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INITIAL LIMITS OF TEMPERATURES
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Abstract. Let D and E be open subsets of Rn+1 that meet Rn × {0} , let E be bounded
with E ⊆ D , and let D+ = D ∩ (Rn×]0,∞[ ) . Given a nonnegative temperature u on D+ ,
we express its restriction to E+ as the sum of a temperature which vanishes at time zero, and
Gauss–Weierstrass integral. This enables us to use several theorems about the initial behaviour of
Gauss–Weierstrass integrals to prove similar results for u .

1. Introduction

Let D be an open subset of Rn+1 = {(x, t) : x ∈ Rn, t ∈ R} such that the
set D(0) = {x : (x, 0) ∈ D} is nonempty, and let D+ = D ∩ (Rn×]0,∞[ ) . Let u
be a nonnegative temperature on D+ , and let E be a bounded open set such that
E ⊆ D and E(0) 6= ∅ . We show that there is a nonnegative measure µ on D(0)
such that u = WµE +v on E+ , where v is a temperature on E+ with a continuous
extension to zero on E(0) × {0} , and WµE is the Gauss–Weierstrass integral of
the restriction µE of µ to E(0) (defined to be null on Rn\E(0)). We also show
that the representation can be extended to D+ if Wµ < ∞ there. This result
tells us that the behaviour of u at D0 = D(0) × {0} is generally similar to that
of Wµ at Rn+1

0 , which has been studied extensively. This is not surprising—the
interest lies in the quick and easy way it can be proved.

We denote by H+(D) the family of all nonnegative temperatures on D , and by
H∆(D) the family of all differences of pairs of such functions. The decomposition
theorem outlined above clearly extends to functions in H∆(D+) .

Our first application of the decomposition theorem is a proof that any u ∈
H∆(D) has finite limits Lebesgue almost everywhere on the set of boundary points
that are the centres of balls whose upper halves lie in D , the limits being broader
than parabolic limits.

Next we establish conditions under which a function u ∈ H∆(D+) has a
continuous extension to a point of D0 .

Some results can only be proved if the measure associated with u by the de-
composition theorem is nonnegative. (In general, this does not mean that u ≥ 0.)
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In Section 4, we establish criteria for that measure to be nonnegative, and also for
particular sets to be nonnegative for that measure. These theorems extend some
in [12].

Section 5 contains results which connect certain types of initial singularities of
u with rectifiable subsets of D(0), and with Hausdorff measures. These theorems
are also extensions of results in [12].

Each measure µ in this paper is a Radon measure, and µB denotes its re-
striction to a Borel set B . If µ is defined only on some proper subset A of Rn ,
we automatically extend it to Rn by making Rn\A a null set. The open ball of
centre x and radius r in Rn is written B(x, r) . We denote by mq the Haus-
dorff measure of dimension q , and by mn the Lebesgue measure of dimension n .
When using mq , we are only concerned that the measure of a given set is zero,
finite, or σ -finite, and so there is no need to distinguish between the Hausdorff
and Lebesgue measures of dimension n .

The few potential-theoretic concepts we require can be found in [1], [6]. The
Green function for Rn+1 is given by

G
(

(x, t), (y, s)
)

= W (x − y, t − s),

where

W (ξ, τ) =

{

(4πτ)−n/2 exp(−‖ξ‖2/4τ) if τ > 0,
0 if τ ≤ 0.

The potential of a suitable nonnegative measure ν on Rn+1 is

Gν(x, t) =

∫

Rn+1

G
(

(x, t), (y, s)
)

dν(y, s).

If ν is concentrated on Rn+1
0 , then Gν is the Gauss–Weierstrass integral Wν0 of

ν0 on Rn+1
+

, where ν0(S) = ν(S × {0}) for all Borel subsets S of Rn , and

Wν0(x, t) =

∫

Rn

W (x − y, t) dν0(y).

2. The decomposition theorem and existence of initial limits

We shall say that a temperature v on D+ is initially zero if v(x, t) → 0 as
(x, t) → (ξ, 0+) for all ξ ∈ D(0).

Theorem 1. If u ∈ H+(D+) , then there is a unique nonnegative measure µ
on D(0) with the following property. Given any bounded open set E such that

E ⊆ D and E(0) 6= ∅ , there is a unique initially zero temperature v on E+ such

that u = WµE + v on E+ . Furthermore, if Wµ < ∞ on D+ , then there is a

unique initially zero temperature w on D+ such that u = Wµ + w there.
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Proof. If u0 = u on D+ , and u0 = 0 on D\D+ , then u0 is a nonnegative
supertemperature on D . If ν denotes the Riesz measure associated with u0 , then
given E there is an initially zero temperature v on E+ such that u = GνE + v
on E+ , by [13, Theorem 1]. Since u0 is a temperature on D\D0 , the measure ν
is carried by D0 . Therefore, if

µ(S) = ν
(

(S × {0}) ∩ D0

)

for all Borel subsets S of Rn , then u = WµE + v on E+ .
Now suppose that u = Wµ1+v1 = Wµ2+v2 on E+ , where each µi is carried

by E(0) and each vi is initially zero. Then W (µ1 −µ2) = v2 − v1 on E+ , so that
W (µ1−µ2)( · , 0+) = 0 on E(0). Since µ1−µ2 is carried by E(0), it follows from
[9, Theorem 1] that µ1 = µ2 . Hence v1 = v2 also.

Now consider the case where Wµ < ∞ on D+ . Let {Ck} be an expanding
sequence of bounded open sets with union D+ . Choose an expanding sequence
{Ek} of bounded open sets such that E1(0) 6= ∅ , Ck ⊆ (Ek)+ andEk ⊆ Ek+1 ⊆ D .
For each k , let u = Wµk+vk be the representation of u on (Ek)+ just established.
Given k , for all j ≥ k we have

u = Wµk + vk = Wµj + vj

on (Ek)+ , so that vj = W (µk − µj) + vk , and hence |vj | ≤ Wµ + |vk| . Thus
the sequence {vj} is uniformly bounded on a neighbourhood of C1 , and there-

fore has a subsequence {v(1)
j } which converges to a temperature w1 on C1 , by

[6, Theorem 6]. Similarly, the sequence {v(1)
j } has a subsequence {v(2)

j } which
converges to a temperature w2 on C2 , with w2 = w1 on C1 . If this procedure is

repeated, then at the i-th stage the sequence {v(i−1)
j } has a subsequence {v(i)

j }
which converges to a temperature wi on Ci , with wi = wl on Cl whenever l < i .

The sequence {v(j)
j } therefore converges to a temperature w on

⋃∞
i=1 Ci = D+ .

On any (Ek)+ , since Wµ < ∞ we have

Wµ = lim
j→∞

Wµ
(j)
j = u − lim

j→∞
v
(j)
j = u − w,

so that Wµ + w = u = Wµk + vk . Hence w = vk −W (µ− µk) is initially zero on
(Ek)+ , and the result follows.

Remark. Even if D+ is a rectangle in R2 , and u has a continuous extension
to D(0), it may not be true that Wµ < ∞ in Theorem 1. This follows easily from
the representation theorem in [14, p. 148].

Theorem 1 trivially implies the corresponding result for any u ∈ H∆(D+) ,
and we now use this to prove the existence of initial limits of functions in H∆(D) .
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These limits are more general than the standard parabolic limits, and in the case
D+ = Rn+1

+
their existence mn -a.e. was established in [11], [10], [5], [4].

Following [6], we denote by ab∗(∂D) the set of all (ξ, τ) ∈ ∂D such that
D contains the intersection of Rn×]τ,∞[ with some open ball centred at (ξ, τ) .
The work of Kemper [3] implies that any u ∈ H∆(D) has finite parabolic limits
mn -a.e. on ab∗(∂D) .

Theorem 2. Let u ∈ H∆(D) , and let Ω be an open subset of Rn+1
+

with

the following properties:

(i) there exists α > 0 such that, whenever (x, t) ∈ Ω ,

{

(y, s) : ‖y − x‖ < α(
√

s −
√

t )
}

⊆ Ω;

(ii) there exists β > 0 such that mn

(

{x ∈ Rn : (x, t) ∈ Ω}
)

≤ βtn/2 for all t > 0;
(iii) the origin of Rn+1 is a limit point of Ω .

Then u(x, t) has a finite limit as (x, t) → (ξ, τ) through
(

Ω + {(ξ, τ)}
)

∩ D for

mn -almost all (ξ, τ) ∈ ab∗(∂D) .

Proof. By the dual of [6, Lemma 31], ab∗(∂D) is contained in the union
of a sequence of characteristic hyperplanes. It therefore suffices to consider the
intersection of ab∗(∂D) with one such hyperplane, which we can take to be Rn+1

0 .
Let U denote the open set

D+ ∪
((

D ∪ ab∗(∂D)
)

∩Rn+1
0

)

∪ [Rn×] −∞, 0[ ),

so that u ∈ H∆(U+) and U0 =
(

D∪ab∗(∂D)
)

∩Rn+1
0 . Let E be a bounded open

set such that E ⊆ U and E(0) 6= ∅ . By Theorem 1, there exist an initially zero
temperature v on E+ , and a signed measure µ on E(0), such that u = Wµ + v
on E+ . By [11, Theorem 8.6], Wµ has the required limits mn -a.e. on Rn , so
that the result follows.

3. Theorems on initial continuity

The results in this section give conditions under which a temperature u in
H∆(D+) has a continuous extension to some point of D0 . In each, we put

f(x) = lim inf
t→0+

u(x, t)

for all x ∈ D(0).

Theorem 3. If u ∈ H∆(D+) , f is continuous at ξ , and f(ξ) ∈ R , then

u(x, t) → f(ξ) as (x, t) → (ξ, 0+) .
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Proof. Let E be a bounded open set such that E ⊆ D and ξ ∈ E(0).
By Theorem 1, there exist an initially zero temperature v on E+ , and a signed
measure µ on E(0), such that u = Wµ + v on E+ . By [9, Theorem 1], there is
a signed measure σ concentrated on the infinity set Z of |f | , such that dµ(y) =
Wµ(y, 0+) dy + dσ(y) . Since v is initially zero, Wµ(y, 0+) = f(y) for any y ∈
E(0) where the limit exists. If f is continuous and real-valued at ξ , then there
is δ > 0 such that f(y) ∈ R whenever y ∈ B(ξ, δ) , so that Z ∩ B(ξ, δ) = ∅ .
Therefore

Wµ(x, t) =

∫

‖y−ξ‖<δ

W (x − y, t)f(y) dy +

∫

‖y−ξ‖≥δ

W (x − y, t) dµ(y),

so that Wµ(x, t) → f(ξ) as (x, t) → (ξ, 0+), by [11, Theorem 1.3 and Lemma 1.5].
The result follows.

The next theorem is an improvement on Theorem 3 in the case where the
measure associated to u by Theorem 1 is nonnegative. In this situation, the
temperature u is said to be initially nonnegative. If both u and −u are initially
nonnegative, then the associated measure is null, so that u is initially zero. Thus
the terminology is consistent.

Theorem 4. Suppose that u ∈ H∆(D+) and is initially nonnegative. Let

K be the closed support of f . If ξ ∈ K ∩ E(0) , f(ξ) ∈ R , and the restriction

of f to K is continuous at ξ , then f is continuous at ξ and u(x, t) → f(ξ) as

(x, t) → (ξ, 0+) .

Proof. Let E be a bounded open set such that E ⊆ D and ξ ∈ E(0). By
Theorem 1 and our hypothesis, there exist an initially zero temperature v on E+ ,
and a nonnegative measure µ on E(0), such that u = Wµ + v on E+ . By [9,
Theorem 1], there is a nonnegative measure σ concentrated on the infinity set
of f such that dµ(y) = f(y) dy + dσ(y) on E(0). Therefore µ

(

E(0)\K
)

= 0.
Furthermore, if η ∈ E(0) but is not in the closed support of µ , then there is δ > 0
such that the same holds for all ζ ∈ B(η, δ) . Then Wµ(ζ, 0+) = 0, and hence
f(ζ) = 0, for all such ζ . Hence η /∈ K , and K is the closed support of µ . The
result now follows from [7, Theorem 7].

4. Initial nonnegativity

Let u ∈ H∆(D+) . We give conditions under which the signed measure associ-
ated with u by Theorem 1 is nonnegative, either in whole or in part. We begin by
showing that initial nonnegativity can be defined without reference to Theorem 1.

Lemma 1. Let u ∈ H∆(D+) . If u is initially nonnegative, then

lim inf
t→0+

u(x, t) ≥ 0
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for all x ∈ D(0) . Conversely, if

lim sup
t→0+

u(x, t) ≥ 0

for all x ∈ D(0) , then u is initially nonnegative.

Proof. Let E be any bounded open set such that E ⊆ D and E(0) 6= ∅ , and
let µ be the signed measure on D(0) such that u = WµE + v on E+ for some
initially zero temperature v .

If u is initially nonnegative, then

lim inf
t→0+

u(x, t) = lim inf
t→0+

WµE(x, t) ≥ 0

for all x ∈ E(0), and the first part follows.
For the converse, we have

lim sup
t→0+

WµE(x, t) = lim sup
t→0+

u(x, t) ≥ 0

for all x ∈ E(0), so that µE ≥ 0 by [9, Theorem 1], and hence µ ≥ 0.

We now extend [12, Theorem 6], then consider some of its interesting conse-
quences. The signed measure associated to a function in H∆(D+) by Theorem 1
is henceforth referred to as its initial measure.

Theorem 5. Let u, w ∈ H∆(D+) , let q ∈ [0, n] , let Z be a Borel subset of

D(0) , let w be initially nonnegative with

(1) lim inf
t→0+

w(x, t) > 0

for all x ∈ Z , let µ , ν be the initial measures of u , w respectively, and let Y be

a ν -null Borel subset of Z . Suppose that

(2) lim sup
t→0+

u(x, t)

w(x, t)
> −∞

for all x ∈ Z\Y , and that

(3) lim sup
t→0+

u(x, t)

w(x, t)
≥ 0

for ν -almost all x ∈ Z\Y .

(i) If mq(Y ) = 0 and

lim inf
t→0+

t(n−q)/2u(x, t) > −∞

for µ-almost all x ∈ Y , then µZ ≥ 0 .

(ii) If Y is σ -finite with respect to mq , and

lim inf
t→0+

t(n−q)/2u(x, t) ≥ 0

for µ-almost all x ∈ Y , then µZ ≥ 0 .
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Proof. Let E be a bounded open set such that E ⊆ D and E(0) 6= ∅ ,
and let v , h be initially zero temperatures on E+ such that u = WµE + v and
w = WνE + h there. For each x ∈ Z ∩ E(0), it follows from (1) that

lim sup
t→0+

WµE(x, t)

WνE(x, t)
= lim sup

t→0+

u(x, t)

w(x, t)
.

Therefore (2) and (3) imply that WµE/WνE satisfies similar conditions, with
Z\Y replaced by its intersection with E(0).

(i) Here mq

(

Y ∩ E(0)
)

= 0 and

lim inf
t→0+

t(n−q)/2WµE(x, t) > −∞

for µ-almost all x ∈ Y ∩ E(0), so that µEZ ≥ 0 by [12, Theorem 6(i)].
(ii) In this case, Y ∩ E(0) is σ -finite with respect to mq , and

lim inf
t→0+

t(n−q)/2WµE(x, t) ≥ 0

for µ-almost all x ∈ Y ∩ E(0), so that µEZ ≥ 0 by [12, Theorem 6(ii)].

In both cases, the result follows.

The first corollary is an extension of [8, Theorem 6].

Corollary 1. Let u, w ∈ H∆(D+) , let w be initially nonnegative with (1)
valid for all x ∈ D(0) , and let ν be the initial measure of w . If (2) holds for all

x ∈ D(0) , and (3) holds for ν -almost all x ∈ D(0) , then u is initially nonnegative.

Proof. Take Z = D(0) and Y = ∅ in Theorem 5.

The next corollary shows that, if (3) holds for all x ∈ D(0) in Corollary 1,
then (1) is superfluous.

Corollary 2. Let u, w ∈ H∆(D+) , with w initially nonnegative. If (3) holds

for all x ∈ D(0) , then u is initially nonnegative.

Proof. Since the hypotheses remain valid if w is replaced by w+1, and w+1
also satisfies (1), the result follows from Corollary 1.

Theorem 5 also implies the following result, which is an extension of a slight
variant of [9, Theorem 7].

Corollary 3. Let u ∈ H∆(D+) , let q ∈ [0, n] , let µ be the initial measure

of u , and let Y be a Borel subset of D(0) . Suppose that

lim sup
t→0+

u(x, t) > −∞



502 Neil A. Watson

for all x ∈ D(0)\Y , and that

lim sup
t→0+

u(x, t) ≥ 0

for mn -almost all x ∈ D(0)\Y .

(i) If mq(Y ) = 0 and

lim inf
t→0+

t(n−q)/2u(x, t) > −∞

for µ-almost all x ∈ Y , then u is initially nonnegative.

(ii) If q < n , Y is σ -finite with respect to mq , and

lim inf
t→0+

t(n−q)/2u(x, t) ≥ 0

for µ-almost all x ∈ Y , then u is initially nonnegative.

Proof. Put F = Rn\D(0). If w = 1 on Rn+1
+

, then

w = Wmn = WmnD + WmnF .

Since the restriction of WmnF to D+ is initially zero, the uniqueness part of
Theorem 1 shows that mnD is the measure associated with w . With this choice
of w in Theorem 5, take Z = D(0), and note that mn(Y ) = 0 in both cases.

Conditions which ensure that µ ≥ 0 obviously imply others which ensure
that µ = 0 and are symmetric in u and −u . We now give some slightly weaker,
unsymmetric ones. The first is an extension of [8, Theorem 8].

Corollary 4. Let u, w ∈ H∆(D+) with (1) holding for all x ∈ D(0) , and let

ν be the initial measure of w . If

lim inf
t→0+

|u(x, t)|
w(x, t)

< ∞

for all x ∈ D(0) , and

lim inf
t→0+

u(x, t)

w(x, t)
= 0

for ν -almost all x ∈ D(0) , then u is initially zero.

Proof. By Corollary 1, the temperature −u is initially nonnegative. There-
fore, by Lemma 1,

lim sup
t→0+

u(x, t) ≤ 0
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for all x ∈ D(0). It now follows from (1) that

lim sup
t→0+

u(x, t)

w(x, t)
≤ 0

for all x ∈ D(0), so that

lim
t→0+

u(x, t)

w(x, t)
= 0

for ν -almost all x ∈ D(0). Now Corollary 1 can be applied to u , and the result
follows.

Corollary 5. Let u, w ∈ H∆(D+) , with w initially nonnegative. If

lim inf
t→0+

u(x, t)

w(x, t)
= 0

for all x ∈ D(0) , then u is initially zero.

Proof. Since the hypotheses remain valid if w is replaced by w + 1, we may
assume that (1) holds for all x ∈ D(0). Now we follow the proof of Corollary 4,
using Corollary 2 instead of Corollary 1, to obtain the result.

The next two results extend [12, Theorems 7 and 8].

Theorem 6. Let u ∈ H∆(D+) , let µ be its initial measure, let q ∈ [0, n] ,
and let Z be a Borel subset of D(0) that is σ -finite with respect to mq . Then

µZ ≥ 0 if and only if both

lim inf
t→0+

t(n−q)/2u(x, t) ≥ 0

for mq -almost all x ∈ Z , and

lim inf
t→0+

t(n−q)/2u(x, t) > −∞

for µ-almost all x ∈ Z .

Proof. Let E be a bounded open set such that E ⊆ D and Z ∩ E(0) 6= ∅ .
Then u = WµE + v on E+ , for some initially zero temperature v .

If µZ∩E(0) ≥ 0, then by [12, Theorem 7]

0 ≤ lim inf
t→0+

t(n−q)/2WµE(x, t) = lim inf
t→0+

t(n−q)/2u(x, t)

for mq -almost all x ∈ Z ∩ E(0), and

−∞ < lim inf
t→0+

t(n−q)/2WµE(x, t) = lim inf
t→0+

t(n−q)/2u(x, t)
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for µ-almost all x ∈ Z ∩ E(0). The ‘only if’ part follows.
The converse hypotheses imply that

lim inf
t→0+

t(n−q)/2WµE(x, t) = lim inf
t→0+

t(n−q)/2u(x, t) ≥ 0

for mq -almost all x ∈ Z ∩ E(0), and

lim inf
t→0+

t(n−q)/2WµE(x, t) = lim inf
t→0+

t(n−q)/2u(x, t) > −∞

for µ-almost all x ∈ Z ∩ E(0). Therefore µZ∩E(0) ≥ 0 by [12, Theorem 7], and
the ‘if’ part follows.

Theorem 7. Let u ∈ H∆(D+) , let µ be its initial measure, let q ∈ [0, n] ,
and let Z be a Borel subset of D(0) that is σ -finite with respect to mq . Then

µZ ≥ 0 if and only if

lim inf
t→0+

t(n−q)/2u(x, t) ≥ 0

for µ-almost all x ∈ Z .

Proof. As for Theorem 6, but use [12, Theorem 8] instead of [12, Theorem 7].

5. Initial singularities, rectifiable sets, and Hausdorff measures

In this section, we extend further results from [12].

Theorem 8. If u ∈ H∆(D+) , u is initially nonnegative, and q ∈ [0, n] , then

the set

Y =
{

x ∈ D(0) : lim sup
t→0+

t(n−q)/2u(x, t) > 0
}

is a Borel set which is σ -finite with respect to mq .

Proof. Let E be a bounded open set such that E ⊆ D and E(0) 6= ∅ , and
let µ be the initial measure of u . Then u = WµE + v on E+ , where v is initially
zero. Therefore

Y ∩ E(0) =
{

x ∈ E(0) : lim sup
t→0+

t(n−q)/2WµE(x, t) > 0
}

which is a Borel set that is σ -finite with respect to mq , by [12, Theorem 3]. The
result follows.

Theorem 9. Let u ∈ H∆(D+) , let µ be its initial measure, let q ∈ [0, n] ,
and let Z be a Borel subset of D(0) such that mq(Z) > 0 .

(i) If q is an integer and Z is a countably (mq, q) -rectifiable set ([2, p. 251])
which is σ -finite with respect to mq , then

lim
t→0+

t(n−q)/2u(x, t) = κn,qf(x)
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for mq -almost all x ∈ Z , where

κn,q = π−n/2 22q−nΓ( 1
2q + 1)

and f is the Radon–Nikodým derivative of µZ with respect to mqZ .

(ii) Conversely, if µ ≥ 0 and

0 < lim
t→0+

t(n−q)/2u(x, t) < ∞

for mq -almost all x ∈ Z , then q is an integer and Z is a countably (mq, q) -
rectifiable set which is σ -finite with respect to mq .

Proof. Let E be a bounded open set such that E ⊆ D and mq

(

Z∩E(0)
)

> 0,
so that u = WµE + v on E+ for some initially zero temperature v .

(i) Since v is initially zero,

lim
t→0+

t(n−q)/2u(x, t) = lim
t→0+

t(n−q)/2WµE(x, t) = κn,qf(x)

for mq -almost all x ∈ Z ∩ E(0), by [12, Theorem 4], where

f(x) = lim
r→0+

µZ∩E(0)

(

B(x, r)
)

mqZ∩E(0)

(

B(x, r)
) = lim

r→0+

µZ

(

B(x, r)
)

mqZ

(

B(x, r)
) .

The result follows.
(ii) For the same reason,

lim
t→0+

t(n−q)/2WµE(x, t) = lim
t→0+

t(n−q)/2u(x, t) ∈]0,∞[

for mq -almost all x ∈ Z ∩E(0). By [12, Theorem 4], q is an integer and Z ∩E(0)
is a countably (mq, q) rectifiable set which is σ -finite with respect to mq . The
result follows.

Theorem 10. Let u ∈ H∆(D+) , let µ be its initial measure, let q ∈ [0, n] ,
and let Z be a Borel subset of D(0) that is σ -finite with respect to mq . If

(4) lim sup
t→0+

t(n−q)/2|u(x, t)| < ∞

for µ-almost all x ∈ Z , then µZ is absolutely continuous with respect to mq .

Conversely, if µZ is absolutely continuous with respect to mq , then (4) holds

for mq -almost all x ∈ Z .
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Proof. Let E be a bounded open set such that E ⊆ D and Z ∩ E(0) 6= ∅ .
Then u = WµE + v on E+ , with v initially zero.

If (4) holds, then

lim sup
t→0+

t(n−q)/2|WµE(x, t)| ≤ lim sup
t→0+

t(n−q)/2|u(x, t)| < ∞

for µ-almost all x ∈ Z ∩ E(0), so that µZ∩E(0) is absolutely continuous with
respect to mq , by [12, Theorem 9]. The first part follows.

For the converse, [12, Theorem 9] shows that

lim sup
t→0+

t(n−q)/2|u(x, t)| ≤ lim sup
t→0+

t(n−q)/2|WµE(x, t)| < ∞

for mq -almost all x ∈ Z ∩ E(0), and the result follows.
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