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Abstract. We consider the integrals of functions in the α -Bloch space Bα , in the Besov
space Bp , in the Möbius invariant subspace Qp of the weighted Dirichlet space, and we show that
they form algebras with respect to the multiplication.

Introduction

Let X be a Banach space of analytic functions in the unit disk D = {z ∈ C ,
|z| < 1} . For f ∈ X we denote by F the function

F (z) =
∫ z

0

f(ζ)dζ, z ∈ D.

The Banach spaces X we are considering in this paper are the following.
The α -Bloch space Bα , α > 0, is defined to be the space of all functions f

with
‖f‖Bα = |f(0)| + sup

z∈D
(1 − |z|2)α|f ′(z)| < ∞.

By Bα
0 we denote the space of all functions f with

lim
|z|→1

(1 − |z|2)α|f ′(z)| = 0

([10], [11], [13]). For α = 1 we get the well-known Bloch space, denoted by B ,
and the little Bloch space, denoted by B0 ([1], [2]).

The Besov space Bp , 1 < p < ∞ , consists of all functions f with

‖f‖Bp = |f(0)| +
{∫∫

D

(1 − |z|2)p−2|f ′(z)|p dxdy

}1/p

< ∞,
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z = x + iy . It is clear that B = B∞ . The space B1 is defined as the space of all
functions f with

‖f‖B1 = |f(0)| + |f ′(0)| +
∫∫

D

|f ′′(z)| dxdy < ∞.

It is known that B1 ⊂ A , where A denotes the disk algebra of D , that
is, all functions analytic in D and continuous on D . Also Bp ⊂ Bq ⊂ B if
1 ≤ p < q . Note that B2 is the classical Dirichlet space D of the functions f
with

∫∫
D
|f ′(z)|2 dxdy < ∞ (for the basic theory of Bp spaces see [3] or [12,

p. 88–93]).
Finally we denote by Qp , 0 < p < ∞ , the space of all functions f with

‖f‖Qp = |f(0)| +
{

sup
ζ∈D

∫∫
D

|f ′(z)|2 logp
∣∣∣1 − ζz

ζ − z

∣∣∣ dxdy

}1/2

< ∞,

and by Qp,0 , 0 < p < ∞ , the space of all functions f with

lim
|ζ|→1

∫∫
D

|f ′(z)|2 logp
∣∣∣1 − ζz

ζ − z

∣∣∣ dxdy = 0.

It is known ([4]) that for 1 < p < ∞ the spaces Qp (Qp,0 ) are all the same and
equal to the Bloch space B (B0 ). We note that in [8] a boundary value criterion
for functions in Qp (Qp,0 ) is given, and in [9] a Corona type theorem is proved
for Qp , 0 < p < 1.

For p = 1 we have Q1 = BMOA, Q1,0 = VMOA, where BMOA and VMOA
are the classical spaces of analytic functions of bounded mean oscillation and
vanishing mean oscillation ([12, p. 179]). For 0 < p < q it is known Qp ⊂ Qq ([5]).
The space Q1,0 = VMOA contains all Bp functions for 1 ≤ p < ∞ ([12, p. 188]).

For the integrals F of Bloch and BMOA functions it is known that they form
algebras with respect to the multiplication ([2], [6]).

1. The main result

In this paper we prove that the integrals F of functions in Bα and in Bα
0

for 0 < α < 2, in Bp for 1 ≤ p < ∞ , in Qp and in Qp,0 for 0 < p < ∞ form
algebras with respect to the multiplication.

Our proposition is formulated as follows.

Theorem 1. Let f1 , f2 be two functions in X , where X is one of the
following Banach spaces of analytic functions in the unit disk D : Bα , Bα

0 for
0 < α < 2 , Bp for 1 ≤ p < ∞ , and Qp , Qp,0 for 0 < p < ∞ . If

Fj(z) =
∫ z

0

fj(ζ)dζ, j = 1, 2, z ∈ D,
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then

F1(z)F2(z) =
∫ z

0

h(ζ)dζ, z ∈ D,

where h ∈ X and ‖h‖X ≤ C‖f1‖X ‖f2‖X , where C depends only on X .

Revising the proof of Theorem 1 we are able to prove a slightly different
version.

Theorem 2. Let X be one of the Banach spaces in Theorem 1. If

Φj(z) =
1
z

∫ z

0

fj(ζ)dζ, j = 1, 2, z ∈ D,

then

Φ1(z)Φ2(z) =
1
z

∫ z

0

h(ζ)dζ, z ∈ D,

where h ∈ X . Furthermore, ‖h‖X ≤ C‖f1‖X ‖f2‖X , where C depends only
on X .

2. Proofs of the theorems

Proof of Theorem 1. First we show that the functions F (z) =
∫ z

0
f(ζ)dζ ,

z ∈ D , belong to the disk algebra A if f ∈ X , where X is one of the Banach
spaces in our theorem. If X ⊂ B , we have (2.3) below which is a sufficient
condition for F to be in A (cf. [7, Theorem 5.5.2]). This covers all cases except
Bα , 1 < α < 2: here we have to use [7, Theorem 5.5.1] and estimate (2.2) below.

We show that if X is one of our Banach spaces, then

(2.1) ‖F‖∞ ≤ C‖f‖X .

For a function f ∈ Bα we have |f ′(z)| ≤ ‖f‖Bα/(1 − |z|2)α . By integration
we get

(2.2)
|f(z)| ≤ C‖f‖Bα , 0 < α < 1,

|f(z)| ≤ C
‖f‖Bα

(1 − |z|2)α−1
, 1 < α < 2,

and

(2.3) |f(z)| ≤ ‖f‖B

(
1 + log

1
1 − |z|

)
for α = 1.

Integrating again, we obtain (2.1) in the case X = Bα .
In the cases X = Bp , 1 ≤ p < ∞ , or X = Qp , 0 < p < ∞ , we have X ⊂ B

and we know that F must be in A . Furthermore,

‖F‖∞ ≤ C‖f‖B ≤ C‖f‖X ,

which is (2.1).
Next, we consider separately the various cases of our Banach spaces X .
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(i) X = Bα , 0 < α < 2. First we note that (F1F2)′(0) = 0. Further it
follows from (2.2) and (2.3) that

(2.4)
|(F1F2)′′| = |F ′′

1 F2 + F ′′
2 F1 + 2F ′

1F
′
2|

≤ |f ′
1||F2| + |f ′

2||F1| + 2|f1||f2|
≤ C |f ′

1| ‖f2‖Bα + C |f ′
2| ‖f1‖Bα + C‖f1‖Bα‖f2‖Bα

for 0 < α < 1,

(2.5) |(F1F2)′′| ≤ C |f ′
1| ‖f2‖Bα +C |f ′

2| ‖f1‖Bα +C‖f1‖Bα‖f2‖Bα
1

(1 − |z|2)2(α−1)

for 1 < α < 2, and

(2.6) |(F1F2)′′| ≤ C |f ′
1| ‖f2‖B + C |f ′

2| ‖f1‖B + C‖f1‖B‖f2‖B

(
1 + log

1
1 − |z|

)2

for α = 1.
By the above estimates and an easy calculation we get

‖(F1F2)′‖Bα ≤ C‖f1‖Bα‖f2‖Bα

for 0 < α < 2.
(ii) X = Bp , 1 ≤ p < ∞ . First we assume that 1 < p < ∞ . We have

(2.7)
|(F1F2)′′|p = |f ′

1F2 + f ′
2F1 + 2f1f2|p

≤ C |f ′
1|p‖f2‖p

Bp
+ C |f ′

2|p‖f1‖p
Bp

+ C |f1|p|f2|p,

where C depends only on p . Since fj ∈ Bp implies fj ∈ B , we have

|fj(z)| ≤ ‖fj‖B log
(

1 +
1

1 − |z|

)

≤ C‖fj‖Bp log
(

1 +
1

1 − |z|

)
, z ∈ D, j = 1, 2.

It follows that

‖(F1F2)′‖p
Bp

=
∫∫

D

(1 − |z|2)p−2|(F1F2)′′|p dxdy

≤ C‖f1‖p
Bp

‖f2‖p
Bp

+ C‖f1‖p
Bp

‖f2‖p
Bp

∫∫
D

(1 − |z|2)p−2

(
1 + log

1
1 − |z|

)2p

dxdy

≤ C‖f1‖p
Bp

‖f2‖p
Bp

,
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which implies that
‖h‖Bp ≤ C‖f1‖Bp ‖f2‖Bp .

Keeping track of the constants, we can let p −→ ∞ to obtain the algebra
property of integrals of functions in B (cf. [2, Section 3.5]).

We consider now the case X = B1 . By definition

‖(F1F2)′‖B1 = |(F1F2)′(0)| + |(F1F2)′′(0)| +
∫∫

D

|(F1F2)′′′ | dxdy.

We observe that
(F1F2)′(0) = 0

and
|(F1F2)′′(0)| = 2|f1(0)| |f2(0)| ≤ 2‖f1‖B1‖f2‖B1 .

A simple calculation shows

(2.8) |(F1F2)′′′| ≤ C |F1| |f ′′
2 | + C |F2| |f ′′

1 | + C |f1| |f ′
2| + C |f2| |f ′

1|.

Now the functions fj , j = 1, 2, are in the disk algebra A , and

(2.9) ‖fj‖∞ ≤ C‖fj‖B1 , j = 1, 2.

Further

(2.10) ‖Fj‖∞ ≤ C‖fj‖B1 ,

and by [12, p. 58, Remark]

(2.11)
∫∫

D

|f ′
j(z)| dxdy ≤ C |f ′

j(0)| + C

∫∫
D

|f ′′
j (z)| dxdy ≤ C‖fj‖B1 .

From (2.8), (2.9), (2.10) and (2.11) it follows immediately that

‖(F1F2)′‖B1 ≤ C‖f1‖B1‖f2‖B1 .

(iii) X = Qp , 0 < p < ∞ . For a function f ∈ Qp , 0 < p < ∞ , we have
f ∈ B , so that

|f(z)| ≤ ‖f‖B

(
1 + log

1
1 − |z|

)
≤ C‖f‖Qp

(
1 + log

1
1 − |z|

)
, z ∈ D,

and ‖F‖∞ ≤ C‖f‖Qp , where C is a constant depending only on p .
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By using the same notation as in (i) and (ii) we get again

(F1F2)′(0) = 0

and
|(F1F2)′′|2 ≤ C |f ′

1|2‖f2‖2
Qp

+ C |f ′
2| ‖f1‖2

Qp

+ C‖f1‖2
Qp

‖f2‖2
Qp

(
1 + log

1
1 − |z|

)4

.

We will use here the equivalent norm for functions in Qp , which involves the
Möbius transformation ϕζ(z) = (ζ − z)/(1 − ζz), ζ, z ∈ D , and obtain

‖f‖Qp ∼ |||f |||Qp = |f(0)| + sup
ζ∈D

{∫∫
D

|f ′(z)|2
(
1 − |ϕζ(z)|2

)p
dxdy

}1/2

(see [5, Proposition 1]).
We have now

‖(F1F2)′‖2
Qp

≤ C sup
ζ∈D

∫∫
D

|(F1F2)′′|2
(
1 − |ϕζ(z)|2

)p
dxdy

≤ C‖f1‖2
Qp

‖f2‖2
Qp

+ C‖f1‖2
Qp

‖f2‖2
Qp

∫∫
D

(
1 + log

1
1 − |z|

)4

dxdy

≤ C‖f1‖2
Qp

‖f2‖2
Qp

.

(iv) X = Bα
0 , 0 < α < 2 and X = Qp,0 , 0 < p < ∞ . We consider first the

case X = Bα
0 , 0 < α < 2. It suffices to prove that if f1, f2 ∈ Bα

0 , then h ∈ Bα
0 .

By (2.4), (2.5) and (2.6) we have

(1 − |z|2)α|h′(z)| = (1 − |z|2)α|F ′′(z)|
≤ C‖f2‖Bα(1 − |z|2)α|f ′

1(z)| + C‖f1‖Bα(1 − |z|2)α|f ′
2(z)|

+ C‖f1‖Bα‖f2‖Bα(1 − |z|2)α

for z ∈ D , 0 < α < 1,

(1 − |z|2)α|h′(z)| ≤ C‖f2‖Bα(1 − |z|2)α|f ′
1(z)| + C‖f1‖Bα(1 − |z|2)α|f ′

2(z)|
+ C‖f1‖Bα‖f2‖Bα(1 − |z|2)2−α

for z ∈ D , 0 < α < 2, and

(1 − |z|2)|h′(z)| ≤ C‖f2‖B(1 − |z|2)|f ′
1(z)| + C‖f1‖B(1 − |z|2)|f ′

2(z)|

+ C‖f1‖B‖f2‖B(1 − |z|2)
(

1 + log
1

1 − |z|

)2
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for z ∈ D , α = 1.
We see immediately that in all cases

(1 − |z|2)α|h′(z)| → 0 as |z| → 1.

(v) If X = Qp,0 , 0 < p < ∞ , we have to prove that
∫∫

D

|h′(z)|2
(
1 − |ϕζ(z)|2

)p
dxdy → 0 as |ζ | → 1.

Inequality (2.7) for p = 2 and the definition of Qp,0 imply that it suffices to show
that ∫∫

D

|f1|2|f2|2B(ζ, z)dxdy → 0,

where B(ζ, z) =
(
1 − |ϕζ(z)|2

)p ≤ 1, ζ, z ∈ D , and f1, f2 ∈ Qp,0 .
From the estimate

|fj(z)| ≤ C‖fj‖Qp

(
1 + log

1
1 − |z|

)
, z ∈ D,

(cf. the proof of case (iii)) it follows that

|f1(z)|2|f2(z)|2B(z, ζ) ≤ CM(z)

= C‖f1‖2
Qp

‖f2‖2
Qp

(
1 + log

1
1 − |z|

)4

, z, ζ ∈ D.

Obviously, ∫∫
D

M(z)dxdy < ∞

and |f1(z)|2 |f2(z)|2B(z, ζ) → 0 for every z ∈ D when |ζ | → 1.
Lebesgue’s dominated convergence theorem implies that

∫∫
D

|f1(z)|2 |f2(z)|2B(z, ζ)dxdy → 0 as |ζ | → 1.

The proof of our theorem for X = Qp,0 , 0 < p < ∞ , is now complete.
After this, by minor changes, we are able to prove Theorem 2.

Proof of Theorem 2. We have Φ(z) =
∫ 1

0 f(zt)dt . We start with the case
X ⊂ B . If L(z) = 1 + log

(
1/(1 − |z|)

)
, then

|Φ′(z)| ≤
∣∣∣∣
∫ 1

0

tf ′(tz)dt

∣∣∣∣ ≤ C‖f‖BL(z) ≤ C‖f‖XL(z), ‖Φ‖∞ ≤ C‖f‖X .
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As in the proof of Theorem 1, we see that Φ ∈ A . It is clear that h′ = (zΦ1Φ2)′′

is a sum of terms of type (zΦ1)′′Φ2 = f ′
1Φ2 , zΦ′

1Φ
′
2 and Φ1(zΦ2)′′ = Φ1f

′
2 . The

contributions to the estimate of ‖h‖X from terms of the first and third type are
of the form C‖f1‖X‖f2‖X .

A term of the second type is majorized by

C‖f1‖X‖f2‖XL(z)2.

The same computation as in the proof of Theorem 1 will prove Theorem 2. There
are some slight differences in the case X = B1 , which we leave to the reader.

If X = Bα , 1 < α < 2, we have

|Φ′(z)| ≤ ‖f‖Bα

∫ 1

0

(1 − |z|2t2)−α dt ≤ C‖f‖X(1 − |z|)1−α, ‖Φ‖∞ ≤ C‖f‖X ,

omitting again the details.

Question. If we consider Möbius invariant function spaces, we always have
X ⊂ B . If ‖f‖X is essentially |||f ′||| for some norm ||| · ||| such that |||L2||| < ∞ ,
then the argument above works both for the F - and the Φ-transforms. Does it
work for any other transforms?

3. Remark

If we consider the α -Bloch space Bα with α ≥ 2, then we do not have the
algebra property, since in this case h /∈ Bα in general.

To see this we take for example f1(z) = f2(z) = (1 − z)1−α , α ≥ 2, z ∈ D .
Then

F1(z) = F2(z) = log
1

1 − z
if α = 2

and
F1(z) = F2(z) =

1
α − 2

(
(1 − z)2−α − 1

)
if α > 2.

It is easy to check that the function h(z) =
(
F 2

1 (z)
)′ does not belong to Bα .
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