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Abstract. It is shown that the obstacle problem associated with the second order variational
integral

∫

Ω

(1 + |∇2u|2)p/2 dx

has a unique solution u in the class C1,α for any α < 1 (n = 2) and for α = 1 − 1/p (n = 3).

1. Introduction and main results

Let Ω denote an open bounded set in Rn , n = 2 or n = 3, having Lip-
schitz boundary ∂Ω. For k ∈ N and 1 ≤ q ≤ ∞ we define the Sobolev space
W k

q (Ω,RM) of vector-valued functions u: Ω → RM , M ≥ 1, in the usual way (see,

e.g. [A]). The subspace W̊ k
q (Ω,RM) is introduced as the closure of C∞

0 (Ω,RM ) in

W k
q (Ω,RM) , and we say that a measurable function u: Ω → RM belongs to the

local space W k
q,loc(Ω,RM) if u ∈ W k

q (Ω′,RM ) for any subregion Ω′ with compact

closure in Ω. Suppose now that p ∈ (1, 2) is a fixed number satisfying p > 3
2

in
case n = 3 and that a function Φ ∈ W 3

2 (Ω,RM) satisfies

Φ
∣

∣

∂Ω
< 0, i.e. Φi < 0 on ∂Ω for i = 1, . . . , M.

We consider the variational integral

J(u) =

∫

Ω

(1 + |∇2u|2)p/2 dx
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which makes sense for u in the space W 2
p (Ω,RM) . Note that W 2

p (Ω,RM) ⊂

Co(Ω,RM ) for any p > 1, if n = 2, and for p > 3
2 , if n = 3. Here ∇2u denotes

the matrix (∂α∂βui)1≤α,β≤n, 1≤i≤M of all second generalized derivatives. We then
look for solutions of the obstacle problem

(V )

{

to find u ∈ K := {w ∈ W̊ 2
p (Ω,RM ) : wi ≥ Φi a.e., i = 1, . . . , M}

such that J(u) = inf
K

J.

The scalar case M = 1 is of some physical interest: consider a plate whose unde-
formed state is represented by a region Ω ⊂ R2 . If some outer forces are applied
acting in vertical direction, then the equilibrium configuration can be found as a
minimizer of the energy

I(u) =

∫

Ω

g(∇2u) dx + potential terms

subject to appropriate boundary conditions. The physical properties of the plate
are characterized in terms of the given convex function g: R2×2 → [0,∞) . In the
case of elastic plates (compare [F]) we have g(E) = |E|2 (up to physical constants),
for perfectly plastic plates (see [S]) g is of linear growth near infinity, hence the
choice

g(E) = (1 + |E|2)p/2

provides some interpolation between these two cases which is a suitable model for
plastic plates with power hardening. So, for n = 2 and M = 1, our variational
problem (V ) reduces to the obstacle problem for pseudo-plastic plates, i.e. plates
with power hardening, where now the plate is forced to lie above some function Φ
and, in addition, it is clamped at the boundary.

Let us now state the main result of this paper.

Theorem 1.1. Problem (V ) admits a unique solution u ∈ K . We have

u ∈ C1,α(Ω,RM ) for any α < 1 , if n = 2 , and u ∈ C1,1−1/p(Ω,RM ) , if n = 3 .

The proof of Theorem 1.1 is organized in several steps: in Section 2 we first
show that the unique minimizer can be obtained with the help of a suitable ap-
proximation. This means that we replace our integrand g(E) = (1 + |E|2)p/2 by
the sequence

gδ(E) = 1
2
δ|E|2 + g(E), δ > 0,

and study the more regular obstacle problem

(V )δ

{

to find uδ ∈ K′ := {w ∈ W̊ 2
2 (Ω,RM) : w ≥ Φ}

such that Jδ(uδ) :=
∫

Ω
gδ(∇

2uδ) dx = inf
w∈K′

Jδ(w)
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whose solutions converge weakly to the solution of (V ) .
In Section 3 we use this result to show that the scalar function (1+ |∇2u|2)p/4

is in the space W 1
2,loc(Ω) which will be deduced in this space from uniform bounds

for (1 + |∇2uδ|
2)p/4 . The regularity properties of u are then a consequence of

Sobolev’s embedding theorem. It should be noted that similar arguments in a
different setting have been used in [FR] and [FS].

2. Approximation

First we want to show that our variational problem (V ) admits a unique
solution which will be immediate as soon as we can show that the class K is
non-empty. This follows from

Lemma 2.1. Suppose that Φ ∈ W 3
2 (Ω,RM) satisfies Φ|∂Ω < 0 . Then there

exists Φ0 ∈ W̊ 2
2 (Ω,RM ) with the property Φ0 ≥ Φ in Ω , in particular Φ0 ∈ K .

Proof. We may assume that M = 1. By Sobolev’s embedding theorem
(recall n = 2 or 3) we have Φ ∈ Co(Ω), and since Φ|∂Ω < 0, there is a subdomain
Ω′ ⊂⊂ Ω such that Φ < 0 on Ω − Ω′ . Let c := max{0, maxΩ Φ} and Φ0 := cη ,
where η ∈ C∞

0 (Ω) satisfies 0 ≤ η ≤ 1 on Ω as well as η = 1 on Ω′ . Clearly
Φ0 ∈ K′ ⊂ K .

We recall the following characterization of W̊m
q (G) ; in this lemma the function

f ∈ Wm
q (Rn) is supposed to be (m, q)-quasicontinuous. In particular, the lemma

applies to continuous functions in Wm
q (Rn) .

Lemma 2.2 (see [AH, Theorem 9.1.3]). Let m be a positive integer, 1 < q <
∞ and f ∈ Wm

q (Rn) . Let G denote an open subset of Rn , K = Rn − G . Then

the following statements are equivalent:
(a) Dβf |K = 0 for all multi-indices β , |β| ≤ m − 1 ,

(b) f ∈ W̊m
q (G) ,

(c) for any ε > 0 and any compact set F ⊂ G there is a function η ∈ C∞
0 (G)

such that η = 1 on F , 0 ≤ η ≤ 1 and ‖f − ηf‖W m

q
(G) < ε .

Lemma 2.3. Suppose that Φ,K and K′ are defined as in Section 1. Then

K′ is dense in K with respect to the norm ‖ · ‖W 2
p
(Ω) .

Proof. Again we may assume that M = 1.
Step I: Given any ε > 0 and an arbitrary function v ∈ K , we first show that

there exists a function w ∈ K with compact support such that ‖v−w‖W 2
p
(Ω) < ε .

To this end we notice that there is a subdomain Ω′ ⊂⊂ Ω such that Φ < 0
on Ω − Ω′ (recall that Φ is continuous on Ω). By letting v = 0 on Rn − Ω we
may assume that v ∈ W 2

p (Rn) . We then use Lemma 2.2 with f = v , F = Ω′ ,

G = Ω, m = 2, q = p to see that there is η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1, η = 1 on Ω′

such that

(2.1) ‖v − ηv‖W 2
p
(Ω) < ε.
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We claim that ηv ≥ Φ: in fact, ηv = v ≥ Φ on Ω′ . For any x0 ∈ Ω −Ω′ we have

η(x0)v(x0) ≥ 0 > Φ(x0) if v(x0) ≥ 0

and (observe 0 ≤ η ≤ 1)

η(x0)v(x0) ≥ v(x0) ≥ Φ(x0) if v(x0) < 0.

Thus w = ηv belongs to K with spt w ⊂⊂ Ω and ‖v − w‖W 2
p
(Ω) < ε according

to (2.1).

Step II: We show that for any ε > 0 and any w ∈ K with compact support
there exists a vε ∈ K′ such that

(2.2) ‖w − vε‖W 2
p
(Ω) < ε.

This together with the first step will complete the proof of Lemma 2.3. For Step II
choose η ∈ C∞

0 (Ω) satisfying 0 ≤ η ≤ 1 and η = 1 on Ω′′ for some set Ω′′ ⊂⊂ Ω
containing spt (w) and with the property that

Φ < 0 on Ω − Ω′′.

Let wρ denote the mollification of w with radius ρ > 0 (see, e.g. [A]). Using the
fact that spt w is compact in Ω, we find ρ0 = ρ0(ε) such that for all 0 < ρ < ρ0

we have

(2.3)







wρ ∈ C∞
0 (Ω), spt wρ ⊂ Ω′′,

‖w − wρ‖L∞(Ω) < 1
2
ε‖∇2η‖p =: µ,

‖w − wρ‖W 2
p
(Ω) < 1

2ε.

Let us fix ρ ∈ (0, ρ0) and let vε = η(wρ + µ) . Then vε ∈ C∞
0 (Ω) and vε ≥ Φ in

Ω which follows from (2.3). It is also immediate that (2.3) implies (2.2).

Remark 2.1. From the proof of Lemma 2.3 we actually get that {w ∈
C∞

0 (Ω,RM) : w ≥ Φ in Ω} is dense in K with respect to ‖ · ‖W 2
p
(Ω) .

By Lemma 2.1 we know that K′ 6= ∅ , hence there is a unique solution uδ of
problem (V )δ . Let u ∈ K ( 6= ∅) denote the unique solution of (V ) . Then we
have

Lemma 2.4. The solution uδ ⇁ u weakly in W 2
p (Ω) , Jδ(uδ) → J(u) and

1
2
δ
∫

Ω
|∇2uδ|

2 dx → 0 as δ ↓ 0 .
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Proof. Let Φ0 ∈ K′ denote the function defined in Lemma 2.1. Then for
0 < δ ≤ 1 we have

Jδ(uδ) ≤ Jδ(Φ0) ≤ J1(Φ0) =: c1,

hence
∫

Ω

(1 + |∇2uδ|
2)p/2 dx ≤ c1,

which shows that sup0<δ≤1 ‖uδ‖W 2
p
(Ω) < ∞ . After passing to a subsequence we

may assume that

uδ ⇁
δ↓0

ũ weakly in W 2
p (Ω,RM)

for some function ũ . Since we may also assume that uδ → ũ a.e. (after passing to
another subsequence if necessary), we clearly get ũ ∈ K .

For any w ∈ K′ we have

Jδ(uδ) ≤ Jδ(w)−→
δ↓0

J(w)

and by the lower semicontinuity

J(ũ) ≤ lim inf
δ↓0

J(uδ) ≤ lim inf
δ↓0

Jδ(uδ) =: α ≤ lim sup
δ↓0

Jδ(uδ) =: β

so that

(2.4) J(ũ) ≤ α ≤ β ≤ J(w) for all w ∈ K′.

By Lemma 2.3, K′ is dense in K with respect to ‖ · ‖W 2
p
(Ω) . So (2.4) in fact holds

for w ∈ K and hence ũ coincides with the unique solution u of (V ) . Therefore
uδ ⇁ u in W 2

p (Ω,RM) for the whole sequence. Choosing w = u in (2.4) we get
α = β = J(u) , i.e. J(u) = limδ↓0 Jδ(uδ) . Using

J(u) ≤ J(uδ) ≤ Jδ(uδ)

we see that also

J(uδ)−→
δ↓0

J(u),

in conclusion
1
2δ

∫

Ω

|∇2uδ|
2 dx−→

δ↓0
0,

and Lemma 2.4 is established.
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3. Existence of higher order weak derivatives

Lemma 3.1. Let u ∈ K denote the unique solution of problem (V ) . Then

we have (1 + |∇2u|2)p/4 ∈ W 1
2,loc(Ω) .

Accepting Lemma 3.1 for the moment we see by the embedding theorem that

|∇2u| ∈ Lt
loc(Ω)

for any finite t , if n = 2, and for t ≤ 3p , if n = 3, hence ∇u ∈ C0,α(Ω,RnM ) for
any α < 1, if n = 2, and for α = 1−1/p in case n = 3. This proves Theorem 1.1.

Proof of Lemma 3.1. We fix a coordinate direction eγ ∈ Rn , γ = 1, . . . , n ,
and define for h 6= 0 and a function f

∆hf(x) =
1

h

(

f(x + heγ) − f(x)
)

.

Let {uδ} denote the sequence introduced in Section 2. With δ fixed we consider
ε > 0 satisfying εh−2 < 1

2 and define

vε = uδ + ε∆−h(η6∆h[uδ − Φ])

with η ∈ C2
0 (Ω) such that 0 ≤ η ≤ 1. Observing

vε(x) = Φ(x) +
[

1 −
ε

h2
η6(x − heγ) −

ε

h2
η6(x)

]

(uδ − Φ)(x)

+
ε

h2
η6(x − heγ)(uδ − Φ)(x − heγ) +

ε

h2
η6(x)(uδ − Φ)(x + heγ)

we see that vε ≥ Φ, i.e. vi
ε ≥ Φi for each component, hence vε ∈ K′ , which gives

Jδ(uδ) ≤ Jδ(vε) , and we deduce

∫

Ω

1

ε

{

gδ

(

∇2uδ + ε∇2[∆−h(η6∆h(uδ − Φ))]
)

− gδ(∇
2uδ)

}

dx ≥ 0.

Passing to the limit ε → 0 we infer

∫

Ω

Dgδ(∇
2uδ) : ∇2

(

∆−h[η6∆h(uδ − Φ)]
)

dx ≥ 0,

Dgδ denoting the gradient of gδ . Using “integration by parts” for ∆−h we end
up with the result

(3.1)

∫

Ω

∆h{Dgδ(∇
2uδ)} : ∇2(η6∆h[uδ − Φ]) dx ≤ 0.



Second order obstacle problems for vectorial functions and integrands 555

Introducing ξt := ∇2uδ + th∆h(∇2uδ) we may write

∆h{Dgδ(∇
2uδ)} :∇2(η6∆h[uδ − Φ])

=

∫ 1

0

D2gδ(ξt)
(

∆h∇
2uδ,∇

2(η6∆h[uδ − Φ])
)

dt.

Let us further define the bilinear form

Bx(X, Y ) =

∫ 1

0

D2gδ

(

ξt(x)
)

(X, Y ) dt

for x ∈ Ω and matrices X , Y . Then (3.1) takes the form

(3.2)

∫

Ω

Bx

(

∆h∇
2uδ,∇

2(η6∆h[uδ − Φ])
)

dx ≤ 0.

We have

∇2(η6∆huδ) = η6∇2∆huδ + (∂α∂βη∆huδ + ∂αη6∂β∆huδ + ∂βη∂α∆huδ)1≤α,β≤n

=: η6∇2∆huδ + Th,

and (3.2) implies
∫

Ω

η6Bx(∆h∇
2uδ, ∆h∇

2uδ) dx ≤

∫

Ω

Bx

(

∆h∇
2uδ,∇

2(η6∆hΦ) − Th

)

dx.

On the right-hand side we may apply Cauchy–Schwarz’s inequality in the form

Bx(X, Y ) ≤ Bx(X, X)1/2Bx(Y, Y )1/2.

This together with Young’s inequality leads to
∫

Ω

η6Bx(∆h∇
2uδ, ∆h∇

2uδ) dx(3.3)

≤ c1(η)

∫

spt η

‖Bx‖(|∆hΦ|2 + |∇∆hΦ|2 + |∇2∆hΦ|2 + |∆huδ|
2 + |∇∆huδ|

2) dx

for some constant c1 depending on η .
It is easy to check that the following bounds hold for the parameter dependent

bilinear form D2gδ(Z)(X, Y ) :

‖D2gδ(Z)‖ = sup
|X|=1

D2gδ(Z)(X, X)(3.4)

≤ δ + c2(p)(1 + |Z|2)(p/2)−1 ≤ δ + c2(p),

D2gδ(Z)(X, X) = δX : X + p(1 + |Z|2)(p/2)−1|X |2(3.5)

+ p(p − 2)(1 + |Z|2)(p/2)−2(Z : X)2 ≥ δ|X |2.
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Inserting this into (3.3), we find that
∫

Ω

η6|∆h∇
2uδ|

2 dx ≤ c3(δ, η, p)
{

‖uδ‖
2
W 2

2
(Ω) + ‖φ‖2

W 3

2
(Ω)

}

,

therefore uδ ∈ W 3
2,loc(Ω,RM) . For this reason we can replace ∆h in (3.1) by the

derivative ∂γ . Then, following the calculations after (3.1), we see that (3.3) has
to be replaced by (summation over γ )

∫

Ω

η6D2gδ(∇
2uδ)(∂γ∇

2uδ, ∂γ∇
2uδ) dx(3.6)

≤ c4(η)

∫

spt η

‖D2gδ(∇
2uδ)‖(|∇uδ|

2 + |∇2uδ|
2 + |∇φ|2 + |∇2φ|2 + |∇3φ|2) dx,

c4 being independent of δ . Recall from Section 2 that

δ

∫

Ω

|∇2uδ|
2 dx → 0 as δ ↓ 0.

Our assumption concerning p together with supδ>0 ‖uδ‖W 2
p
(Ω) < ∞ implies that

{∇uδ} is uniformly bounded in L2(Ω,RnM ) . In view of (3.4) it remains to discuss
∫

Ω

‖D2gδ(∇
2uδ)‖|∇

2uδ|
2 dx

≤ δ

∫

Ω

|∇2uδ|
2 dx + c2(p)

∫

Ω

(1 + |∇2uδ|
2)(p/2)−1|∇2uδ|

2 dx

≤ δ

∫

Ω

|∇2uδ|
2 dx + c2(p)

∫

Ω

(1 + |∇2uδ|
2)p/2 dx.

We therefore get from (3.6)

(3.7) sup
δ>0

∫

Ω′

D2gδ(∇
2uδ)(∂γ∇

2uδ, ∂γ∇
2uδ) dx < ∞

for each subdomain Ω′ of Ω with compact closure.
Let us introduce the auxiliary function hδ := (1 + |∇2uδ|

2)p/4 . It is easy to
check that (using the equation in (3.5))

|∇hδ|
2 = ∂γhδ∂γhδ ≤ 1

4
p2(1 + |∇2uδ|

2)(p/2)−2|∇2uδ|
2∂γ∇

2uδ : ∂γ∇
2uδ

≤ c5(p)D2gδ(∇
2uδ)(∂γ∇

2uδ, ∂γ∇
2uδ),

hence {hδ}δ>0 is bounded in W 1
2,loc(Ω) which is a consequence of (3.7). Let

h ∈ W 1
2,loc(Ω) denote a weak limit as δ ↓ 0 of some subsequence. We claim

(3.8) h = (1 + |∇2u|2)p/4.
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For proving (3.8) let us write

Jδ(uδ) − J(u) =
δ

2

∫

Ω

|∇2uδ|
2 dx + J(uδ) − J(u)

=
δ

2

∫

Ω

|∇2uδ|
2 dx +

∫

Ω

Dg(∇2u) : (∇2uδ −∇2u) dx

+

∫

Ω

∫ 1

0

D2g
(

(1 − t)∇2u + t∇2uδ

)

× (∇2uδ −∇2u,∇2uδ −∇2u)(1 − t) dt dx.

From Jδ(uδ) → J(u) , δ ↓ 0, we infer

(3.9) lim
δ↓0

{
∫

Ω

Dg(∇2u) : (∇2uδ−∇2u) dx+

∫

Ω

∫ 1

0

D2g(· · ·)(· · ·)(1−t) dt dx

}

= 0.

On the other hand, minimality of u implies

(3.10)

∫

Ω

Dg(∇2u) : (∇2uδ −∇2u) dx ≥ 0.

Next we observe the estimate

∫

Ω

∫ 1

0

D2g(· · ·)(· · · , · · ·)(1 − t) dt dx ≥ (3.5)

c6(p)

∫

Ω

(1 + |∇2uδ|
2 + |∇2u|2)(p/2)−1|∇2uδ −∇2u|2 dx =: αδ.

By (3.9) and (3.10) we must have αδ → 0. Hence we can choose a subsequence
such that

(3.11) (1 + |∇2uδ|
2 + |∇2u|2)(p/2)−1|∇2uδ −∇2u|2 −→

δ↓0
0 a.e.

Clearly we may assume that also hδ → h a.e. By definition of hδ this implies

|∇2uδ|
2 → h4/p − 1 a.e.,

and the function h4/p − 1 is finite a.e. Returning to (3.11) and taking care of our
observation that (1 + |∇2uδ|

2 + |∇2u|2)(p/2)−1 has a pointwise limit a.e. which is
not zero, we finally get

∇2uδ → ∇2u a.e. on Ω,

and in conclusion hδ → (1+|∇2u|2)p/4 which proves (3.8). The proof of Lemma 3.1
is complete.
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