm of the point wm .
Their constant dilatation K[wm] is called the dilatation function. Based on a variational method
for point shift mappings, it is shown that the level lines of K[wm] are Jordan curves separating
V [z0] from ∂Dw . Thus, V [z0] is a compact, connected set without holes.

1. Introduction

1. A holomorphic quadratic differential ϕ(z) dz2 induces a conformally in-
variant metric |ϕ(z)|1/2 |dz| . It is Euclidean in the neighborhood of the non critical
points of ϕ (the critical points are the zeroes and poles): if we apply the conformal
mapping

(1) ζ = Φ(z) =

∫ z √
ϕ(z) dz

we find dζ2 = ϕ(z) dz2 , which is the Euclidean line element in the ζ -plane. This
metric and its geodesics (for details see [12]) lead to certain inequalities which
constitute a fundamental tool in the theory of extremal quasiconformal mappings.

2. The first of these inequalities is the so-called Main Inequality (see [6] for
the disk, and [11] for arbitrary Riemann surfaces).

Let w = f(z) and w̃ = f̃(z) be quasiconformal mappings of the unit disk Dz

onto Dw which agree on the boundary of Dz . Let dw = p(z) dz + q(z) dz̄ be the
differential of f , κ = q/p its complex dilatation and K its maximal dilatation.
The inverse of f̃ is denoted by f1 = f̃−1 , its complex dilatation by κ1 . Of
course, its maximal dilatation K1 is equal to the maximal dilatation K̃ of f̃ . The
combination f1 ◦ f = f̃−1 ◦ f is a qc selfmapping of Dz which is equal to the
identity on ∂Dz .
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Let now ϕ 6≡ 0 be any holomorphic quadratic differential in Dz of norm
‖ϕ‖ =

∫∫
|ϕ(z)| dx dy = 1. It serves as a test quantity. Let α be any non critical

trajectory of ϕ . It has two different end points on ∂Dz , and the curve α̃ = f1◦f(α)
has the same end points as α . Since α is a geodesic, we have the length inequality,
in terms of the ϕ-metric, |α̃|ϕ ≥ |α|ϕ . Using the conformal parameter Φ along
the trajectories of ϕ this length inequality can be integrated over the whole disk
Dz , which leads to the “Main Inequality”

(2) 1 ≤

∫∫
|ϕ(z)|

∣∣1 − κ(ϕ/|ϕ|)
∣∣2

1 − |κ|2
{· · ·} dx dy,

with

(3) {· · ·} =

∣∣∣∣1 − κ1

p

p

ϕ

|ϕ|

1 − κ(ϕ/|ϕ|)

1 − κ(ϕ/|ϕ|)

∣∣∣∣
2

1 − |κ1|2

(see [6], ineq. 1.5.1, and [11] for Riemann surfaces; the method first appears in [8].)

The term (3) in brackets has the upper bound K1 = K̃ . If we set f̃ = f0 ,
where f0 is an extremal quasiconformal mapping for the given boundary values,
i.e. one with smallest maximal dilatation K0 , we have {· · ·} ≤ K0 . This turns (2)
into the simpler form

(4)
1

K0

≤

∫∫
|ϕ(z)|

∣∣1 − κ(ϕ/|ϕ|)
∣∣2

1 − |κ|2
dx dy,

which we call the reduced form of the Main Inequality. Its contents is the following:
Let f be a qc selfmapping of D and let K0 be the smallest maximal dilatation
in the class of all qc selfmappings of D with the boundary values of f . Then, for
every holomorphic quadratic differential ϕ of norm one in D we have (4). (See
[6], and [11] for Riemann surfaces.)

3. The holomorphic quadratic differentials of finite norm give rise to a very
interesting necessary and sufficient condition for the complex dilatation κ of a qc
mapping to be extremal. It reads as follows: Let κ be the complex dilatation of a
qc mapping f . Then, f is extremal for its boundary values (and in its homotopy
class) if and only if

(5) sup
‖ϕ‖=1

Re

∫∫
κϕdx dy = ‖κ‖∞.

The necessity was shown by R.S. Hamilton [1] and simultaneously (for complex
dilatations of constant absolute value) by S. Krushkal [2]. The sufficiency is a
consequence of the reduced form (4) of the main inequality and was shown, for
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selfmappings of the disk, by E. Reich and K. Strebel [6] and, for the general case,
by K. Strebel [11].

A sequence of holomorphic quadratic differentials ϕn of norm one such that

(6) Re

∫∫
κϕn dx dy → ‖κ‖∞

is called a Hamilton sequence. If there exists such a sequence which converges to
a quadratic differential ϕ in the sense that ‖ϕn − ϕ‖ → 0, it is easily seen that

(7) κ = k
ϕ

|ϕ|
.

This is the complex dilatation of a Teichmüller mapping. The crucial situation
is when there is no such sequence, i.e. every Hamilton sequence for κ converges
locally uniformly to zero (what we call a “degenerating Hamilton sequence”).

The Main Inequality provides a criterion to the effect that there is no degen-
erating Hamilton sequence for κ . It is called the Frame Mapping Criterion ([9],
[10]) and reads as follows (we only formulate it for the disk here, but it is true in
full generality): Let K0 be the smallest maximal dilatation for all qc selfmappings
of D with a given quasisymmetric boundary homeomorphism h . Assume that h
can be continued quasiconformally into a neighborhood of ∂D with a maximal
dilatation H < K0 . Then, κ does not admit a degenerating Hamilton sequence
and thus has the Teichmüller form κ = kϕ/|ϕ| , ‖ϕ‖ = 1. Moreover, every Hamil-
ton sequence (ϕn) for κ tends in norm to ϕ ([10], Theorem 1). According to an
earlier theorem (originally in [7], with a new proof in [6]) the mapping f is then
uniquely extremal.

4. The existence of a Hamilton sequence (ϕn) for every extremal κ was
proved by R. Hamilton in an abstract way. It is however possible, for the disk,
to give Hamilton sequences in a more concrete manner, namely as differentials of
certain Teichmüller mappings.

For a given extremal mapping f with complex dilatation κ pick a finite set
of boundary points ζi , i = 1, . . . , n . The disk D together with these points is
called a polygon Πn with vertices ζi . According to Teichmüller’s theorem there is
a unique extremal selfmapping of D which takes the vertices ζi into their images
by f , ζ ′i = f(ζi) . It is a Teichmüller mapping associated with a holomorphic
quadratic differential ϕ , ‖ϕ‖ = 1, which is real along the sides of the polygon, i.e.
ϕ(z) dz2 real for tangential dz between the vertices. (The vertices themselves are
at worst first order poles.)

Call the ϕ “polygon differentials”. One can show that, if the vertices of the
polygons Πn become more and more dense, the associated polygon differentials
form a Hamilton sequence for κ ([6], Theorem 6).
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5. The basis of this article is a new kind of Hamilton sequences, namely
point shift differentials. They were introduced in ([10], Theorem 7). Pick a point
z0 ∈ D . Consider again the qc selfmappings f of D with boundary values h .
The set of image points of z0 by the extremal mappings f0 is called the set of
variability of z0 and denoted by V [z0] (see [10], p. 479). Of course, if h has a
unique extremal solution, V [z0] consists of a single point for every z0 ∈ D . In
general it is a compact subset of D . Choose wn /∈ V [z0] . Then, the extremal qc
mapping fn with boundary values h on ∂D and taking z0 into wn is a Teich-
müller mapping associated with a quadratic differential ϕn of norm one which has
a first order pole at z0 . (This is an immediate consequence of the frame mapping
criterion.) ϕn is called a point shift differential, fn a point shift mapping.

Let now w0 be a boundary point of V [z0] , and let f0(z0) = w0 . It will be
shown that for wn → w0 the point shift differentials ϕn form a Hamilton sequence
for the complex dilatation κ0 of f0 .

It should be noticed that the polygon differentials provide Hamilton sequences
for every extremal mapping, i.e. also for extremal mappings which take z0 into
an interior point of V [z0] . This is not so for point shift differentials, because
they only exist if the shifted point wn is outside V [z0] . In the case of unique
extremality this is of course no restriction. The obvious advantage of the point
shift differentials is the fact that they only depend on one complex parameter,
namely the shifted point wn . On the other hand the polygon differentials depend
on an increasing number of parameters, namely the vertices of the polygons. This
makes them geometrically extremely hard to control.

Clearly, point shift differentials exist in the most general case, in the same
generality as the frame mapping criterion.

6. The simplest but quite formal definition of a Teichmüller mapping is by its
complex dilatation, which is κ = kϕ/|ϕ| , 0 < k < 1, where ϕ is a meromorphic
quadratic differential. For our purposes it is however necessary to express this in
geometric terms. It is done here for the disk (see [8]), but most generally true for
arbitrary Riemann surfaces.

U
f

V

U∗ V 
∗

Φ

FK

Figure 1.

Let f : Dz → Dw be a qc mapping with complex dilatation (7). Pick a
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neighborhood U ⊂ Dz such that ϕ is holomorphic in U without zeroes (Figure 1).
Let

(8) ζ = ξ + iη = Φ(z) =

∫ z √
ϕ(z) dz

in U . By restriction of U , if necessary, we may assume that Φ is schlicht in U . Set
U∗ = Φ(U) and let FK be the horizontal stretching of U∗ by K = (1+k)/(1−k) .
We have

(9) ζ∗ = FK(ζ) = Kξ+ iη = 1

2
(K + 1)ζ + 1

2
(K − 1)ζ̄ = 1

2
(K +1)

(
Φ(z) + kΦ(z)

)
.

From this expression follows that the complex dilatation of the composition FK ◦Φ
is given by (7). Therefore the mappings f and FK ◦Φ are related by a conformal
mapping Ψ: V = f(U) → V ∗ = FK(U∗) such that

(10) Ψ ◦ f = FK ◦ Φ.

It is easy to see that ψ = Ψ′2 is single valued in Dw . It is the well defined
quadratic differential which is associated to ϕ . We realize that the horizontal and
the vertical trajectories of ϕ through a point z ∈ U go into the horizontal and
vertical trajectories of ψ through w = f(z) respectively. Horizontal lengths are
stretched by K , vertical lengths are preserved.

We will call ϕ and ψ the quadratic differentials associated with the Teich-
müller mapping f . Clearly, if ‖ϕ‖ = 1, ‖ψ‖ = K .

II Point shift differentials

7. Let T [w1, w2] be the extremal qc selfmapping of the unit disk D which
takes w1 into w2 and is equal to the identity on ∂D . The Frame Mapping Crite-
rion assures that it is a Teichmüller mapping associated with a pair of quadratic
differentials ϕ and ψ of finite norm. ϕ has a first order pole at w1 , ψ has one at
w2 , and if we set ‖ϕ‖ = 1 and use the horizontal stretching version for Teichmül-
ler mappings (as we always do) we have ‖ψ‖ = KT where KT is the dilatation
of T . The mapping T is conjugate, by a Möbius transformation of the disk, to
the mapping in Teichmüller’s “Verschiebungssatz”, where w1 = 0 and w2 = −̺ .
It is not hard to see that KT → 1 for w2 → w1 . Because of this connection we
call T [w1, w2] the Teichmüller shift.

8. Denote the unit disks of the z - and the w -plane by Dz and Dw respec-
tively. Let h be a fixed quasisymmetric mapping of ∂Dz onto ∂Dw . Choose a
fixed point z0 ∈ Dz and, for w ∈ Dw , let f be an extremal qc mapping of Dz

onto Dw which is equal to h on ∂Dz and takes z0 into w . Let K be its maximal
dilatation.
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Theorem 1. The maximal dilatation K is, for fixed z0 , a continuous function

of w which tends to infinity for |w| → 1 . It is called the dilatation function and

denoted by K[w] .

Proof. To prove the first statement, choose w̃ 6= w and let K̃ be the maximal
dilatation of an extremal mapping f̃ , f̃(z0) = w̃ , f̃ | ∂Dz = h . The composition
T [w, w̃]◦f takes z0 into w̃ and has therefore a maximal dilatation which is at least

equal to K̃ . On the other hand it is smaller or equal to KT ·K , thus KT ·K ≥ K̃ ,
which gives

lim
w̃→w

K̃ ≤ K.

On the other hand, since f is extremal,

lim
w̃→w

K̃ ≥ K,

which gives
lim
w̃→w

K̃ = K,

as claimed.
To prove the second statement, let wn → ω ∈ ∂Dw . Let ζ = h−1(ω) and

choose two disjoint closed intervals δ1 and δ2 on ∂Dz none of which contains the
point ζ . The set of cross cuts γ joining δ1 to δ2 in Dz and separating z0 from ζ
goes over by fn into a set of curves γ′ connecting δ′

1
= h(δ1) and δ′

2
= h(δ2) and

separating wn from ω . Here, fn is an extremal mapping, with maximal dilatation
Kn , taking z0 into wn . We have the extremal length inequality λ{γ′} ≤ Knλ{γ} ,
and since the left hand side evidently tends to infinity, we find Kn → ∞ , as
claimed.

Corollary. The set of variability of z0 ,

V [z0] = {w = f(z0) ; f extremal for the boundary values h}

is compact.

This is so because all the extremal mappings f0 for all points w0 ∈ V [z0]
have the same maximal dilatation K0 . Therefore V [z0] is bounded away from
∂Dw , and because of the continuity of the maximal dilatation it contains all its
accumulation points.

9. Let wn be a point of Dw outside the variablity set V [z0] . Then, any
extremal qc mapping fn of Dz onto Dw with the boundary values h and fn(z0) =
wn has a maximal dilatation Kn > K0 , K0 being the smallest maximal dilatation
without the additional condition that z0 → wn . We can therefore use any extremal
mapping f0 near ∂Dz as a frame mapping (near z0 we just use the translation
z0 → wn , which is of course conformal). The frame mapping condition applied
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to the punctured disks tells us that fn is a Teichmüller mapping associated with
a quadratic differential ϕn of finite norm (‖ϕn‖ = 1, say). ϕn has a first order
pole at z0 and is otherwise holomorphic (without the pole, fn would be uniquely
extremal for its boundary values fn | ∂Dz = h , see [8] and [6]). We call fn a point
shift mapping and ϕn the associated point shift differential (see [10], p. 479).

The next result is basic for the whole paper.

10.

Theorem 2. Let w0 be a boundary point of the variablity set V [z0] , and

let f0 , with complex dilatation κ0 and maximal dilatation K0 be an extremal qc

mapping which takes z0 into w0 (for brevity, we call such a mapping a “boundary

element”, see also [5], p. 290). Let wn ∈ Dw \ V [z0] , and let fn , ϕn and Kn be

as in Section 9 . Then, for wn → w0 the sequence (ϕn) is a Hamilton sequence

for the complex dilatation κ0 of f0 , i.e. Re
∫∫

κ0ϕn dx dy → k0 = ‖κ0‖∞ .

Proof. Let Tn ≡ T [w0, wn] be the Teichmüller shift which takes w0 into wn .
Let f̃n = Tn ◦ f0 . This is a qc mapping of Dz onto Dw , with the same boundary
values as fn , sending z0 into wn , and with a maximal dilatation K̃n which tends
to K0 for wn → w0 .

Consider a regular trajectory αn of ϕn , i.e. one which does not go to a
zero or the simple pole of ϕn . It connects two different boundary points of the
disk Dz . The image α′

n of αn by fn is a well defined regular trajectory of the
image differential ψn connecting the images of the end points of αn . Let α̃n be the
image of αn by f̃n ; it has the same end points as α′

n . Since fn(z0) = f̃n(z0) = wn ,
the two mappings fn and f̃n are homotopic in Dw \ {wn} modulo the boundary.
Therefore αn and α̃n are in the same homotopy class in Dw \ {wn} and thus
satisfy the length inequality with respect to the ψn -metric, namely

(11) |α̃n|ψn
≥ |α′

n|ψn
= Kn|αn|ϕn

.

This inequality can now be integrated over the disk Dz (see [8], or [6] p. 384–385
for polygon differentials).

The image of αn by ζ = Φn(z) is an open horizontal interval α∗
n in the

ζ = ξ + iη -plane. We have, with w̃n = f̃n(z) ,

(12) Kn|αn|ϕn
= Kn

∫

α∗

n

dξ ≤

∫

α̃n

|dΨn(w̃n)| =

∫

α̃n

∣∣∣∣
dΨn(w̃n)

dw̃n

∣∣∣∣ |dw̃n|.

With the notations dw̃n = p̃n(z) dz + q̃n(z) dz̄ , dζ = Φ′
n(z) dz , we find along α∗

n

(13) dw̃n =

{
p̃n(z)

1

Φ′
n(z)

+q̃n(z)
1

Φ′
n(z)

}
dξ =

1

Φ′
n(z)

{
p̃n(z)+q̃n(z)

ϕn(z)

|ϕn(z)|

}
dξ.

We put this expression into the equation (12) and integrate it over a short ver-
tical interval in the ζ = ξ + iη -plane. The domain of integration is a (Eu-
clidean) horizontal strip Σ in the ζ -plane. Going back to the z -plane with
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dξ dη = |Φ′
n(z)|

2 dx dy = |ϕn(z)| dx dy the domain of integration is a strip S
swept out by horizontal trajectories of ϕn . Finally, summing up over a denumer-
able set of such strips forming an exhaustion of Dz (up to a set of measure zero)
we get

(14) Kn‖ϕn‖ ≤

∫∫

|z|<1

|ψn(w̃n)|
1/2|ϕn(z)|

1/2

∣∣∣∣p̃n(z) + q̃n(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣ dx dy.

Before we apply the Schwarz inequality to this expression we insert the square
root of the functional determinant

(15) J(w̃n | z) = |p̃n(z)|
2 − |q̃n(z)|

2

and thus have

(16) Kn‖ϕn‖ ≤

∫∫

|z|<1

|ψn(w̃n)|1/2J(w̃n | z)1/2
|ϕn|

1/2
∣∣p̃n + q̃n(ϕn/|ϕn|)

∣∣
J(w̃n | z)1/2

dx dy.

Finally, the Schwarz inequality yields
(17)

K2

n‖ϕn‖
2 ≤

∫∫

|z|<1

|ψn(w̃n)|J(w̃n | z) dx dy·

∫∫

|z|<1

|ϕn|

∣∣1 + κ̃n(ϕn/|ϕn|)
∣∣2

1 − |κ̃n|2
dx dy,

with κ̃n = q̃n(z)/p̃n(z) the complex dilatation of f̃n .
Taking into account that

(18)

∫∫

|z|<1

|ψn(w̃n)|J(w̃n | z) dx dy = ‖ψn‖ = Kn‖ϕn‖

and normalizing ‖ϕn‖ = 1 we get

(19) Kn ≤

∫∫

|z|<1

|ϕn(z)|

∣∣1 + κ̃n(z)(ϕn(z)/|ϕn(z)|)
∣∣2

1 − |κ̃n(z)|2
dx dy.

We call this the “point shift inequality”. It resembles very much the “polygon
inequality” (see [6], p. 385).

11. To evaluate the point shift inequality, we write

(20)

∣∣∣∣1 + κ̃n
ϕn
|ϕn|

∣∣∣∣
2

= (1 + |κ̃n|)
2 − 2

{
|κ̃n| − Re κ̃n

ϕn
|ϕn|

}
.

Since

(21)
1 + |κ̃n|

1 − |κ̃n|
≤

1 + k̃n

1 − k̃n
= K̃n a.e.
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the point shift inequality (19) gives

(22)

Kn ≤

∫∫

|z|<1

|ϕn(z)|
1 + |κ̃n|

1 − |κ̃n|
dx dy − 2

∫∫

|z|<1

|κ̃n| |ϕn| − Re κ̃nϕn
1 − |κ̃n|2

dx dy

≤

∫∫

|z|<1

|ϕn|
1 + |κ̃n|

1 − |κ̃n|
dx dy ≤ K̃n.

Let now wn → w0 ∈ ∂V [z0] . Then, because of the continuity of K[wn] and since

K[w0] = K0 we have Kn → K0 . On the other hand, we have K̃n ≤ KTn
·K0 and

thus
lim

wn→w0

K̃n ≤ K0.

From (22) we conclude that K̃n → K0 for wn → w0 .
Another use of (22) shows that for wn → w0

(23)

∫∫

|z|<1

|ϕn(z)|
1 + |κ̃n|

1 − |κ̃n|
dx dy → K0

and

(24)

∫∫

|z|<1

|κ̃n| |ϕn| − Re κ̃nϕn
1 − |κ̃n|2

dx dy → 0.

Therefore necessarily

(25)

∫∫

|z|<1

{
|κ̃n| |ϕn| − Re κ̃nϕn

}
dx dy → 0.

The quantity κ̃n is the complex dilatation of the composition f̃n = Tn ◦ f0 , with
Tn = T [w0, wn] . Denote the complex dilatation of Tn by κTn

; since it is a Teich-
müller mapping, its absolute value is constant, |κTn

| = kTn
. The formula for the

complex dilatation of the composition gives

(26) κ̃n =
κ0 + κTn

τ0
1 + κTn

κ0τ0
, τ0 =

p
0

p0

,

(the differential of the extremal mapping w = f0(z) is dw = p0(z) dz + q0(z) dz̄ ).
From this is follows that

(27) κ̃n − κ0 = κTn

τ0{1 − |κ0|
2}

1 + κTn
κ0τ0

.

Since |κTn
(z)| ≡ kTn

→ 0, |κ0(z)| ≤ k0 < 1 and |τ0| = 1 we conclude that

(28)
∣∣ |κ̃n| − |κ0|

∣∣ ≤ |κ̃n − κ0| ≤ kTn

1

1 − kTn
k0

→ 0
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uniformly in z with n→ ∞ . We can therefore replace κ̃n by κ0 in relations (23)
and (25) and get

(23 ′ )

∫∫

|z|<1

|ϕn(z)|
1 + |κ0(z)|

1 − |κ0(z)|
dx dy → K0

and

(25 ′ )

∫∫

|z|<1

{
|κ0(z)| |ϕn(z)| − Re κ0(z)ϕn(z)

}
dx dy → 0

for wn → w0 .
If |κ0(z)| = k0 a.e., relation (25 ′ ) gives

(29) Re

∫∫
κ0(z)ϕn(z) dx dy → k0,

which is the Hamilton relation (6) for κ0 .
If, however, |κ0(z)| is not equal to k0 a.e., it follows from relation (23 ′ ) that∫∫

E
|ϕn(z)| dx dy → 0 on every measurable set E on which |κ0(z)| ≤ k0 − ε , for

every ε > 0. Since the ϕn are analytic and the sequence (ϕn) is locally bounded
in Dz , it must be degenerating. Writing

(30)

∫∫

|z|<1

|κ0(z)| |ϕn(z)| dx dy =

∫∫

E

+

∫∫

Dz\E

and considering that on Dz \ E we have k0 − ε < |κ0(z)| ≤ k0 we get

∫∫

|z|<1

|κ0(z)| |ϕn(z)| dx dy → k0

as before. (25 ′ ) thus leads to (29) again, which proves the Theorem.

12. Summing up, we have considered the following situation. The qc mapping
f0 has the boundary values h on ∂Dz and takes z0 into w0 . Its maximal dilata-
tion is K0 , and it is extremal for the above data. Moreover there is a sequence of
points wn ∈ Dz , wn → w0 , such that the corresponding extremal mappings fn ,
fn(z0) = wn , are Teichmüller mappings associated with quadratic differentials ϕn
of norm one. The ϕn are defined and holomorphic in Dz \{z0} . They have a first
order pole at z0 , because otherwise the mapping fn would be uniquely extremal
for its boundary values on ∂Dz , without any further condition. Then, we have
shown that these ϕn form a Hamilton sequence for the complex dilatation κ0

of f0 .
Let us now consider a point wm in Dw outside the variability set V [z0] . The

mapping fm: z0 → wm , with boundary values h on ∂Dz is a uniquely extremal
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Teichmüller mapping with a (constant) dilatation Km > K0 . Let wn → wm .
Then, the mappings fn , fn(z0) = wn , tend to fm uniformly in Dz (because fm
is uniquely extremal) and the associated normalized quadratic differentials ϕn , all
defined and holomorphic in Dz \ {z0} , form a Hamilton sequence for the complex
dilatation κm = km(ϕm/|ϕm|) of fm . But now the frame mapping criterion says:
there is no degenerating Hamilton sequence for κm (as a frame mapping we can
use any extremal mapping f0 near ∂Dz and the translation z → wm + z − z0
near z0 , since Km > K0 ). Therefore the ϕn tend to ϕm in norm. We thus have
proved the

Theorem 3. Let wm ∈ Dz \V [z0] , and let wn → wm . Then, the normalized

point shift differentials ϕn tend in norm to the Teichmüller differential ϕm of fm ,

i.e. ‖ϕn − ϕm‖ → 0 .

13. Actually, every Teichmüller mapping is associated with a pair of quadratic
differentials, ϕ on the original domain and ψ on the image domain, and the map-
ping sends the trajectories and orthogonal trajectories of ϕ into the trajectories
and orthogonal trajectories respectively of ψ . We have seen, that, for wn → wm ,
ϕn → ϕm in norm, and hence, because of analyticity, locally uniformly; we will
need the analogue for the ψn .

To fix the ideas, take, for a given wm , a closed, regular ϕm -rectangle Sm and
the corresponding ψm -rectangle S′

m . Sm is bounded by two opposite horizontal
and two opposite vertical intervals, and there are no zeroes of ϕm on Sm . The
same holds for S′

m with respect to ψm . ζ = Φm(z) , ζ∗ = Ψm(w) take Sm
and S′

m into horizontal Euclidean rectangles Rm , R′
m respectively. By a proper

choice of the additive constants we can achieve that ζ = ζ∗ = 0 in the lower left
corners of the rectangles. We express everything in terms of these parameters ζ
and ζ∗ respectively. Since dζ2 = ϕm(z) dz2 , we have ϕm(ζ) ≡ 1, and analogously
ψm(ζ∗) ≡ 1. Moreover, Φm(ζ) ≡ ζ , Ψm(ζ∗) ≡ ζ∗ , and the Teichmüller mapping
fm is

ζ∗ = fm(ζ) = Kmξ + iη ≡ FKm
(ζ), ζ = ξ + iη.

FKm
denotes the horizontal stretching of Rm onto R′

m by Km .
We have seen, in the preceding section, that, with wn → wm and the normal-

ization ‖ϕn‖ = ‖ϕm‖ = 1, we have ‖ϕn − ϕm‖ → 0. In terms of the parameter
ζ we therefore have ϕn(ζ) → 1 uniformly in Rm . Therefore Φn(ζ) → ζ , also
uniformly in Rm , and clearly fn(ζ) → fm(ζ) , also uniformly.

The mapping fn has the representation, locally

fn = Ψ−1

n ◦ FKn
◦ Φn,

and thus
Ψn(ζ∗) = FKn

(
Φn

(
f−1

n (ζ∗)
))
.

Taking into account that, with wn → wm , f−1

n (ζ∗) → ζ , Φn(ζ) → ζ , Kn → Km ,
hence FKn

(ζ) → ζ∗ uniformly, we find

Ψn(ζ∗) → ζ∗
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uniformly in R′
m . This gives, because of the analyticity, ψn(ζ

∗) → 1 uniformly
in R′

m .

The natural normalization of the ψ -differentials is, according to the Euclidean
geometry of the Ψ-planes and the horizontal stretching by the dilatation K ,
‖ψm‖ = Km , ‖ψn‖ = Kn . With this we have, in any finite collection B =

⋃
j S

j
m

of ψm -rectangles,

‖ψn − ψm‖B → 0.

On the other hand we can clearly approximate Dw , for any positive ε , by a
finite system B of non-overlapping ψm rectangles, such that ‖ψm‖Dw\B < ε and
‖ψn‖Dw\B < ε for all wn which are lying sufficiently close to wm . This gives the
result ‖ψn − ψm‖ → 0. We have proved the following

Theorem 4. Let wm /∈ V [z0] , wn → wm , and let fn , fm be a corresponding

point shift mappings. Let ψn , ψm be the image differentials of the ϕn , ϕm in

the normalization ‖ψn‖ = Kn , ‖ψm‖ = Km . Then, ‖ψn − ψm‖ → 0 .

We can interpret that as continuity of the ψn with respect to the norm topol-
ogy. By the mean value theorem we get ψn → ψm locally uniformly in Dw\{wm} .

III A method of variation for point shift mappings

14. The quadratic differential

(31) ϕ(z) dz2 =
1

z
dz2

is basic in the following considerations. Its regular (horizontal) trajectories are
the parabolas with focus z0 = 0 and with vertex on the negative real axis: this is
geometrically evident, since the field of line element (1/z) dz2 > 0, i.e. arg dz =
1

2
arg z (mod π) , is equal to the field of tangential elements of the parabolas. The

only critical trajectory is the positive real half line. The vertical trajectories are
the orthogonal parabolas and the negative real half line. Clearly, the field of line
elements as well as the trajectories and orthogonal trajectories are invariant with
respect to homotheties with center z0 .
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Figure 2.

Let α be one of the parabolas. The interior of it is denoted by Πα = Π. It
is mapped by ζ = Φ(z) =

∫ √
ϕ(z) dz = 2z1/2 onto a horizontal parallel half strip

(Figure 2). The interval between the vertex z1 and the focus z0 is opened up
into a vertical interval with center ζ0 = 0 = Φ(0), whereas the two branches of
α go over into the two horizontal half lines which bound the strip. This again is
geometrically evident because the tangential elements of the parabolas are turned
into horizontal position by Φ. A Teichmüller mapping f of Πα associated with
the quadratic differential ϕ and any constant dilatation K > 1 is represented by
the horizontal stretching ζ = ξ + iη → Kξ + iη of the half strip. It is therefore a
self-mapping of Πα with fixed point z0 . Actually all the points of the horizontal
interval [z1, z0] are fixed points of f . Each trajectory of ϕ is mapped onto itself,
whereas every vertical trajectory is transformed into another one, further away
from z0 .

15. Let S be a segment of the parabola domain Πα , bounded by a symmetric
interval of α and a symmetric interval of an orthogonal parabola β . For short,
we call these intervals α and β again. Let us denote the restriction of f to
S by f0 , its dilatation by K0 . S′ = f0(S) is a segment of the same parabola
domain Πα . In the ζ -plane the corresponding quantities are rectangles R and
R′ and a horizontal stretching of R onto R′ by K0 (Figure 2). The mapping
f0: S → S′ is uniquely extremal for its boundary values on ∂S and with z0 as
fixed point. This follows from the fact that it is a Teichmüller mapping associated
with a holomorphic quadratic differential of finite norm, namely the restriction of
ϕ to S \ {z0} .
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We now look at the extremal mapping f̃0: S → S′ with the boundary values
of f0 but without the assumption that z0 be fixed. The boundary dilatation
of f0 on ∂S is determined by the local boundary dilatation at the two points
z2 and z3 on ∂S , because f0 is analytic on the boundary intervals in-between
these two points. However, at these two points the local boundary dilatation is
smaller than K0 (see [7]). Therefore, H < K0 (see [10], p. 475). If the maximal

dilatation K̃0 of f̃0 were known to be greater than H , an application of the
frame mapping condition would tell us that f̃0 is a uniquely extremal Teichmüller
mapping associated with a holomorphic quadratic differential ϕ̃0 of finite norm.
However, the only thing which is known is K̃0 ≤ K0 . This is the reason for an
additional step in the argument.

Move the vertical interval β to the right. Then, the segment S tends to Πα .
In the ζ -plane again, this corresponds to a shift of the right hand vertical boundary
interval of R to the right. f̃0 goes over into a K̃0 -qc mapping of a half strip, equal
to the stretching by K0 on its horizontal boundaries. It is then well known (see [7])

that the maximal dilatation K̃0 tends to K0 . Therefore there is a segment S such
that K̃0 > H , and for this S the above conclusion holds. Also, because of the
unique extremality of f̃0 and the symmetry of the boundary values, the point
z̃0 = f̃0(z0) lies on the real axis. Again because of the unique extremality and

since ϕ̃ 6= ϕ , f̃0(z0) 6= z0 and K̃0 < K0 .
An extremal length argument shows that z̃0 cannot lie between z0 and the

vertex z1 of α . To this end, look at the upper half of the parabola segment S . It
is mapped by f̃0 onto the upper half of S′ . The extremal distance of the interval
(z1, z0) from the upper half of the orthogonal parabola segment β is 2a/b , a being
the length of the rectangle R and b its height. The analogous quantity in S′ is
K0 ·2a/b . Assume that z̃0 ∈ (z1, z0) . Then, the extremal distance of (z1, z̃0) from

the upper half of β′ is > K02a/b . On the other hand, since f̃0 is K̃0 -qc, it is

≤ K̃02a/b which is smaller than K02a/b , a contradiction.

16. Next, we claim that for all points z̃ ∈ (z0, z̃0) on the real axis the extremal
mapping f̃ : z0 → z̃ , f̃ | ∂S = f0 | ∂S is a Teichmüller mapping with a dilatation

K̃ , K̃0 < K̃ < K0 . Its quadratic differential has finite norm and a first order pole
at z0 .

To this end we use a homothety with center z0 , retracting the segments S , S′

into inner parabola segments S̃ , S̃′ . The extremal mapping f̃0: S → S′ goes over
into the extremal mapping of S̃ onto S̃′ , with the boundary values of f0 on ∂S̃ .
It takes z0 into the point z̃ ∈ (z0, z̃0) which is the image of z̃0 by the homothety.

Of course, its dilatation is again K̃0 . This retracted mapping can be continued,
by the orginal mapping f0 , to a qc mapping of S onto S′ . Its dilatation is K̃0 in
S̃ and K0 in S \ S̃ , and it takes z0 into z̃0 . The extremal mapping f̃ with these

conditions must have a dilatation K̃ > K̃0 , because it is subject to the additional
condition z0 → z̃ , whereas f̃0 was free on z0 . It is therefore a uniquely extremal
Teichmüller mapping. Because of that, clearly K̃ < K0 , because the latter is the
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maximal dilatation of a competing mapping.
The construction with the homothety is possible for all z̃ ∈ (z0, z̃0) , just by

changing the homothety factor. We have thus shown the claim.
The final step is the following. The parabola segment S we were forced to

take in the first step and in which we have constructed the variations of f0 could
be quite long. However, by means of a homothety of S we can make it as small
as we want. We have thus proved the following

Parabola Lemma. Consider the quadratic differential ϕ(z) dz2 = (1/z) dz2

and a number K0 > 1 . Let f0 be the corresponding Teichmüller mapping of the

plane. Then, in any neighborhood of z0 = 0 there are parabola segments S , S′ ,

associated with ϕ , and mappings f̃ : S → S′ with maximal dilatations K̃ < K0 ,

f̃(z0) = z̃ , f̃ | ∂S = f0 | ∂S . The points z̃ fill out an interval (z0, z̃0] of positive

length δ . The extremal mappings satisfying the above boundary conditions are

actually Teichmüller mappings, the quadratic differentials of which have finite

norm and, if z̃ 6= z̃0 , a first order pole at z0 .

17. Application to the point shift mappings.

Theorem 5. Let fm: Dz → Dw be extremal for its boundary values, with

fm(z0) = wm /∈ V [z0] . Let the associated quadratic differentials be ϕm in Dz and

ψm in Dw , and let Km be the dilatation of fm . Denote the critical trajectory of

ψm emanating from wm by γm . Then, there exists a closed subinterval ∆γm of

γm with wm one of its endpoints such that for every wn ∈ ∆γm , wn 6= wm , the

point shift mapping fn , fn(z0) = wn , has a dilatation Kn < Km (Figure 3).
If the point wm varies on a compact set C ⊂ Dw , C ∩ V [z0] = ∅ , the

Euclidean length of the intervals ∆γm has a positive lower bound.

ζ0 ζ0

S* S*′

β* β*′

α*

ζ-ζ ′-plane

∼

wm

w0
γm

ψmφm

∆γm

Sm
′

Sm

z0

fm

Dz Dw

Figure 3.

Proof. We introduce the normal parameter for ϕm near z0 and for ψm
near wm . That means that we apply local conformal mappings z ↔ ζ and w ↔ ζ
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such that ϕm and ψm both have the representation, in terms of ζ , ϕm(z) dz2 =
(1/ζ) dζ2 and ψm(w) dw2 = (1/ζ) dζ2 (see [12]).

The mapping fm is locally represented in the ζ -plane, by a parabola mapping
f∗
m , taking a parabola segment S∗ into a parabola segment S∗′ and with fixed

point ζ0 = 0. The segments are bounded by subintervals of the same parabola α∗

and two different vertical parabola segments β∗ and β∗′ respectively.
The corresponding domains in the z - and w -planes are denoted by Sm and

S′
m respectively. The points z0 and wm go over, by the parameter transforma-

tions, into ζ0 = 0.
The Parabola Lemma tells us that there exists a closed interval [ζ0, ζ̃0] on

the positive real axis of the ζ -plane such that for every ζ̃ ∈ (ζ0, ζ̃0] the extremal
mapping f̃ : S∗ → S∗′ , with the induced boundary values and with f̃(ζ̃0) = ζ̃ has

a dilatation K̃ < Km . The mapping fm: Sm → S′
m can now be replaced by the

mapping f̃ composed with the parameter transformations z → ζ and ζ → w .
This local mapping can be continued to the whole disks Dz , Dw outside Sm , S′

m

by fm . Its maximal dilatation is Km but it takes z0 into a point wn ∈ ∆γm
which corresponds to ζ̃ . The extremal mapping with this property is fn . Because
of the unique extremality of fn we have Kn < Km . Taking into account that the
interval [ζ0, ζ̃0] corresponds to a subinterval ∆γm of γm of positive length, we
have proved the theorem. The last statement follows because, due to the locally
uniform convergence ϕn → ϕm , ψn → ψm for wn → wm we can use the same
parabola segments S∗ , S∗′ in the natural parameter plane for all n and m .

18. Whereas in the previous section we have found points wn with K[wn] <
K[wm] we are now going to show the existence of points wn , in every neighborhood
of wm , with K[wn] > K[wm] .

Theorem 6. Let wm /∈ V [z0] and let K[wm] be the dilatation of the point

shift mapping fm , fm(z0) = wm . Then, in every neighborhood of wm there is

a point wn such that the point shift mapping fn , fn(z0) = wn , has a dilatation

K[wn] > K[wm] .

Proof. The proof consists in finding points wn 6= wm such that wm ∈ ∆γn .
We can then apply the previous result to get the desired inequality.

ζ0 ζ0

S

ζ-plane

∼

wm
∆γm

Sm
′
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gn
′Sn

∆γn

wm
∼

wn

γρ

wn
∼

Figure 4.
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We start with a fixed parabola segment S in the ζ -plane (Figure 4). Let
gm be the inverse of the parameter mapping for ψm , with gm(S) = S′

m , and
gm([ζ0, ζ̃0]) = ∆γm the distinguished critical trajectory interval of ψm , with end
points wm , w̃m . Likewise, let gn be the inverse of the parameter mapping for ψn ,
gn(S) = S′

n , gn(ζ0) = wn , gn([ζ0, ζ̃0]) = ∆γn the distinguished critical parameter
interval of ψn . Because of the convergence ‖ψn − ψm‖ → 0 for wn → wm the
mappings gn tend to gm uniformly in S . In particular, the images gn(ζ) and
gm(ζ) , ζ ∈ [ζ0, ζ̃0] , have a distance |gn(ζ)− gm(ζ)| which is arbitrarily small, and
the directions, in which the critical trajectories γn and γm leave the points wn
and wm respectively are arbitrarily close. This is so because this direction is the
same as minus the arg of the residue, and the residues are arbitrarily close by the
locally uniform convergence ψn → ψm away from the pole wm and the Cauchy
representation of the residue.

Choose now ̺ > 0 small enough and let wn turn around wm on the circle
|wn − wm| = ̺ . Then, it is evident that the interval ∆γn must pass through the
point wm at least once, and its origin is the point wn we are looking for.

IV The level sets of K[w]

19. Given a quasisymmetric boundary homeomorphism h: ∂Dz → ∂Dw and
a fixed point z0 ∈ Dz . Recall that for every w ∈ Dw we define K[w] to be the
smallest maximal dilatation of all quasiconformal mappings f : Dz → Dw which
agree with h on ∂Dz and satisfy f(z0) = w . The smallest maximal dilatation of
all qc mappings f with f | ∂Dz = h but without a given value at a fixed point
is called K0 . Every extremal qc mapping f0: Dz → Dw , f0 | ∂Dz = h , has
maximal dilatation K0 , and the set of images of z0 by all extremal qc mappings
f0 is called the variability set of z0 and denoted by V [z0] . Clearly, if the boundary
homeomorphism h admits a unique extremal solution, V [z0] consists of a single
point for every z0 . In general, this is however not the case, but for every w0 ∈ V [z0]
there exists at least one extremal mapping f0 with f0(z0) = w0 , by definition.

If wm /∈ V [z0] the value K[wm] is realized as the (constant) dilatation of
a unique extremal Teichmüller mapping fm associated with a pair of quadratic
differentials ϕm , ψm of norm ‖ϕm‖ = 1, ‖ψm‖ = K[wm] . ϕm has a first order
pole at z0 , while ψm has one at wm ; both differentials are holomorphic otherwise.

We already know that V [z0] is compact. But in addition to that we can now
prove the following

Theorem 7. The variability set V [z0] is simply connected, i.e. connected

and without holes.

The proof of the second statement is immediate. For, let G be a component of
Dw\V [z0] which is bounded away from ∂Dw . Then, the boundary ∂G lies in V [z0]
and the continuous function K[w] must attain its maximum in a point wm ∈ G ,
K[wm] > K0 . But by Theorem 6 there is a point w in every neighborhood of wm
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with K[w] > K[wm] , contradicting that K[wm] is the maximum value of K[w]
in G .

The first statement will follow from the theorem in the next section.

20. For every wm ∈ Dw \ V [z0] we consider the following three disjoint
subsets of Dw . We set K[wm] = Km .

Γ−

Km

:= {w ;K[w] < Km}

ΓKm
:= {w ;K[w] = Km}

Γ+

Km

:= {w ;K[w] > Km}

Theorem 8. The level set ΓKm
is a Jordan curve, Γ−

Km

its interior and

Γ+

Km

its extrerior (in Dw ). The sets Γ−

Km

are decreasing with Km ց K0 and

V [z0] =
⋂
Km>K0

Γ−

Km

.

Proof. (1) Since K[w] → ∞ for |w| → 1 the set Γ+

Km

contains an annulus
r < |w| < 1 for sufficiently large r . As an open set, Γ+

Km

decomposes into
domains, i.e. maximal connected open subsets. Let G be such a domain and
assume that it is bounded away from ∂Dw . Then, its boundary consists of points
w with K[w] = Km , whereas for w ∈ G K[w] > Km . Therefore the function
K[w] assumes its maximum at a point ŵ ∈ G . But this is impossible, since in
every neighborhood of ŵ there are points w with K[w] > K[ŵ] . We conclude that
every component of Γ+

Km

contains points arbitrarily close to ∂Dw . This means
that all components contain the annulus r < |w| < 1 and are thus connected
themselves, hence Γ+

Km

is a domain.

(2) Let C be a component of its complement. It consists of points w with
K[w] ≤ Km . Every boundary point of C is a point wm ∈ ΓKm

. The trajectory
interval ∆γm lies in Γ−

Km

, except for its initial point wm . On the other hand, as
∆γm is connected, it is contained in C . We conclude that C has interior points,
and in fact that every boundary point of C is a boundary point of its interior.

Let Gν be a component of its interior, hence a subdomain of C . For every
point w ∈ GνK[w] < Km , whereas on ∂GνK[w] = Km . Therefore K[w] must
assume its minimum at a point ŵ ∈ Gν , and by the same reason as above K[ŵ] =
K0 . We conclude that every component Gν of int C contains points of V [z0] .
From this it follows, because of the uniform continuity of K[w] in C , that int C
consists of finitely many components Gν only. Otherwise, we could pick a point
wν

0
∈ V [z0] out of every component Gν . An accumulation point w0 of these

points would lie in V [z0] and in ∂C , an impossibility. Every Gν is clearly simply
connected.

(3) The next step is to show that there can indeed be only one component
of int C . For, let G0 be a maximal subdomain of int C and assume there is more
than one. The boundary ∂G0 is a subset of the connected set ∂C . It is now easy
to see that there exists a point wm ∈ ∂G0 which is also a boundary point of at
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least one other subdomain of int C , because otherwise we could find a point in ∂C
which is not a boundary point of int C . Assume that the points w ∈ ∆γm \{wm}
lie in G0 , and let G1 be another subdomain of int C which has wm as boundary
point. For w1 ∈ G1 , sufficiently close to wm , the interval ∆γ1 with initial point
w1 would be arbitrarily close to ∆γm , and it would thus have to cut ∂G0 . But
since K[w1] < Km and hence K[w] < Km for every w ∈ ∆γ1 this would give
a contradiction. We conclude that int C consists of a single simply connected
domain G .

(4) We now proceed to show that G is a Jordan domain. Consider a boundary
point wm of G . The interval ∆γm with initial point wm lies in G , except for wm .
This means that every boundary point of G is the end point of an end-cut (the
same as “erreichbarer Randpunkt”, see [3], pp. 357–363). Consider two end-cuts
with the same end point wm . Their initial points, which lie in G , can be joined
by an arc in G . We thus have a Jordan curve which lies in G , except for the
point wm itself. If the two end-cuts were not equivalent, the domain interior to
this Jordan curve would contain boundary points of G , i.e. points of ΓKm

. But in
every neighborhood of such a point there is a point of Γ+

Km

, which is impossible.
Therefore the equivalence classes of end-cuts are in one-to-one correspondence

with the boundary points of G . By standard arguments the Riemann mapping of
G onto the disk has a homeomorphic extension to ∂G , which shows that ∂G is a
Jordan curve.

(5) The last step is to show that Γ−

Km

consists of only one Jordan domain and
hence the level set ΓKm

is a single Jordan curve for every Km > K0 . We have
seen that the set Γ−

Km

consists of finitely many Jordan domains each of which
contains points of V [z0] , and the boundary curves of these Jordan domains are
the components of ΓKm

. For Kn > Km the set Γ−

Kn

contains Γ−

Km

and therefore
ΓKm

has at least as many components as ΓKn
. Choose r < 1 such that the set

V [z0] is contained in the disk |w| < r . For Km > min{K[w] ; |w| = r} the circle
|w| = r lies in Γ−

Km

and hence in one of its components. This component contains
all of V [z0] and is hence the only one. We conclude that ΓKm

consists of a single
Jordan curve for all sufficiently large Km .

Let K > Km , and denote the finitely many components of ΓKm
by ΓνKm

,
hence ΓKm

= ∪ΓνKm

, ν = 1, . . . , N . The level set ΓK is composed of finitely
many Jordan curves ΓµK , µ = 1, . . . ,M , M ≤ N . They contain the curves ΓνKm

in their interior, and it is easy to see, by contradiction, that for K ց Km the
level set ΓK tends to ΓKm

. Therefore there cannot be fewer curves, one ΓµK for
each ΓνKm

, thus M = N , as soon as K is sufficiently close to Km .
Assume now that K < Km . Again, for K ր Km the limit set of ΓK is

ΓKm
= ∪ΓKm

. The Jordan curves ΓµK tend to the Jordan curves ΓµKm

, and even-
tually in a neighborhood of each ΓνKm

there can be only one ΓµK , µ = 1, . . . ,M .
We conclude that M = N for all K < Km which are sufficiently close to Km .

The number of components of ΓKm
is thus a continuous function of Km , and

being entire, it is constant, q.e.d.
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The set V [z0] is evidently equal to the intersection V [z0] =
⋂
Km>K0

Γ−

Km

.
This proves the theorem.

Added in proof. In a forthcoming paper, Clifford Earle and Nikola Lakic are
going to generalize most of the theorems of this article to the case of Riemann
surfaces, using Teichmüller space methods.
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