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Abstract. The Nevanlinna defect relation and other results on the Nevanlinna theory assert
that each meromorphic mapping f of Cm into Pn(C) has few deficient hyperplanes in Pn(C) .
However, it seems to me that meromorphic mappings with a deficient hyperplane must be very few.
In this paper, we show that for an arbitrary given transcendental meromorphic mapping f (which
may be linearly degenerate), we can eliminate all deficient hyperplanes in the sense of Nevanlinna
by a small deformation of f .

1. Introduction

For a nondegenerate meromorphic mapping f of Cm into the complex pro-
jective space Pn(C), Nevanlinna’s defect relation

N∑
j=1

δf (Hj) ≤ n+ 1

holds for hyperplanes {Hj}Nj=1 ∈ Pn(C)∗ in a general position. Hence the set
of hyperplanes with a positive Nevanlinna deficiency in a set X ⊂ Pn(C)∗ of
hyperplanes in a general position is at most countable. (Such a hyperplane is called
a deficient hyperplane or a defect.) Sadullaev [5] proved that the set of hyperplanes
with a positive Valiron deficiency is of capacity zero (or it is a locally pluripolar
set). Furthermore, we observe that the set of Valiron deficient hyperplanes has
projective logarithmic capacity zero in the sense of Molzon–Shiffman–Sibony [3].
These results assert that defects of a meromorphic mapping are very few, and
sometimes the Nevanlinna theory is called the equidistribution theory. However,
it seems to me that meromorphic mappings with deficient hyperplanes must be
very few.

In this note, we deal with the problem of whether we can eliminate all defects
for a given meromorphic mapping of Cm into Pn(C) by a small deformation of
the mapping. In one dimensional case, for any finite-order transcendental entire
function f , the inequality ∑

a∈C

δf (a) ≤ δf ′(0)
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holds (see Hayman [2, p. 104]), and we also find α ∈ C such that f̃(z) = f(z)+αz
satisfies δf̃ ′(0) = 0. Hence we see

∑
a∈C

δf̃ (a) = 0,

that is, f̃ does not have a finite defect. In Section 3, we shall prove that for any
transcendental meromorphic mapping f of Cm into Pn(C), we can eliminate all
Nevanlinna defects by a small deformation f̃ of f . Here a small deformation f̃
of f means that their Nevanlinna order functions satisfy

|Tf (r)− Tf̃ (r)| ≤ O(log r), r → +∞.

2. Preliminaries

2.1. Notation and terminology. Let z = (z1, . . . , zm) be the natural coordi-
nate system in Cm . Set

〈z, ξ〉 =
m∑
j=1

zjξj for ξ = (ξ1, . . . , ξm), ‖z‖2 = 〈z, z〉,

B(r) = {z ∈ Cm | ‖z‖ < r}, ∂B(r) = {z ∈ Cm | ‖z‖ = r},

ψ = ddc log ‖z‖2 and σ = dc log ‖z‖2 ∧ ψm−1,

where dc = (
√
−1/4π)(∂̄ − ∂), and ψk = ψ ∧ · · · ∧ ψ (k -times).

Let f be a meromorphic mapping of Cm into Pn(C). Then f has a reduced
representation (f0 : · · · : fn), where f0, . . . , fn are holomorphic functions on
Cm with codimC{z ∈ Cm | f0(z) = · · · = fn(z) = 0} ≥ 2. We write f =
(f0, . . . , fn) as the same letter of the meromorphic mapping f . Denote Dαf =
(Dαf0, . . . ,D

αfn) for a multi-index α , where Dαφ = ∂|α|φ/∂zα1
1 · · · ∂zαm

m , α =
(α1, . . . , αm), |α| = α1 + · · ·+ αm and a function φ .

Definition. (See Fujimoto [4, Section 4].) We define the generalized Wron-
skian of f by

Wα0,...,αn(f) = det(Dαk

f : 0 ≤ k ≤ n),

for n+ 1 multi-indices αk = (αk1 , . . . , α
k
m), 0 ≤ k ≤ n .

By Fujimoto [4, Section 4], for every linearly nondegenerate meromorphic
mapping f of Cm into Pn(C), there are n+1 multi-indices α0, . . . , αn such that
{Dα0

f, . . . ,Dαn

f} is an admissible basis with |αk| ≤ n+1. Then Wα0,...,αn(φf) =
φn+1Wα0,...,αn(f) �≡ 0 holds for any nonzero holomorphic function φ on Cm ,
where φf = (φf0, . . . , φfn).
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For a nonconstant meromorphicmapping f of Cm into Pn(C), the proximity
function mf(r,H) and the counting function Nf (r,H) of a hyperplane H in
Pn(C) are given by

mf (r,H) :=
∫
∂B(r)

log
‖f‖‖a‖
|〈f,a〉| σ

and
Nf (r,H) :=

∫ r

r0

dt

t

∫
(f∗H)∩B(t)

ψm−1

for some fixed r0 > 0, where

H =
{
w = (w0, . . . , wn) ∈ Cn+1 \ {0} |

n∑
j=0

ajwj = 0
}
,

a = (a0, . . . , an) ∈ Cn+1 \ {0} and f∗H denotes the pullback of H under f . The
Nevanlinna order function Tf (r) of f is given by

Tf (r) :=
∫ r

r0

dt

t

∫
B(t)

f∗ω∧ψm−1,

where ω = {ωα} = ddc log
∑n

j=0(|wj/wα|2), in a neighborhood Uα := {wα �= 0} .
We write

N
(
r, (φ)

)
:=

∫ r

r0

dt

t

∫
(φ)∩B(t)

ψm−1,

where (φ) denotes the divisor determined by a meromorphic function φ on Cm .
We note that

log ‖f‖ = log
√

|f0|2 + · · ·+ |fn|2 = log(|f0|+ · · ·+ |fn|) +O(1).

Then we observe that

Tf (r) =
∫
∂B(r)

log
( n∑
j=0

|fj |2
)1/2

σ +O(1) =
∫
∂B(r)

log
n∑
j=0

|fj |σ +O(1).

The Nevanlinna deficiency δf (H) and the Valiron deficiency ∆f(H) of a hyper-
plane H for f are given by

δf (H) := lim inf
r→+∞

mf(r,H)
Tf (r)

= 1− lim sup
r→+∞

Nf(r,H)
Tf (r)

and

∆f (H) := lim sup
r→+∞

mf(r,H)
Tf(r)

= 1− lim inf
r→+∞

Nf (r,H)
Tf (r)

.
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We now define the projective logarithmic capacity of a set in the projective
space Pn(C) (see Molzon–Shiffman–Sibony [3, p. 46]). Let E be a compact subset
of Pn(C) and P(E) denote the set of probability measures supported on E . We
define

Vµ(x) :=
∫
w∈Pn(C)

log
‖x‖‖w‖
|〈x,w〉| dµ(w), µ ∈ P(E)

and
V (E) := inf

µ∈P(E)
sup

x∈Pn(C)

Vµ(x).

Define the projective logarithmic capacity of E by

C(E) :=
1

V (E)
.

(This is a Frostman type capacity.) If V (E) = +∞ , we say that the set E is of
projective logarithmic capacity zero. For an arbitrary subset K of Pn(C), we put

C(K) = sup
E⊂K

C(E),

where the supremum is taken over all the compact subset E of K . Note that
there is a probability measure µ0 ∈ P such that V (E) = supx∈Pn(C) Vµ0 (x).

2.2. Some results. A. Vitter [7] proved the following theorem:

Theorem A (Lemma on logarithmic derivatives). Let f = (f0 : f1) be a
reduced representation of a meromorphic mapping f : Cm → P1(C) . Set F =
f1/f0 . Then there exist positive constants a1 , a2 , a3 such that∫

∂B(r)

log+ |
Fzj

F
|σ ≤ a1 + a2 log r + a3 log Tf (r), j = 1, . . . ,m //.

Here the notation “A(r) ≤ B(r) //” means that the inequality A(r) ≤ B(r)
holds for r outside a countable union of intervals I of finite Lebesgue measure.

Molzon–Shiffman–Sibony [3] proved the following result on the projective log-
arithmic capacity.

Theorem B ([3, p. 47]). Let ϕ: [0, 1] → Pn(C) be a real smooth nonde-
generate arc in Pn(C) and K a compact subset of [0, 1] . Then the projective
logarithmic capacity C

(
ϕ(K)

)
is positive if and only if K has a positive logarith-

mic capacity in C .

Here “smooth nondegenerate arc ϕ” means that there exists a lift ϕ̃: [0, 1] →
Cn+1 \ {0} such that the k -th derivatives {ϕ̃(k)(t)}k≥0 of ϕ̃(t) span Cn+1 for
every t ∈ [0, 1] .

Furthermore, using a similar argument to Tsuji [6, p. 199, Theorem V.5], we
have
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Proposition 1. Let f be a meromorphic mapping of Cm into Pn(C) such
that limr→+∞ Tf (r) = +∞ . Then there exist r1 < r2 < · · · < rn → +∞ and sets
En : En+1 ⊂ En , n = 1, 2, . . . , in Pn(C)∗ with

V (En)≥ 2 log Tf (rn)

such that, if H does not belong to En ,

mf(r,H) ≤ 4
√
Tf (r) log Tf(r)

for r > rn . Hence

lim
r→+∞

mf(r,H)
Tf (r)

= 0

outside a set E ⊂ Pn(C)∗ of projective logarithmic capacity zero. Here Pn(C)∗

denotes the dual projective space of Pn(C) which consists of all hyperplanes
in Pn(C) .

This is proved by a method similar to Tsuji [6], using the Frostman type
capacity C(E) = 1/V (E) and the de la Vallee Poussin type capacity

C̃(E) := sup
λ∈M

{
λ(E) | Uλ(z) :=

∫
w∈Pn(C)

log
‖z‖‖w‖
|〈z, w〉| dλ(w) ≤ 1 for all z ∈ E

}
,

where M denotes a set of Borel measures on E . Details are omitted here. The
proof (Lemma B) of the inequality (7) in Tsuji [6, p. 199] for the projective log-
arithmic potential is the following. We include here the proofs of Lemma A and
Lemma B, since Ninomiya’s book is written in Japanese.

Lemma A (cf. Ninomiya [4]). Let E be a Borel set in Pn(C) . Then we have

C(E) = C̃(E).

Proof. For any ε > 0, we take a Borel measure µ ≥ 0 with µ(E) = C̃(E)+ε .
Then the inequality

sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉| dµ(w) > 1

holds, and there is a measure µ0 ∈ P(E) such that

V (E) = sup
z∈Pn

∫
E

log
‖z‖‖w‖
|〈z, w〉| dµ0(w).
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We put µ1 =
(
C̃(E) + ε

)
µ0 . Then we have

sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉| dµ1(w) > 1,

or, equivalently,

sup
z∈Pn

∫
E

log
‖z‖‖w‖
|〈z, w〉| dµ0(w) >

1

C̃(E) + ε
.

Hence we get V (E) ≥ 1/
(
C̃(E) + ε

)
, so C̃(E) ≥ C(E). Next we shall show

C̃(E) ≤ C(E) under the assumption C̃(E) > 0. For any ε > 0, there is a
measure ν such that ν(E) = C̃(E)− ε and

sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉| dν(w) ≤ 1.

Now we put µ0 = ν/ν(E). Then we see µ0(E) = 1, so µ0 ∈ P(E), and we have

1
C(E)

= V (E) = inf
µ∈P

sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉| dµ(w)

≤ sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉| dµ0(w)

≤ sup
z∈Pn

∫
w∈Pn

log
‖z‖‖w‖
|〈z, w〉|

dν(w)
ν(E)

≤ 1
ν(E)

=
1

C̃(E)− ε
.

Thus we have C̃(E)− ε ≤ C(E), and hence we have C̃(E) ≤ C(E). Therefore we
obtain C(E) = C̃(E).

Lemma B (cf. Ninomiya [4]). Let E1, E2, . . . , En, . . . be Borel sets in Pn(C) ,
and E =

⋃∞
n=1En . Then

1
V (E)

≤ 1
V (E1)

+
1

V (E2)
+ · · · 1

V (En)
+ · · · .

Proof. For any ε > 0, there is a measure µ ∈ P(E) such that

sup
z∈Pn

∫
E

log
‖z‖‖w‖
|〈z, w〉| dµ(w) < V (E) + ε.

Put µ′ = µ/
(
V (E) + ε

)
(≥ 0). Then we have

sup
z∈Pn

∫
E

log
‖z‖‖w‖
|〈z, w〉| dµ

′(w) < 1.
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Since log(‖z‖‖w‖/|〈z, w〉|) ≥ 0, we have

sup
z∈Pn

∫
En

log
‖z‖‖w‖
|〈z, w〉| dµ

′(w) < 1.

Hence µ′(En) ≤ C̃(En), and we obtain

1
V (E) + ε

= µ′(E) ≤
∞∑
n=1

µ′(En) ≤
∞∑
n=1

C̃(En) =
∞∑
n=1

1
V (En)

.

Proposition 2. Consider the set

(1)

A =
{(

1, a1, . . . , an, a1a2, . . . , a1an, a2a3, . . . ,an−1an, a1a2a3, . . . ,

n∏
j=1

aj

)

| aj ∈ C
}

⊂ PN (C)∗,

where N = 2n − 1 . After some rearrangement it contains vectors of the form
(1, α, α2, . . . , αN ) , α ∈ C .

Proof. Let a1 = αk1 , a2 = αk2 , . . . , al = αkl , . . . , an = αkn , where

k1 = 1, km =
m−1∑
l=1

kl + 1, m = 2, 3, . . . , n.

We shall prove this by induction. In the case where n = 2, we have a1 = α , a2 =
α2 , so a1a2 = α3 . Hence we obtain (1, a1, a2, a1a2) = (1, α, α2, α3) ∈ C22 \ {0} ,
so this case is proved. Supposing that it was proved until n , we shall prove the
case where n + 1. We set an+1 = αkn+1 , where kn+1 =

∑n
l=1 kl + 1. Then we

observe that kn+1 = 2n , since

kn+1 =
n∑
l=1

kl + 1 =
n−1∑
l=1

kl + kn + 1 = 2kn = 2 · 2n−1 = 2n

when kn = 2n−1 . By the assumption of induction, we can get 1, α, α2, . . . , α2n−1

by using a1, . . . , an, a1a2, . . . ,
∏n
j=1aj . Hence we can get α2n

, α2n+1, . . . , α2n+1−1

by using a1an+1, . . . , anan+1, a1a2an+1, . . . ,
∏n
j=1ajan+1 .
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3. Elimination of defects of meromorphic mappings

For a meromorphic mapping g of Cm into Pn(C), we can eliminate all
defects by a small deformation of g . We say that meromorphic mapping g is
transcendental if

lim
r→+∞

Tg(r)
log r

= +∞.

Note that a meromorphic mapping g is rational if and only if

Tg(r) = O(log r), r → +∞.

Lemma 1. There are monomials ζ1, . . . , ζn in z1, . . . , zm such that any n
derivatives in {Dαζ := (Dαζ1, . . . ,D

αζn) | |α| ≤ n+ 1} are linearly independent
over the field M of meromorphic functions on Cm , where α = (α1, . . . , αm) ∈ Z≥0

is a multi-index and Dαζk = ∂|α|ζk/∂z1
α1 · · · ∂zmαm .

Proof. We now take positive integers k1, . . . , knm , inductively. First, we take
some positive integer k1 > n , and then an integer kj as large as

kj >

j−1∏
r=1

(kr!), j = 2, . . . , nm.

We now put

ζ = (ζ1, ζ2, . . . , ζn) = (zk11 · · · zkm
m , z

km+1
1 · · · zk2m

m , . . . , z
k(n−1)m+1
1 · · · zknm

m ).

Then, for a multi-index α = (α1, . . . , αm) with |α| ≤ n+ 1, we have

Dα(ζs) = Dα(zk(s−1)m+1
1 · · · zksm

m )

=
k(s−1)m+1!

(k(s−1)m+1 − α1)!
· · · ksm!

(ksm − α1)!
z
k(s−1)m+1−α1

1 · · · zksm−αm
m

(= As,αz
k(s−1)m+1−α1

1 · · · zksm−αm
m , say.)

Hence we can write
Dαζ = φα(A1,αξ1, . . . , An,αξn),

where φα ∈ M and ξi is some monomial in z1, . . . , zm . Then for any n multi-
indices αj1 , . . . , αjn , we observe that∣∣∣∣∣∣∣∣∣

A1,αj1 . . . An,αj1

A1,αj2 . . . An,αj2

...
. . .

...
A1,αjn . . . An,αjn

∣∣∣∣∣∣∣∣∣
�= 0.

Thus any n derivatives in {Dαζ | |α| ≤ n + 1} are linearly independent over the
field M of meromorphic functions on Cm .

We note that we can take k1, . . . , knm arbitrarily large.
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Lemma 2. Let h = (h0 : h1 : · · · : hn) be a reduced representation of
a meromorphic mapping of Cm into Pn(C) and ζ1, . . . , ζn linearly independent
monomials in z1, . . . , zm as in Lemma 1 . Then there exist (ã1, . . . , ãn) such that
ãj = αkj , j = 1, . . . , n , with k1 = 1 , km =

∑m−1
l=1 kl+1 , m = 2, 3, . . . , n , α ∈ C ,

and
f := (h0 : h1 + ã1ζ1h0 : h2 + ã2ζ2h0 : · · · : hn + ãnζnh0)

is a reduced representation of a linearly nondegenerate meromorphic mapping of
Cm into Pn(C) .

Proof. Let

Φ(cj ; aj) ≡ Φ(c0, c1, . . . , cn; a1, . . . , an)
:= c0h0 + c1(h1 + a1ζ1h0) + c2(h2 + a2ζ2h0) + · · · + cn(hn + anζnh0)
= (c0 + a1c1ζ1 + a2c2ζ2 + · · · + ancnζn)h0 + c1h1 + · · ·+ cnhn.

Suppose that for a1, . . . , an , there are c0, . . . , cn such that Φ(cj; aj) ≡ 0. Then

(2) c0h0 + c1h1 + · · ·+ cnhn = −(c1a1ζ1h0 + c2a2ζ2h0 + · · ·+ cnanζnh0).

Now we expand hj , j = 0, . . . , n , to the Taylor series at the origin, and especially
we write

h0 =
∞∑

|β|=0

dβz
β1
1 · · · zβm

m =
∞∑

|β|=0

dβz
β ,

where β = (β1, . . . , βm) is a multi-index. We write β0 as an index of one of the
lowest terms of h0 . Then all zβ

0
, ζ1z

β0
, . . . , ζnz

β0
are different from each other.

Now we compare the coefficients of both sides of (2) on each ζizβ
0
, i = 1, . . . , n ,

and zβ
0
. Then we have



c0d
0
n + c1d

1
n + · · ·+ cndnn = −(c1a1e

1
n + · · ·+ cnanenn),

c0d
0
n−1 + c1d

1
n−1 + · · ·+ cndnn−1 = −(c1a1e

1
n−1 + · · ·+ cn−1an−1e

n−1
n−1),

· · ·
c0d

0
1 + c1d

1
1 + · · ·+ cndn1 = −c1a1e

1
1,

c0d
0
0 + c1d

1
0 + · · ·+ cndn0 = 0.

Here dji , e
j
i are determined by h0, . . . , hn , ζ1, . . . , ζn . Hence we have

(3)




c0d
0
n + c1(d

1
n − a1e

1
n) + · · ·+ cn(dnn − anenn) = 0,

c0d
0
n−1 + c1(d

1
n−1 − a1e

1
n−1) + · · ·+ cn−1(dn−1

n−1 − an−1e
n−1
n−1) + cnd

n
n−1 = 0,

· · ·
c0d

0
1 + c1(d

1
1 − a1e

1
1) + c2d

2
1 + · · ·+ cndn1 = 0,

c0d
0
0 + c1d

1
0 + · · ·+ cndn0 = 0,
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where d0
0 = dβ0 �= 0. Then, if the homogeneous equations (3) have nontrivial

solutions c0, . . . , cn , the determinant of the matrix consisting of these coefficients
of (3) must be identically zero. Namely,

(4)

∣∣∣∣∣∣∣∣∣∣∣

d0
n d1

n − a1e
1
n ∗ · · · ∗ dnn − anenn

d0
n−1 d1

n−1 − a1e
1
n−1 ∗ · · · dn−1

n−1 − an−1e
n−1
n−1 dnn−1

...
...

...
. . .

...
...

d0
1 d1

1 − a1e
1
1 d2

1 · · · ∗ dn1
d0
0 d1

0 ∗ · · · ∗ dn0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Here,

(dnn − anenn)(dn−1
n−1 − an−1e

n−1
n−1) · · · (d1

1 − a1e
1
1)d

0
0 = dn+1

β0 a1 · · · an + · · ·+
n∏
i=0

dii

and eii = dβ0 = d0
0 �= 0. Then the term including a1a2 · · · an in (4) appears only

in the above term, so (4) �≡ 0 as a function of a1, . . . , an . If we take a1 = a ,
al = akl , where kl =

∑l−1
j=1 kj + 1, l = 2, . . . , n , then (4) is a polynomial in a

of degree
∑n

l=1 kl + 1 = 2n − 1 ( �= constant). Hence (4) has at most 2n − 1
solutions. Therefore, if we change a ∈ C continuously, there exists an ã ∈ C such
that (4) does not equal zero, that is, (4) does not have a nontrivial solution. Thus
we can choose ã1, . . . , ãn such that h0, h1 + ã1ζ1h0, . . . , hn + ãnζnh0 are linearly
independent over C , so f is linearly nondegenerate.

Lemma 3. Let f = (f0 : · · · : fn) and h = (h0 : · · · , hn) be as in Lemma 2 .
Then we have

|Tf (r) − Th(r)| ≤ O(log r), r→ ∞.
Proof.

log ‖f‖ = log
(
|h0|+

n∑
k=1

|hk + akζkh0|
)
+O(1)

≤ log
(
|h0|+

n∑
k=1

(|hk|+ |akζk| |h0|)
)
+O(1)

≤ log
{(

1 +
n∑
k=1

(1 + |akζk|)
)
(|h0|+ |hk|)

}
+O(1)

≤ log
{(

1 +
n∑
k=1

(1 + |akζk|)
)
‖h‖

}
+O(1)

= log 2
(
1 +

n∑
k=1

|akζk|
)
+ log ‖h‖+O(1).
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Hence we have

Tf (r) =
∫
∂B(r)

log ‖f‖σ

≤
∫
∂B(r)

log ‖h‖σ +
∫
∂B(r)

log 2
(
1 +

n∑
k=1

|akζk|
)
σ +O(1)

= Th(r) +O(log r), r → ∞.

On the other hand,

log ‖h‖ = log
n∑
k=0

|hk|+O(1)

≤ log
(
|h0|+

n∑
k=1

(|hk + akζkh0|+ |akζkh0|)
)
+O(1)

≤ log
( n∑
k=0

|fk|+
n∑
k=1

|akζk| |h0|
)
+O(1)

≤ log
(
‖f‖ +

n∑
k=1

|akζk| ‖f‖
)
+O(1)

≤ log
{(

1 +
n∑
k=1

|akζk|
)
(‖f‖)

}
+O(1)

≤ log ‖f‖+ log
(
1 +

n∑
k=1

|akζk|
)
+O(1).

Thus we have

Th(r) ≤
∫
∂B(r)

log ‖f‖σ +
∫
∂B(r)

log
(
1 +

n∑
k=1

|akζk|
)
σ +O(1)

= Tf (r) +O(log r), r → ∞.

We shall prove the main theorem.

Theorem. Let g: Cm → Pn(C) be a given transcendental meromorphic
mapping. Then there exists a regular matrix L = (lij)0≤i,j≤n of the form
lij = cijζi + dij , (cij , dij ∈ C : 0 ≤ i, j ≤ n) , such that detL �= 0 and
f := L · g: Cm → Pn(C) is a meromorphic mapping without Nevanlinna de-
ficient hyperplanes, where ζ1, . . . , ζn are monomials in z1, . . . , zm and linearly
independent over C .



100 Seiki Mori

Here the mapping f := L · g: Cm → Pn(C) means a product of the matrix
L = (lij) and a vector of a reduced representation g̃ =t (g0 : . . . : gn) of g which
does not depend on the choice of g̃ , and a Nevanlinna deficient hyperplane H for
f means a hyperplane with δf (H) > 0.

Remark 1. For the mappings as in the theorem, the inequality |Tf (r) −
Tg(r)| ≤ O(log r), r → +∞ holds, and also the mapping g may be linearly
degenerate or of infinite order.

Remark 2. A rational mapping g always has a Nevanlinna defect hyper-
plane if m = 1 or there is a regular linear change L0 such that L0 · g has a
reduced representation which consists of polynomials including different degrees.
But otherwise g does not have Nevanlinna deficient hyperplanes.

Remark 3. If g is of finite order, we can replace “Nevanlinna deficiency”
with “Valiron deficiency” in the conclusion of the theorem.

Remark 4. If m = 1, we can take ζk = zk , k = 1, . . . , n .

Proof of the theorem. There is a regular linear change L1 such that

h := L1 · g = (h0 : · · · : hn): Cm → Pn(C)

is a reduced representation of the meromorphic mapping h and

(5) N
(
r, (hj)

)
=

(
1− o(1)

)
Th(r), r → +∞, j = 0, 1, . . . , n.

Now we choose ζ1, . . . , ζn as in Lemma 1. (We take larger gap powers if necessary.)
Set

A =
{(

1, a1, . . . , an, a1a2, . . . , a1an, . . . ,

n∏
j=1

aj

)
| aj ∈ C

}
.

Then the set A from Proposition 2 contains E = {(1, α, α2, . . . , α2n−1) | α ∈ C} .
Hence A contains a nondegenerate smooth arc σ([0, 1]) of σ: [0, 1] → PN (C)∗ .
Therefore, by Theorem B, A is of positive projective logarithmic capacity. Hence
by Lemma 2 the set of vectors a = (a1, . . . , an) ∈ Cn \ {0} such that fa =
(h0, h1 + a1ζ1h0, · · · , hn + anζnh0) is linearly nondegenerate, has a positive pro-
jective logarithmic capacity. On the other hand, the number of couples of n + 1
multi-indices αj0 , . . . , αjn with |αjk | ≤ n + 1 is at most finite. Hence, there are
multi-indices βj0 , . . . , βjn and a subset B of A with a positive projective log-
arithmic capacity such that for any vector a ∈ B , {Dβj0

fa, . . . ,Dβjn
fa} is an

admissible basis. We write these multi-indices β0, . . . , βn instead of βj0 , . . . , βjn .
Then for these multi-indices β0, . . . , βn we consider the generalized Wronskian of
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f := fa, (a = (a1, . . . , an) ∈ B). Thus we can write

Wβ :=Wβ0,...,βn(f) =Wβ0,...,βn(h0, h1 + a1ζ1h0, . . . , hn + anζnh0)

= hn+1
0 Wβ0,...,βn

(
1,
h1

h0
+ a1ζ1, . . . ,

hn
h0

+ anζn

)
= hn+1

0 Wβ0,...,βn(1,h1 + a1ζ1, . . . ,hn + anζn)

= hn+1
0

(
W0 + a1W1 + · · · +

n∏
i=1

aiWN

)
�≡ 0,

where hj = hj/h0 , j = 1, . . . , n , and Wk is a generalized Wronskian of some
1,h1, a1ζ1, . . . ,hn, anζn , 0 ≤ k ≤ N = 2n− 1, by the multi-linearity of a determi-
nant. Next we consider the meromorphic mapping F of the form

F := (W0/d : W1/d : · · · :WN/d): Cm → PN (C),

where d = d(z) is a meromorphic function consisting of common factors among
W0, . . . ,WN such that W0/d, . . . ,WN/d are holomorphic functions without com-
mon factors up to unit. This d(z) exists, because Cm is a Cousin domain. Then
there is an i0 such that hi0 is transcendental and Wβ0,...,βn(ζ1, . . . ,hi0 , . . . , ζn)
is not identically zero, since h is transcendental. Hence it is not proportionate
to WN = Wβ0,...,βn(ζ1, . . . , ζn) �≡ 0. Thus the meromorphic mapping F is not
constant. Therefore there exists an a0 =

(
1, ã1, . . . , ãn, ã1ã2, . . . ,

∏n
j=1 ãj

)
∈ B

such that

(6) lim sup
r→∞

mF (r,Ha0 )
TF (r)

= 0,

since the set of Valiron deficient hyperplanes of a nonconstant meromorphic map-
ping is of projective logarithmic capacity zero, that is,

NF
(
r, (〈F,a0〉)

)
= NF (r,Ha0 ) =

(
1− o(1)

)
TF (r), r → +∞,

where
Ha0 = {ξ = (ξ0, . . . , ξN ) | 〈ξ,a0〉 = 0}

and

〈F,a0〉 =
{
W0 + ã1W1 + · · ·+

n∏
k=1

ãkWN

}
/d.

For this ã1, . . . , ãn , we consider the meromorphic mapping given by the following
reduced representation:

f := L2 · h = (f0 : · · · : fn): Cm → Pn(C),
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where

L2 =




1 0 · · · 0
ã1ζ1 1 · · · 0
ã2ζ2 0 · · · 0
...

...
. . .

...
ãnζn 0 · · · 1


 , detL2 = 1 �= 0;

hence
f0 = h0 and fk = hk + ãkζkh0, k = 1, . . . , n.

Then from Lemma 3 we obtain

Tf (r) = Tg(r) +O(log r) =
(
1 + o(1)

)
Tg(r), r → +∞,

if g is not rational.

Lemma 4. Let F and f be as above. Then there exists a positive number
K such that

TF (r) ≤ KTf (r).

Proof.

TF (r) =
∫
∂B(r)

log(|W0|+ |W1|+ · · ·+ |WN |)
1
|d|σ

=
∫
∂B(r)

log(|W0|+ |W1|+ · · ·+ |WN |)σ −
∫
∂B(r)

log |d|σ

≤
N∑
j=1

∫
∂B(r)

log+ |Wj |σ +K1N
(
r, (h0)

)
+O(1)

≤
N∑
j=1

{∫
∂B(r)

log+ |Wj |
|hj1 · · ·hjsζjs+1 · · · ζjn |

σ

+
∫
∂B(r)

log+ |hj1 · · ·hjsζjs+1 · · · ζjn |σ
}
+K1N

(
r, (h0)

)
+O(1)

= o
(
Th(r)

)
+K2Th(r) +O(1) ≤ KTf (r)

for some positive constants K ≥ K2 ≥ K1 > 0, using Theorem A.
We now continue the proof of the theorem. We take an arbitrary vector

b = (b0 , . . . , bn) ∈ Cn+1 \ {0} , which determines the hyperplane H = {w ∈
Cn+1 \ {0} | 〈w,b〉 = 0} in Pn(C). We may assume bn �= 0. Set

A = 〈f,b〉 =
n∑
k=0

bkfk.
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We note that ∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
b1 b2 · · · bn−1 bn

∣∣∣∣∣∣∣∣∣∣
= bn �= 0;

hence we observe that f0, f1, . . . , fn−1, A are linearly independent over C . Thus
we have

mf (r,Hb) =
∫
∂B(r)

log
‖f‖
|A| σ

=
∫
∂B(r)

log
|Wβ0,...,βn(f0, . . . , fn)|

|A| |f0| · · · |fn−1|
σ

+
∫
∂B(r)

log
‖f‖ |f0| · · · |fn−1|

|Wβ0,...,βn(f0, . . . , fn)|
σ

=
∫
∂B(r)

log
|b−1
n | |Wβ0,...,βn(f0, . . . , fn−1, A)|

|A| |f0| · · · |fn−1|
σ

+
∫
∂B(r)

log
‖f‖ |f0 | · · · |fn−1|

|f0|n+1
σ

+
∫
∂B(r)

log
|f0|n+1

|Wβ0,...,βn(f0, . . . , fn)|
σ +O(1),

≤
∫
∂B(r)

log+ |Wβ0,...,βn(f0, . . . , fn−1, A)|
|A| |f0| · · · |fn−1|

σ +
∫
∂B(r)

log
‖f‖n+1

|f0|n+1
σ

+
∫
∂B(r)

log
1∣∣W0 + a1W1 + · · ·+

∏n
j=1 ajWN

∣∣σ +O(1)

≤ o
(
Tf (r)

)
+ (n+ 1)mf (r,H(1,0,...,0))

+
∫
∂B(r)

log
1∣∣W0 + a1W1 + · · ·+

∏n
j=1 ajWN

∣∣σ
+

∫
∂B(r)

log(|W0|+ |W1|+ · · ·+ |WN |)σ +O(1)

≤ o
(
Tf (r)

)
+ (n+ 1)mf (r,H(1,0,...,0))

+
∫
∂B(r)

log
(|W0|+ |W1|+ · · ·+ |WN |)(1/|d|)∣∣W0 + a1W1 + · · ·+

∏n
j=1 ajWN

∣∣(1/|d|)σ +O(1)
= o

(
Tf (r)

)
+ o

(
Tf (r)

)
+

∫
∂B(r)

log
‖F‖

|〈F,a0〉|
σ +O(1) (by (5))

= o
(
Tf (r)

)
+ o

(
TF (r)

)
= o

(
Tf (r)

)
, // (by (6)),
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since TF (r) ≤ KTf (r), for some K > 0 by Lemma 4, and using Theorem A.
Therefore we obtain

δf (Hb) = lim inf
r→+∞

mf (r,Hb)
Tf (r)

= 0,

that is, δf (H) = 0 for any H ∈ Pn(C)∗ . This completes the proof of the theo-
rem.

Problem 1. Is the conclusion of the theorem true if “Nevanlinna deficiency”
is replaced with “Valiron deficiency”?

It seems to me that the set N of meromorphic mappings with Nevanlinna
defects is small in the space M of all meromorphic mappings of Cm into Pn(C).

Problem 2. Something can probably be said in terms of Baire categories.
What if one considers plurisubharmonic functions in M ? Is N then pluripolar?
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