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Abstract. The Nevanlinna defect relation and other results on the Nevanlinna theory assert
that each meromorphic mapping f of C™ into P"(C) has few deficient hyperplanes in P"(C).
However, it seems to me that meromorphic mappings with a deficient hyperplane must be very few.
In this paper, we show that for an arbitrary given transcendental meromorphic mapping f (which
may be linearly degenerate), we can eliminate all deficient hyperplanes in the sense of Nevanlinna
by a small deformation of f.

1. Introduction

For a nondegenerate meromorphic mapping f of C™ into the complex pro-
jective space P"(C), Nevanlinna’s defect relation

N
Zéf(Hj) <n+1
J=1

holds for hyperplanes {H;}"; € P"(C)* in a general position. Hence the set
of hyperplanes with a positive Nevanlinna deficiency in a set X C P"(C)* of
hyperplanes in a general position is at most countable. (Such a hyperplane is called
a deficient hyperplane or a defect.) Sadullaev [5] proved that the set of hyperplanes
with a positive Valiron deficiency is of capacity zero (or it is a locally pluripolar
set). Furthermore, we observe that the set of Valiron deficient hyperplanes has
projective logarithmic capacity zero in the sense of Molzon—Shiffman—Sibony [3].
These results assert that defects of a meromorphic mapping are very few, and
sometimes the Nevanlinna theory is called the equidistribution theory. However,
it seems to me that meromorphic mappings with deficient hyperplanes must be
very few.

In this note, we deal with the problem of whether we can eliminate all defects
for a given meromorphic mapping of C™ into P"(C) by a small deformation of
the mapping. In one dimensional case, for any finite-order transcendental entire
function f, the inequality

> dra) < 57(0)

acC
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holds (see Hayman [2, p. 104]), and we also find o € C such that f(z) = f(z)+az
satisfies 07 (0) = 0. Hence we see

> d5(a) =0,

acC

that is, f does not have a finite defect. In Section 3, we shall prove that for any
transcendental meromorphic mapping f of C™ into P"(C), we can eliminate all
Nevanlinna defects by a small deformation f of f. Here a small deformation f
of f means that their Nevanlinna order functions satisfy

| Ts(r) = T(r)] < O(logr), 1 — +00.

2. Preliminaries

2.1. Notation and terminology. Let z = (21,...,2zy,) be the natural coordi-
nate system in C". Set

(2,6 = 2 for &=, 6m), 2P =(22),
j=1

B(r)={zeC" ||zl <r},  9B(r)={z€C™||z[| =r},
Y = dd°log || z||? and o =d°log|lz||* Ayp™ 1,

where d° = (v/—1/47)(0 — 0), and ¥ = A--- Aty (k-times).

Let f be a meromorphic mapping of C™ into P"(C). Then f has a reduced
representation (fo : -+ : f,), where fo,..., f, are holomorphic functions on
C™ with codimc{z € C™ | fo(z) = -+ = fu(z) = 0} > 2. We write f =
(fo,--., fn) as the same letter of the meromorphic mapping f. Denote D f =
(D fo,...,D*f,) for a multi-index «, where D% = 9l*lp/02" - 028m | o =
(1,...,am), || = a1+ -+ ap, and a function ¢.

Definition. (See Fujimoto [4, Section 4].) We define the generalized Wron-
skian of f by

Wao,._an(f) = det(D*" f : 0 < k < n),

for n + 1 multi-indices o* = (af, ... ,aff‘n), 0<k<n.

By Fujimoto [4, Section 4], for every linearly nondegenerate meromorphic
mapping f of C™ into P™(C), there are n+ 1 multi-indices o, ..., a™ such that
{Do‘of, ..., D" f} is an admissible basis with [a*| < n+1. Then Wao . on(df) =
¢n+1Wa07.“7an(f) # 0 holds for any nonzero holomorphic function ¢ on C™,
where (bf = ((bev R (bfn) .
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For a nonconstant meromorphic mapping f of C™ into P"(C), the proximity

function my(r, H) and the counting function N¢(r, H) of a hyperplane H in
P"(C) are given by
I f]l]all

my(r, H) = /aBm log 1% )|

" dt
N = [ 5] gt
ro U J(fH)NB(1)

for some fixed rg > 0, where

and

H = {w:(wo,...,wn) GC”“\{O}!J;GM 20},

a = (ag,...,a,) € C"1\ {0} and f*H denotes the pullback of H under f. The
Nevanlinna order function T¢(r) of f is given by

Tt R
)= [ G renm,
To B(t)

where w = {w,} = ddlog Zyzo(le/wap), in a neighborhood U, := {w,# 0}.

We write " g
Nov@) = [ T e
o (p)NB(t)

where (¢) denotes the divisor determined by a meromorphic function ¢ on C™.
We note that

log [|fIl = log V/Ifol? + - + [ ful? = log(| fol + - + | ful) + O(1).

Then we observe that
n 1/2 n
750) = [ og(L15R) o0 = [ e Isle+ 0w,
OB(r) Jgo OB(r) Jgo

The Nevanlinna deficiency 0¢(H) and the Valiron deficiency A¢(H) of a hyper-
plane H for f are given by

: : mf(T, H) . FAr, H)
0¢(H) :=liminf ———= =1 — limsup
£ (H) = lim nf T (r) R A O
and . N
Af(H) = limsupM =1- liminfM

r—+o00 Tf(r) r——400 Tf (7“)
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We now define the projective logarithmic capacity of a set in the projective
space P"(C) (see Molzon—Shiffman-Sibony [3, p. 46]). Let E be a compact subset
of P"(C) and Z(F) denote the set of probability measures supported on E. We

define
[z [l[|wll

Ve = [ logilllduu),  ne 2(E)
g weP”(C) [(z, w)|
and
V(FE):= inf sup V,(z).
(&) neZ(E) zepPn(C) w()
Define the projective logarithmic capacity of £ by

1
C(F):=———.
(This is a Frostman type capacity.) If V(E) = 400, we say that the set E is of
projective logarithmic capacity zero. For an arbitrary subset K of P"(C), we put

C(K) = sup C(E),
ECK
where the supremum is taken over all the compact subset E of K. Note that
there is a probability measure pg € & such that V(E) = sup,epn(c) Viio () -

2.2. Some results. A. Vitter [7] proved the following theorem:

Theorem A (Lemma on logarithmic derivatives). Let f = (fo : fi) be a
reduced representation of a meromorphic mapping f: C™ — PY(C). Set F =
fi/fo. Then there exist positive constants ay, as, ag such that

F..
/ log" | —=F|o < a1+ azlogr + aszlog Ty (r), j=1....,m//.
aB(r) F

Here the notation “A(r) < B(r) //” means that the inequality A(r) < B(r)
holds for r outside a countable union of intervals I of finite Lebesgue measure.

Molzon—Shiffman—Sibony [3] proved the following result on the projective log-
arithmic capacity.

Theorem B ([3, p. 47]). Let ¢: [0,1] — P™(C) be a real smooth nonde-
generate arc in P"(C) and K a compact subset of [0,1]. Then the projective
logarithmic capacity C' (go(K )) is positive if and only if K has a positive logarith-
mic capacity in C.

Here “smooth nondegenerate arc ¢” means that there exists a lift ¢: [0, 1] —
C"+1\ {0} such that the k-th derivatives {¢*)(t)}r>0 of (t) span C"+! for
every t € [0,1].

Furthermore, using a similar argument to Tsuji [6, p. 199, Theorem V.5], we
have



Elimination of defects of meromorphic mappings 93

Proposition 1. Let f be a meromorphic mapping of C™ into P"(C) such
that lim,_, o T¢(r) = +o00. Then there exist r; <1y < --- < 1y, — +00 and sets
E,:E,;1 CE,, n=1,2,...,in P"(C)* with

V(En)> 2logTy(ry)

such that, if H does not belong to E,, ,
my(r, H) < 44/ Ty (r) log Ty (r)

for r > r,,. Hence
H
I my(r, H)

=0
oo Ty(r)

outside a set E C P"(C)* of projective logarithmic capacity zero. Here P™(C)*
denotes the dual projective space of P™(C) which consists of all hyperplanes
in P"(C).

This is proved by a method similar to Tsuji [6], using the Frostman type
capacity C'(E) =1/V(E) and the de la Vallee Poussin type capacity

C(E) = ,\SSP//{)\(E) | Ux(2) ::/ . log%d)\(w) <1forall z € E},
wePm™ )

where .# denotes a set of Borel measures on E. Details are omitted here. The
proof (Lemma B) of the inequality (7) in Tsuji [6, p. 199] for the projective log-
arithmic potential is the following. We include here the proofs of Lemma A and
Lemma B, since Ninomiya’s book is written in Japanese.

Lemma A (cf. Ninomiya [4]). Let E be a Borel set in P™"(C). Then we have

Proof. For any € > 0, we take a Borel measure p > 0 with u(E) = C(E)+«.
Then the inequality

sup / log 2] llwll du(w) > 1
zeP™ JwePn ’<27w>’

holds, and there is a measure py € &(FE) such that

Izl llwll
V(E :sup/lo ———— duo(w).
B = 28 8 ) 4
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We put py1 = (C(E) + €)po. Then we have

|2 [}

sup / log ———— du1(w) > 1,
zeP™ JwePn ’(Z,’U)H

or, equivalently,

[z[[[wl] 1
sup / log dpog(w) > =——.
i R o T

Hence we get V(E) > 1/(5’(E) + ¢), so C(E) > C(E). Next we shall show
C(E) < C(E) under the assumption C(E) > 0. For any € > 0, there is a
measure v such that v(F) = C(FE) — e and

sup / log Izlkol dv(w) < 1.
zeP™ JwePn (2, w)]

Now we put po = v/v(E). Then we see puo(E) =1, s0 up € Z(FE), and we have

1
——— =V(FE) = inf sup / log =l dp(w)
weP™n

C(E) HEP Lepn (2, w)]
< Sup/ log Il Ao (w)
zeP"™ JwePn ’(Z,U)H
cop [ gl 11
~zePr Juepr  [(zw)| v(E) T v(E)  C(B) -«

Thus we have C(E) —e < C(E), and hence we have C(E) < C(E). Therefore we

obtain C(E) = C(E). o
Lemma B (cf. Ninomiya [4]). Let E1, Es, ..., E,,... be Borel sets in P™"(C),
and E=J,_, E,. Then
1 1 1 1
<

VE) S V(E) V(B V(B

Proof. For any ¢ > 0, there is a measure p € Z(F) such that

sup / log =l du(w) < V(E) +e.
cepn /g [(zw)]

Put 1/ = p/(V(E)+¢€) (>0). Then we have

sup / log Izl dp/ (w) < 1.
cepnJp o [(zw0)]
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Since log(||z||||w||/|{z,w)|) > 0, we have

2]}

sup/ log ———— du'(w) < 1.
2 S, T W)

Hence p/(E,) < C(E,), and we obtain

oo

VE) te W(B) <Y W(E) <Y C(E)=Y

n=1 n=1

1
V(En)

Proposition 2. Consider the set

n
o = {(1,@1,...,an,a1ag,...,alan,agag,...,an1an,a1a2a3,...,Haj)
(1) =1
N *
]ajec}cP (C)*,

where N = 2" — 1. After some rearrangement it contains vectors of the form
(1,a,02,...,aN), a € C,

Proof. Let a1 = o*, ax =a*, ..., ay =¥, ..., a, = o, where

m—1

ki=1,  km=Y k+1,  m=23_..
=1

3

We shall prove this by induction. In the case where n = 2, we have a; = «a, ag =
a?, 80 ajaz = o®. Hence we obtain (1,a1,az2,a1a2) = (1,a,0?,a3) € c? \ {0},
so this case is proved. Supposing that it was proved until n, we shall prove the
case where n 4+ 1. We set a,41 = o+, where k,4 1 = S ki+ 1. Then we

observe that k,1 = 2™, since

n n—1
kn+1=Z/€l+1=Zkl+kn+1:2kn:2~2”*1:2”

I=1 =1
. . . ni
when k, = 2"~!. By the assumption of induction, we can get 1,a,a?,...,a? ~!
. n n n+1__
by using ai,...,an,a1az, .. .,H?Zlaj. Hence we can get o2 ,a? t1,..., o2 1

. n
by using aiani1,...,0n0n11,01020041, - - -, szlajanH. o
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3. Elimination of defects of meromorphic mappings

For a meromorphic mapping g of C™ into P"(C), we can eliminate all
defects by a small deformation of g. We say that meromorphic mapping g is
transcendental if

Ty(r)

lim &4/~ =4
r—-+oo logr

Note that a meromorphic mapping g is rational if and only if

Ty(r) = O(logr), r — +00.

Lemma 1. There are monomials (i,...,(, in z1,...,%n such that any n
derivatives in {D*( := (D“C1,...,D“(,) | |a] < n+ 1} are linearly independent
over the field M of meromorphic functions on C™, where o = (a1, ..., ) € Z>g

is a multi-index and D“(} = 8'“'@/8210‘1 e 0z O

Proof. We now take positive integers ki, ..., knm, inductively. First, we take
some positive integer k1 > n, and then an integer k; as large as

j—1
kj>H(kT!), j=2,...,nm.
r=1

We now put
k k Ko k
¢ = (Cl’@’.“ 7Cn) — (211 .“Zﬁlm7zlm+1 ~~-Z7]ffm,---,21(n Dm+1 .“Zﬂﬂ?m).
Then, for a multi-index o = (a1, ..., ) with |a] <n+ 1, we have

« « ks—lm 1 sm
D(Cs) = D (2" e )

m

Re—vmtr! k! SRe-nmir=er kg —am
= 1 m
(k(571)m+1 —ay)! (Ksm — an)!
ks— —« -
(: As,azl(s DT Zvlj"fm o, sa,y.)

Hence we can write

Dac - (ba(Al,aflv R 7An,a€n)7

where ¢, € M and &; is some monomial in 21,...,2,. Then for any n multi-
indices a’',...,a’", we observe that
Al,Oéjl P A'T'L,Oéjl
ALan .« ATL,OéjQ
o 40,
Al qin oo Ay ain

Thus any n derivatives in {D“( | |a| < n+ 1} are linearly independent over the
field M of meromorphic functions on C™. o
We note that we can take ki,..., kn, arbitrarily large.
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Lemma 2. Let h = (hg : hy : --- : hy) be a reduced representation of
a meromorphic mapping of C™ into P"(C) and (1,...,(, linearly independent
monomials in z1,...,2y asin Lemma 1. Then there exist (ai,...,a,) such that

aj=ab, j=1,....n, withky =1,k =317"k+1, m=23,...,n, acC,
and
fi=(ho:hi+aiiho: ha + axCaho : -+ : hy + @nCuho)

is a reduced representation of a linearly nondegenerate meromorphic mapping of
C™ into P"(C).

Proof. Let
O(cjsa;) = P(co, 1y, Cn3a1, ..., a0n)
:= cohg + c1(h1 + a1C1ho) + ca(ha + a2aho) + -+ + cn(hn + anCrho)
= (co + a1c1Cy + agcala + - + ancnn)ho + c1thy + -+ - + cphn.
Suppose that for ai,...,ay, there are co,...,c, such that ®(c;;a;) =0. Then
(2)  coho + c1hi + -+ + cphy = —(c1a1(1ho + c2a2C2ho + - - - + cnanCuho).

Now we expand hj, j =0,...,n, to the Taylor series at the origin, and especially

we write - -
ho= Y dgzi* - 20m = " dgaP,
|B8]=0 1B81=0
where 3 = (81,...,0m) is a multi-index. We write 3° as an index of one of the

lowest terms of hg. Then all zﬁo, Clzﬁo, cee anﬁo are different from each other.
. . 0 .
Now we compare the coefficients of both sides of (2) on each (;2” ,i=1,...,n,

and 2z%° . Then we have

0 1 1
(cod,, + c1d,, + -+ + cpd,, = —(cra1€,, + -+ - + cpaney),
0 1 n 1 n—1
codyp_1+cidy_1+ -+ endy_y = —(cra1€6,,_1 + -+ Cn_1Gn-1€,_7),
0 1 n __ 1
cody + c1dy + -+ + cpdi = —cra1€e7,
1
{ cod)) + c1dy + -+ + cpdf = 0.

Here d’

7 .
-, e; are determined by ho, ..., Ay, C1,...,(,. Hence we have

( codg + cl(d}I — ale}z) + -+ en(d), —aney) =0,

Codg,l + cl(d}z,l — ale}z,l) 4o+ cn,l(dﬁj - an,leﬁj) +endy_1 =0,

cod} +c1(di —azel) + cods + -+ + cpd} =0,

( cod) + crdf + -+ cpdl =0,
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where dj = dgo # 0. Then, if the homogeneous equations (3) have nontrivial
solutions cg, ..., c,, the determinant of the matrix consisting of these coefficients
of (3) must be identically zero. Namely,

d dl —ayel koo * d; —aney
1 1 n—1 n—1 n
dy_y dp_y—aren_y x o dpTi—an—1epy n—1
(4) : : S : : = 0.
0 1 1 2 n
n
dy dy ke * dg

Here,

n
(dy — aneﬁ)(dﬁj - an—leﬁii) - (d} — arey)dy = dgjlal tOptct H d;
and e! = dgo = dj # 0. Then the term including ajas - --a, in (4) appears only
in the above term, so (4) # 0 as a function of aq,...,a,. If we take a1 = a,
a; = a*, where k; = 25;11 ki +1,1=2,...,n, then (4) is a polynomial in a
of degree S ki+1=2"—1 (# constant). Hence (4) has at most 2" — 1
solutions. Therefore, if we change a € C continuously, there exists an a € C such
that (4) does not equal zero, that is, (4) does not have a nontrivial solution. Thus

we can choose ai,...,a, such that hg,h1 +a1(iho, ..., hy + an(yho are linearly
independent over C, so f is linearly nondegenerate. o
Lemma 3. Let f=(fo:---: fn) and h = (hg :---,hy,) be as in Lemma 2.

Then we have
|T¢(r) — Th(r)] < O(logr), r — 00.

Proof.

log [1£1| = 1og (ol +Zrhk+akckhor) o)

(

g(rhor+2rhkmak@uhor)) o()

< 1og{ 1+Z laxl)) ol + i } + 0
{

(
(”Z laxl)) Il + 00
o

1+Zrak<kr) T log||A] + O(1).
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Hence we have

Ty(r) = /8 . sl

g/ lothHa—F/ log2(1+2]akgkl)a+0(l)
OB(r) 0B(r) k=1

=Ty (r) + O(logr), r — 00.

On the other hand,
log 14l = 1ogi hul + O(1)
(rhor " Z (s +xGual +laxGio)) ) + O
g(zim +chu ol ) + 01
< tog( 111 + Z w611 +00)
<toe{ (14 ; rakckr) (£} + 0

<log || f|| + log (1 + Z ]aka!) + O(1).

k=1

| /\

Thus we have

Th(r) < /83( )longHa—F/aB( )log(l—#Z!akal)a—FO( )

k=1
=T¢(r) + O(logr), r— 00.0

We shall prove the main theorem.

99

Theorem. Let g: C™ — P"(C) be a given transcendental meromorphic
mapping. Then there exists a regular matrix L = (l;;)o<ij<n of the form
lz‘j = CijCi + dz‘j, (Cz‘j,dz‘j e C:0 < 1,5 < n), such that det L# 0 and
f:=1L-g:C"™ — P"(C) is a meromorphic mapping without Nevanlinna de-
ficient hyperplanes, where (y,...,(, are monomials in zi,...,z, and linearly

independent over C.
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Here the mapping f := L-g: C™ — P"(C) means a product of the matrix
L = (l;;) and a vector of a reduced representation § =" (go : ... : gn) of g which
does not depend on the choice of g, and a Nevanlinna deficient hyperplane H for
f means a hyperplane with d;(H) > 0.

Remark 1. For the mappings as in the theorem, the inequality |T(r) —
T,(r)] < O(logr), r — 4oo holds, and also the mapping ¢g may be linearly
degenerate or of infinite order.

Remark 2. A rational mapping g always has a Nevanlinna defect hyper-
plane if m = 1 or there is a regular linear change Ly such that Ly - g has a
reduced representation which consists of polynomials including different degrees.
But otherwise g does not have Nevanlinna deficient hyperplanes.

Remark 3. If g is of finite order, we can replace “Nevanlinna deficiency”
with “Valiron deficiency” in the conclusion of the theorem.

Remark 4. If m =1, we can take ¢, = 2%, k=1,...,n.

Proof of the theorem. There is a regular linear change L; such that
h:=Li-g=(ho:---:hy): C" —=P"(C)

is a reduced representation of the meromorphic mapping h and

(5) N(r,(hj)) = (1= 0o(1)) Th(r), r—4o0, j=0,1,...,n.
Now we choose (1,...,(, asin Lemma 1. (We take larger gap powers if necessary.)
Set

n
o = {(1,@1,...,an,a1a2,...,alan,...,Haj) | a; EC}.
Jj=1

Then the set & from Proposition 2 contains F = {(1,a,a?,...,a* ") | a € C}.
Hence ./ contains a nondegenerate smooth arc ([0, 1]) of o: [0,1] — P¥(C)*.
Therefore, by Theorem B, o is of positive projective logarithmic capacity. Hence
by Lemma 2 the set of vectors a = (a1,...,a,) € C" \ {0} such that f* =
(ho, h1 + a1C1ho, - -+, hy + anpho) is linearly nondegenerate, has a positive pro-
jective logarithmic capacity. On the other hand, the number of couples of n + 1
multi-indices a’°,...,a/" with |a’%| < n + 1 is at most finite. Hence, there are
multi-indices 47, ..., 3 and a subset % of &/ with a positive projective log-
arithmic capacity such that for any vector a € %, {D’m0 fa,...,D%" f2} is an
admissible basis. We write these multi-indices 3°,...,3" instead of 3%°,... 3.
Then for these multi-indices 3°,..., 3" we consider the generalized Wronskian of
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f:=rf*(a=(a1,...,an) € #). Thus we can write
Wﬁ = Wﬁ0:~~~7ﬁ" (f) = Wﬁo,...,ﬁ" (h07 hl + CL1C1h07 ) hn + anCnhO)
h ho,
= hg+1Wﬁ0 BT 1, L + alclv ceey T F anCn
) ) ho ho
= hg+1W,80,...,ﬁ"(17 h, + algl, .. 7hn + anCn)

= hg+1 (Wo +a Wi+ + HCLZ‘WN) Z 0,
=1

where h; = hj/ho, j = 1,...,n, and W} is a generalized Wronskian of some
1,hy,a1¢1, ..., hy,a,(n, 0 < k< N =2"—1, by the multi-linearity of a determi-
nant. Next we consider the meromorphic mapping F' of the form

F:=(Wy/d:Wi/d:---:Wy/d): C™ — PN (C),

where d = d(z) is a meromorphic function consisting of common factors among
Wo,...,Wn such that Wy/d,...,Wn/d are holomorphic functions without com-
mon factors up to unit. This d(z) exists, because C™ is a Cousin domain. Then
there is an 49 such that h;, is transcendental and Wgo  gn((1,.. . hig, ..., Cn)
is not identically zero, since h is transcendental. Hence it is not proportionate
to Wy = Wao, . gn(Ci,...,Cn) # 0. Thus the meromorphic mapping F' is not

constant. Therefore there exists an ag = (1,&1,...,&n,&1&2,...,H?Zl &j) S
such that
) mp(r, Ha,)
6 limsup ———= =0
( ) rﬂoop TF(T) ’

since the set of Valiron deficient hyperplanes of a nonconstant meromorphic map-
ping is of projective logarithmic capacity zero, that is,

Np(r,((F,a0))) = Np(r, Hay) = (1 — 0(1)) Tr(r), r — 400,

where
Hay = {£=(%0,..-,&n) | (§,a0) = 0}
and .
(F,ag) = {Wo +a Wi+ + [ &kWN}/d.
k=1
For this a1, ..., a,, we consider the meromorphic mapping given by the following

reduced representation:

f:=La-h=(fo: - : fn): C" —P"(C),
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where
1 0 --- 0
aiGi 1 -+ 0
Lo=| G2 0 -~ 0] detL,=1+£0;
anCn 0 - 1
hence

fo=ho and fr = hg + arCrho, k=1,...,n.

Then from Lemma 3 we obtain
Ty(r) = Ty(r) + Ologr) = (1+0(1))Ty(r),  r— +o0,

if ¢ is not rational.

Lemma 4. Let F' and f be as above. Then there exists a positive number
K such that
Tr(r) < KT¢(r).

Proof.
1

Tr(r) :/BB( Tog((Wol + Wl -+ [ Wiy o

:/ log(]Wo]—HWl]+~~~+]WN])J—/ log |d|o
OB(r)

B(r)

< Z/ log™ [Wjlo + K1 N (r, (ho)) + O(1)

N
W]
< log+ o
jzzl{/ﬁB(r) hy, - hy Gy Gl

+

/ log" [hy, - by, Gy - G !ff} + KN (r, (ho)) +O(1)
OB(r)
= O(Th(T)) + KQTh(T) + 0(1) < KTf(T)

for some positive constants K > Ky > K; > 0, using Theorem A. o

We now continue the proof of the theorem. We take an arbitrary vector
b = (by,...,b,) € C*1\ {0}, which determines the hyperplane H = {w €
C" 1\ {0} | (w,b) =0} in P*(C). We may assume b, # 0. Set

k=0
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We note that

1 0 O 0
0 1 0 0
S : o | = bn #0;
o 0 --- 1 0
bl b2 bnfl bn
hence we observe that fo, f1,..., fn_1, A are linearly independent over C. Thus
we have
my(r, Hp) :/a ( )log %a
B(r
:/ lOg ’Wﬁo,...,,@"(fbv"'vfn)’o_
2B(r) Al fol -+ | frn-1]

711l Lo
+/ log -
9B(r) (Wao. . gn(fo,---, fn)l
— / log b, (Wao. . gn(fo,--s fa=1,4)]
OB(r)

| Al fol -+ [ fn—1l
£l [fol -~ [ fa=1l
+/ log o
dB(r) | folm 1

|fol" !
+/ log
OB(r) ’Wﬂo,...,,@"(f()v'"vfn)’

W, w(for o) fae1, A el
< / 10g+ ’ £9,....8 (f07 7f 1, )’O'—i—/ lOg HfH +1O’
2B(r) Al fol -+ | fr—1] oy |fol"

1
+/ lo o o+ 0(1
OB(r) s }W0+G1W1+"‘+Hj:1 CLjWN} ( )

< O(Tf(T)) + (n+ 1)myg(r, Hao,...0))

o+ O(1),

1
+/ lo - o
dB(r) & }W0+CL1W1 +'“+sz1 ajWN}
+/ log(|Wo| + [Wa| + - + [Wi|)o + O(1)
OB(r)

< O(Tf(T)) + (n+ 1)mg(r, Hao,...0))

(Wol + Wil + - + Wiy (1/|d)
+/@3(7~)lo }Wo+a1W1+"'+H?:1ajWN}(1/’dDa+O(1)
= r 0 r 0 ﬂa

=o(Ty0) + o) + [ tom e+ O0) (0 6)

o(Ty(r) + o(Te(r)) = o(Tr(r), //  (by (6)),
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since Tp(r) < KT¢(r), for some K > 0 by Lemma 4, and using Theorem A.
Therefore we obtain

.. .my(r, Hp)
Hy) =1 f 47
O (Hp) = liminf =7 5

=0,
that is, 0¢(H) = 0 for any H € P"(C)*. This completes the proof of the theo-
rem. o

Problem 1. Is the conclusion of the theorem true if “Nevanlinna deficiency”
is replaced with “Valiron deficiency”?

It seems to me that the set N of meromorphic mappings with Nevanlinna
defects is small in the space M of all meromorphic mappings of C™ into P™(C).

Problem 2. Something can probably be said in terms of Baire categories.
What if one considers plurisubharmonic functions in M ? Is N then pluripolar?

Acknowledgements. The author wishes to thank the referee for his valuable
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