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Abstract. For any compact set E ⊂ Rd , d ≥ 1 , with Hausdorff dimension 0 < dim(E) < d
and for any ε > 0 , there is a quasiconformal mapping (quasisymmetric if d = 1) f of Rd to itself
such that dim(f(E)) > d− ε .

1. Introduction

It is well known that quasiconformalmaps can change the Hausdorff dimension
of sets. For example, the von Koch snowflake is a quasiconformal image of the
circle, but has dimension log 4/ log 3. In this note we answer a question of Juha
Heinonen by showing

Theorem 1.1. For any compact set E in Rd with dim(E) > 0 and any
0 < γ < d there is a quasisymmetric map h: Rd → Rd so that dim

(
h(E)

)
> γ .

When d ≥ 2 quasisymmetric maps are the same as quasiconformal, so this
says that we can always increase dimension by quasiconformal mappings. We must
take dim(E) > 0 since quasisymmetric maps are Hölder continuous, and hence
they cannot increase the dimension of a set of dimension 0. The theorem is easy
in some cases (e.g., E is a line segment) and previously known in others (e.g., the
case of self-similar Cantor sets was done by Gehring and Väisälä [11]).

The idea for proving Theorem 1.1 is as follows. We will define a class of
“standard” Cantor sets constructed from disjoint collections of b-adic cubes in
the usual way and show that given any compact E there is a standard Cantor set
F so that E ∩ F has dimension close to that of E . This reduces the proof to
the case of standard Cantor sets. We will also show that standard Cantor sets lie
on quasiarcs and hence we further reduce to the case of a standard Cantor set on
the real line. Finally, given such a set E and a Frostman type measure µ on E ,
we modify µ to get a doubling measure ν so that the integral h(x) =

∫ x

0
dν is a

quasisymmetric map which sends E to a set with dimension close to 1.
Some background is given in Section 2. The definition and basic properties

of standard Cantor sets is discussed in Section 3. In Section 4 we prove the d = 1
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case of Theorem 1.1 by constructing the measure ν described above. In Section 5
we deduce the case d > 1 and in Section 6 we finish with a few comments and
questions.

I thank the referee for a very careful reading of the manuscript and numerous
suggestions which improved it.

2. Definitions and notation

If E ⊂ Rd , then diam(E) will denote its diameter. Lebesgue measure on Rd

will be denoted by |E|d or just |E| if the dimension is clear from context. Let
b ≥ 2 be an integer and let C b,1

n denote the nth generation b-adic intervals in
R1 , i.e., intervals of the form [jb−n, (j + 1)b−n] . Let C b,d

n be the b-adic cubes in
Rd , i.e., products of intervals in C b,1

n . Given a dyadic cube Q ∈ C b,d
n , we let Q∗

denote its “parent”, e.g., the unique cube in C b,d
n−1 which contains it. Given λ > 0

and a cube Q , we let λQ denote the concentric cube with diam(λQ) = λdiam(Q).
A homeomorphism f : Rd → Rd is called quasisymmetric, if there exists a

homeomorphism η: [0,∞)→ [0,∞) such that

(2.1) |x− a| ≤ t|x− b| ⇒ |f(x) − f(a)| ≤ η(t)|f(x) − f(b)|.

For d ≥ 2 this is equivalent to f being quasiconformal, i.e., there is an M such
that for all x ∈ Ω,

(2.2) lim sup
r→0

supy:|x−y|=r |f(x) − f(y)|
infy:|x−y|=r |f(x) − f(y)|

≤M.

(See [12] or Theorem 34.1 of [19].) When d = 1, quasisymmetry is equivalent to
saying there is an M such that

(2.3)
1
M

≤ |f(I)|
|f(J)| ≤M,

whenever I and J are adjacent intervals of the same length. If f satisfies this
condition when I and J are also b-adic intervals (for some fixed b) then it auto-
matically satisfies it for all I and J (possibly with a larger constant). Clearly, an
increasing homeomorphism f is quasisymmetric if and only if it is the integral of
a doubling measure, i.e., a positive measure µ on R1 which satisfies

1
M

≤ µ(I)
µ(J)

≤M,

where I and J are adjacent intervals of the same length. Again, it suffices to
check this only for b-adic intervals. (Note that we check any pair of adjacent
b-adic intervals of the same size, instead of just those with the same parent. The
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latter condition corresponds to “b-adic doubling measures” and gives rise to a
different class of measures, e.g. [20].)

There are two further properties of these maps which we will use. First, qua-
siconformal mappings are Hölder continuous [9], and have Hölder inverses, and
hence map sets of positive dimension to positive dimension. Secondly, quasisym-
metric maps of the line to itself extend to be quasiconformal maps of Rd [17],
[18]. (See also [2], [1] and [8] for the special cases d = 2, 3.)

Define the Hausdorff content

H∞
α (K) = inf

{∑
diam(Uj)α : K ⊂

⋃
j
Uj

}
,

and
dim(K) = inf{α : H∞

α (K) = 0}.

This is the Hausdorff dimension of K . The mass distribution principle says that
if K supports a positive measure µ such that

(2.4) µ(E) ≤ C diam(E)α,

for each E ⊂ K , then dim(K) ≥ α . By standard covering arguments it actually
suffices for (2.4) to hold only for b-adic cubes. This is because any cube I can be
covered by a fixed number M =M(b) of b-adic cubes {Jk} of smaller size, so

µ(I) ≤
∑

µ(Jk) ≤ C
∑

diam(Jk)α ≤ CM diam(I)α.

If h: R1 → R1 is quasisymmetric, and (2.4) holds for all intervals of the form
h(I), with I b-adic, then dim(E) ≥ α still holds (since the same covering property
still holds, but with a constant M depending on h). In the converse direction,
Frostman’s theorem implies there is a positive measure µ satisfying (2.4) for every
α < dim(K) (e.g., Theorem 8.8 of [14] or Theorem 1, page 7, [7]).

3. Standard Cantor sets

We will say F is a standard Cantor set if there is an integer b ≥ 2 and a
λ > 1 so that F can be written as F = ∩Fn where each Fn is a union of cubes
Q in C b,d

n so that λQ are pairwise disjoint. We will need the following simple
results.

Lemma 3.1. Any standard Cantor set lies on a quasiarc, i.e., for any standard
Cantor set F ⊂ Rd there is a quasiconformal f : Rd → Rd so that F ⊂ f(R1) .

Lemma 3.2. For any compact E ⊂ Rd and any ε > 0 there is a standard
Cantor set F with dim(E ∩ F ) > dim(E)− ε . Moreover, we may take the λ in
the definition of standard Cantor set as large as we wish.
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Lemma 3.3. If E ⊂ R1 , an integer d ≥ 2 and ε > 0 are given, then
there there is a quasiconformal mapping f : Rd → Rd so that dim(f(E)) ≥ (d −
ε) dim(E) .

Proof of Lemma 3.1. The proof is a picture which we draw in the plane. Write
F = ∩Fn as in the definition and consider a component cube Q of Fn . Also recall
that the dilation λQ is disjoint from similar dilations of the other components
of Fn . Consider the components {Qj}N

1 of Fn+1 which lie inside Q . There is a
mapping of λQ to the unit cube in Rd which

(1) maps the λQj ’s to N disjoint cubes centered on the real line,
(2) is a Euclidean similarity on ∂λQ and inside each λQj ,
(3) is quasiconformal in AQ = λQ \

⋃
j λQj .

Figure 3.1. Defining a quasiarc which hits E .

See Figure 3.1. Since the mapping is non-conformal only in AQ and these
regions are all pairwise disjoint for all cubes in Fn and for all n , we can obviously
compose them and pass to a limit to obtain a quasiconformal mapping of Rd

which maps F into the real line.
The same proof shows that given a b1 -adic standard Cantor set E ⊂ R1 and

a b2 -adic standard Cantor set F ⊂ Rd so that for both sets each generational
cube has the same number of children, there is a quasiconformal mapping of Rd

which maps E to F and satisfies

(3.1) C−1 ≤ |f(x) − f(y)|
|x− y|γ ≤ C, x, y ∈ E, γ = log b2

log b1
.

We will use this in the proof of Lemma 3.3.
In R2 , Lemma 3.1 is a special case of a recent result of P. MacManus: if E

is a nowhere dense, compact set whose complement is a uniform domain then E
lies on a quasicircle. See [14].
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Proof of Lemma 3.2. Without loss of generality assume E ⊂ F0 = [0, 1]d

and dim(E) > 0. Choose 0 < ε < dim(E) and set α = dim(E) − 1
2ε . Then by

Frostman’s theorem, there is positive measure µ supported on E which satisfies

µ(K) ≤ C diam(K)α,

for every compact set K .
Assume that the Frostman measure µ on E has mass 1. Suppose b is a large

even integer and λ > 0. There is a constant A (depending on d and λ , but not
on b) so that we can write F0 as the union of A sets, each of which is the union
of at least two b-adic cubes Q with λQ pairwise disjoint. One of these sets has
µ measure ≥ A−1 , so choose one and call it F1 .

Define a measure ν1 on F1 by taking the restriction of µ to F1 and normal-
izing it to have mass 1. Since the normalizing constant is less than A , we get for
every b-adic cube Q

ν1(Q) ≤ Aµ(Q) ≤ AC diam(Q)α ≤ C diam(Q)β ,

where
β = α− logA

log b
≤ α − logA

log
√
d+ n log b

= α− logA
log diam(Q)−1

.

Assume b is so large that β > dim(E)− ε .
In general, suppose Fn is a union of pairwise non-adjacent cubes in C b,d

n and
that we have a probability measure νn on Fn which satisfies

(3.2) νn(Q) ≤ Amin(k,n)µ(Q)

for all Q ∈ C b,d
k for all k . Note that (3.2) implies

(3.3) νn(Q) ≤ AkC diam(Q)α = C
(
A

bα

)k

≤ C diam(Q)β

for all Q ∈ C b,d
k and for all k .

For each component cube Q of Fn we can write Q as the union of A sets,
each of which is the union of non-adjacent b-adic cubes in C b,d

n+1 , and define Fn+1

by choosing the set with largest νn measure. Define a probability measure νn+1

on Fn+1 by restricting νn and normalizing in each component Q of Fn so that
for E ⊂ Q ,

νn+1(E) = νn(E)
νn(Q)

νn(Fn+1)
.

Then clearly νn+1 satisfies (3.2) and hence (3.3) for k ≤ n . To see that it also
satisfies these estimates for intervals for k = n+ 1, note that for Q ∈ C b,d

n ,

νn+1(Q) ≤ Aνn(Q) ≤ An+1µ(Q),
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which is (3.2) with k ≥ n+ 1. As before this implies (3.3) also holds.
Finally, let F =

⋂
n Fn . It is clear that F ⊂ E is a standard Cantor set.

Moreover, the measures {νn} are consistently defined and so define a probability
measure ν on F which satisfies ν(Q) ≤ C diam(Q)β , for all b-adic cubes. By the
mass distribution principle, this implies dim(F ) ≥ β ≥ dim(E)− ε , as desired.

Proof of Lemma 3.3. Fix ε > 0 and choose a large even integer b and set
λ = 2. Let F1 ⊂ R1 be a standard Cantor set constructed using (12b)

d -adic cubes
as in the proof of Lemma 3.2 so that dim(F1 ∩ E) ≥ dim(E)− ε/2d . Let Fd be
a standard Cantor set in Rd formed using (12b)

dn b-adic cubes at the nth step
of the construction. The comment following the proof of Lemma 3.1 shows that
there is a quasiconformal mapping f : Rd → Rd which maps F1 onto Fd , and
satisfies the estimates

C−1 ≤ |f(x) − f(y)|
|x− y|γ ≤ C, γ =

log b
d(log b− log 2) ,

for some C < ∞ and all x, y ∈ F1 . It is a standard result that such a map
multiplies the dimension of any subset of F1 by exactly a factor of γ−1 , so

dim(f(E)) ≥ dim
(
f(E ∩ F1)

)
=
1
γ
dim(E ∩ F1)

= d
(
1− log 2

log b

)(
dim(E)− ε

2d

)
≥ (d− ε) dim(E),

if b is large enough.

4. Proof of Theorem 1.1 for d = 1

Suppose E ⊂ R1 has positive dimension. The easiest way to build a ho-
meomorphism of R1 which increases the dimension of E would be to simply
integrate a Frostman measure for E , i.e., take the map h(x) =

∫ x

−∞ dµ , where
µ is supported on E . Since this maps E to positive Lebesgue measure, it cer-
tainly increases the dimension as much as possible, but this map is not generally
quasisymmetric because the measure µ need not be doubling.

To construct a quasisymmetric mapping which increases the dimension of E
we will modify this idea slightly. Fix 0 < γ < 1 as in the statement of the theorem.
Starting with a Frostman measure µ on E we will construct a doubling measure
ν so that ν(I)γ ≥ Cµ(I) for all intervals. The integral of this measure will be a
quasi-symmetric mapping h and the above estimate will imply the push forward
of µ under h is a Frostman measure for h(E) with exponent γ .

Using Lemma 3.2 we may assume that E = ∩Fn is a standard b-adic Cantor
set in [0, 1] with a Frostman measure µ which satisfies µ(I) ≤ C |I|α , for some
0 < α ≤ dim(E). We may also assume that λ = 3, i.e., that the components of
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Fn have disjoint triples. This means that any b-adic interval of generation n is
either a component of Fn or is adjacent to at most one such component.

To define ν it suffices to give the ν measure of each b-adic interval in [0, 1] .
We do this by induction on the generation of the interval. For I = [0, 1] , let
ν(I) = µ(I). For the induction step fix some 1 > ε > 0. Suppose we have
already defined ν(I) for some nth generation b-adic interval I . Let I1, . . . , Ib be
its “children”. To define the measures of these intervals we consider three cases:
(1) I is a component of Fn , (2) I is adjacent to such a component or (3) I is not
adjacent to any component of Fn . As part of the induction, we also prove that
any two children, Ij and Ik , of I satisfy

ην(Ij) ≤ ν(Ik) ≤ η−1ν(Ij),

for some η depending only on b and ε .

Case 1. Suppose Ij is a child of I which is a component of Fn . We say Ii ⊂ I
is “good” if µ(Ii) ≥ µ(I)ε/b . If µ(Ii) < µ(I)ε/b then we say Ii is “bad”. Let
B be the number of bad children and note that B > 0 because no two adjacent
children can both hit E and thus at least one has zero µ measure. Define

δ =
1
B

(
1− 1− ε

µ(I)

∑
Ij good

µ(Ij)
)
,

and note that δ ≥ B−1
(
1− (1 − ε)

)
≥ ε/b . Next, define

ν(Ii) =
{
δν(I), if Ii is bad,
(1 − ε)ν(I)µ(Ii)/µ(I), if Ii is good.

Our choice of δ implies
∑b

i=1 ν(Ii) = ν(I). Each of the bad intervals receives at
least mass ν(I)ε/b and each of the good intervals receives at least ν(I)(1− ε)ε/b .
Thus all the children receive comparable measure, say ν(Ij) ≥ η1ν(Ik), j �= k ,
where η1 = (1− ε)ε/b . In particular

(4.1)
(1− ε)ε

b
≤ ν(Ij)
ν(I)

≤ 1− ε

b
.

Finally, observe that
ν(Ij)
ν(I)

≤ µ(Ij)
µ(I)

,

if Ij is good and the reverse inequality holds if Ij is bad (i.e., ν gives a larger
fraction of the mass of I to bad intervals than µ does and gives less to the good
intervals than µ does).
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Case 2. Next suppose I = I1 ∪ · · · ∪ Ib ∈ C b
n is adjacent to a component

interval J = J1 ∪ · · · ∪Jb of Fn (recall that since components have disjoint triples
I can be adjacent to at most one component). With loss of generality, assume Ib
is adjacent to J1 . Set ν(Ib) = ν(J1)ν(I)/ν(J). Note that by (4.1) we get

(1 − ε)ε
b

ν(I) ≤ ν(Ib) ≤
(
1− ε

b

)
ν(I).

Now define ν on the remaining b − 1 intervals so that they get equal measure,
namely

ν(Ij) =
(
ν(I)− ν(Ib)

)
/(b − 1) ≥ ε

b(b − 1)ν(I) ≥ η1ν(I),

for j = 1, . . . , b− 1. Thus any two children of I have comparable ν measure with
some constant η2 depending only on b and ε .

Case 3. Finally, if I is not adjacent to a component of Fn simply define
ν(Ii) = ν(I)/b (i.e., each subinterval gets equal measure). Thus the ν measure of
any two children is the same.

This completes the construction of ν . To complete the proof of Theorem 1.1
we simply have to check that ν is a doubling measure and that the corresponding
homeomorphism maps E to a set of dimension ≥ γ .

Proof that ν is a doubling measure. It is enough to check the doubling
condition for b-adic intervals. We have already done this (during the construction
of ν ) if we take two intervals with the same parent so suppose I1 and I2 are
adjacent b-adic intervals of the same length and have different parents I∗1 , I∗2 .
Since components of Fn have disjoint triples there are only three possibilities (up
to relabeling): (1) I∗1 is a component of Fn and I∗2 is not, (2) I

∗
1 is adjacent to a

component but I∗2 is not, or (3) neither is adjacent to a component of Fn . In case
(1) ν(I1)/ν(I2) = ν(I∗1 )/ν(I∗2 ) by definition. By taking parents until we reach a
common case 1 ancestor, we see that any pair of this form is comparable with the
constant η1 . In case (2) ν(I1)/ν(I2) is comparable to ν(I∗1 )/ν(I

∗
2 ). Moreover, I

∗
1

is a component of Fn and I∗2 is adjacent to it, so their ν measures are comparable
with an absolute constant. Thus ν(I1) and ν(I2) are comparable by a (different)
absolute constant. Finally, in case (3), ν(I1)/ν(I2) = ν(I∗1 )/ν(I∗2 ) by definition.
Keep taking parents until either we reach a common ancestor, or are in case (2).
In either case we have comparable ν measures and the same constant works for
I1 and I2 . This completes the proof that ν is a doubling measure.

Proof that h(E) has large dimension. It suffices to show that if

h(x) =
∫ x

0

dν,
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then the measure σ defined by σ(F ) = H∗µ(F ) = µ
(
h−1(F )

)
is a Frostman

measure on h(E) with exponent γ , i.e.,

σ(J) ≤ C |J |γ.
It suffices to do this for intervals which are h images of b-adic intervals, so using
the definition of h and σ , we need only show µ(I) ≤ Cν(I)γ , or equivalently

(4.2) ν(I) ≥ Aµ(I)1+κ,

for all b-adic intervals I with some A > 0 and κ = 1/γ − 1.
Fix an interval I ∈ C b

n and for each k = 0, . . . , n let Ik ∈ C b
k be the unique

interval containing I . Let

xk = − logb µ(Ik), yk = − logb ν(Ik).

Then desired inequality (4.2) becomes yk ≤ (1+κ)xk+logb A
−1 . Since µ satisfies

µ(I) ≤ C |I|α , we have xn ≥ αn− logbC , or equivalently

n ≤ xn + logbC

α
.

If Ik is a good interval then

ν(Ik)
ν(Ik−1)

= (1 − ε) µ(Ik)
µ(Ik−1)

,

which implies

(4.3) yk − yk−1 = − logb(1− ε) + (xk − xk−1).

If ε < 1
2 , then logb(1− ε) ≤ 2/(ε log b), so this becomes,

(4.4) yk − yk−1 ≤ 2
ε log b

+ (xk − xk−1).

On the other hand, if Ik is bad, then ν gives a larger proportion of its mass to Ik
than µ did, i.e.,

ν(Ik)
ν(Ik−1)

≥ µ(Ik)
µ(Ik−1)

,

which implies

(4.5) yk − yk−1 ≤ xk − xk−1.

Since y0 = 0, summing (4.3) and (4.5) for k = 1, . . . , n gives

yn ≤ xn +
2n

ε log b
≤ xn +

2 logb C + xn

αε log b
≤ xn(1 + κ) +A,

if we choose b so large that 2(αε log b)−1 ≤ κ . This is the desired inequality, and
completes the proof.
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5. Proof of Theorem 1.1 when d ≥ 2

Suppose E ⊂ Rd has dimension α > 0. By Lemma 3.1 there is a standard
Cantor set F ⊂ E with dim(F ) > 1

2α , and by Lemma 3.2 F has a quasiconformal
image F1 = f1(F ) which lies on a line. Since quasiconformal mappings are Hölder
continuous [9], F1 has positive Hausdorff dimension, and hence by Theorem 1.1
there is a quasisymmetric map f2 of the line to itself which maps F1 to a set F2

with dimension as close to 1 as we wish, say ≥ 1− γ/10d . Since quasisymmetric
maps of the line to itself extend to be quasiconformal maps of Rd [18], [17], we may
assume F2 = f2(F1) where f2 is quasiconformal on Rd . Next use Lemma 3.3 to
find a quasiconformal map f3 of Rd to itself which maps F2 to a set of dimension
≥ γ . Thus f3 ◦ f2 ◦ f1 is the desired quasiconformal map. This completes the
proof of Theorem 1.1.

6. Decreasing dimension by QC maps

We have shown how to increase the dimension of a set by a quasiconformal
mapping. What about decreasing the dimension? It is easy to see there are sets
whose dimension cannot be lowered by any quasiconformal mapping. A trivial
example is a line segment. A well-known result of Gehring and Väisälä [11], [10],
implies that if d ≥ 2, quasiconformal images of sets in Rd of dimension d also
have dimension d . The latter result fails for d = 1 since a quasisymmetric map
may send a set of positive Lebesgue measure to dimension strictly less than 1
(e.g., [5] or [16]). Other examples of sets whose dimension cannot be decreased
can be obtained by considering non-removable sets for quasiconformal mappings.
Any set of dimension less than d− 1 is removable (Theorem 35.1, [19]), and there
are examples of totally disconnected, non-removable sets of dimension d − 1 (at
least when d = 2, 3, [3], [4], [6], [13]). Thus the quasiconformal image of such a
set can never have smaller dimension. There are also Cantor sets in R3 , such as
Antoine’s necklace, whose complements are not simply connected, and hence no
homeomorphism of R3 can map the set to dimension less than 1. For 0 < α < d ,
is there always a set E ⊂ Rd of dimension α whose dimension cannot be lowered
by any quasisymmetric map?
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