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Abstract. We discuss two characteristic functions, T∞ and T1 , to measure the growth of
operator valued meromorphic functions. The smaller one, T∞ , is based on the operator norm,
while T1 works within finitely trace class meromorphic functions and is preserved in inversion.
Applications to perturbation analysis of linear operators are given.

1. Introduction

If f denotes a meromorphic function satisfying a normalization condition
f(0) = 1, then the first main theorem in the value distribution theory, [14], [15],
says in particular that

(1.1) T (r, f) = T

(
r,

1

f

)
.

Here T is the Nevanlinna characteristic function which measures the size of f in
the disc |z| ≤ r . The theory has since 1925 been generalized in many ways but
not to functions taking values in a space of linear operators, where, after all, an
inversion is available. The obvious way of generalizing the characteristic function
T to vector valued meromorphic functions goes by replacing the absolute value by
the norm. This leads to a characteristic function, let us call it T∞ , which codes
in a natural way many properties of such meromorphic functions but supports no
analogy to (1.1). In fact, if for example our meromorphic function is simply I−zA
where I is the identity and A is a bounded operator, then knowing the growth of
T∞(r, I − zA) does not tell us how its inverse (I− zA)−1 grows as a meromorphic
function—or whether it is meromorphic at all.

In numerical analysis we meet questions of the following nature. If A is a
bounded linear operator in a Hilbert space, how small can ‖p(A)‖ be if p is a
monic polynomial of given degree, or how fast this decays with the degree, see [9],
[11]. The usual tool is the holomorphic functional calculus in which you would
treat the resolvent as an analytic function outside the spectrum and write

(1.2) p(A) =
1

2πi

∫

Γ

p(λ)(λI −A)−1 dλ.
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Here Γ would surround the spectrum within a suitable distance so that the resol-
vent would be of moderate size along it. However, often the answers to this type of
questions are not sensitive to low rank perturbations but this we cannot conclude
directly from (1.2) as the spectrum, (and hence a suitable path Γ) can be a rather
wildly behaving function in low rank perturbations. Think now the resolvent as a
meromorphic function rather than an analytic one outside the spectrum. Multiply
it by a function χ(λ) = 1 + a1λ

−1 + a2λ
−2 + · · · , vanishing at the poles such that

the product χ(λ)(λI −A)−1 is entire in the variable 1/λ . We show in this paper
that the growth of T∞ as |λ| → 0 of the resolvent is insensitive in low rank per-
turbations. Knowing the growth allows one to estimate ‖χ(λ)(λI−A)−1‖ without
knowledge of the actual locations of possible poles. Finally, instead of (1.2) we
would use the fact that the coefficients pk(A) in the expansion

χ(λ)(λI −A)−1 =
∑

pk(A)λ−1−k

satisfy

pk(A) =
1

2πi

∫

|λ|=r
λkχ(λ)(λI −A)−1 dλ

and therefore they decay with a speed determined by the growth of χ(λ)(λI−A)−1 .
Another place where it is useful to think the resolvent as a meromorphic

function is in estimating the powers of an operator. There are well-known results
in finite dimensional spaces of the form that provided a resolvent growth condition
outside the unit circle is satisfied then the powers are bounded by a constant which
depends on the dimension. In finite dimensional spaces resolvents are rational
functions and the dimension gives an upper bound for their degree. If we measure
the resolvent as a meromorphic function using T∞ we obtain dimension free results
in Hilbert spaces, see [10], [13].

The full power of the first main theorem is obtained by applying (1.1) to f−a ,
with a complex constant a . After all, f and f−a are “large” at same places. This
gave a quantitative meaning for a value to be exceptional in the Picard sense. Now,
a simple analogy of this with operators is the following, see Examples 5.2.7, 5.2.8
in [9], and Example 4.3 below. A solution operator to a second order differential
equation with pure initial value conditions is a quasinilpotent Volterra operator
while the “same” differential equation with two point boundary conditions gives a
self-adjoint Fredholm operator. The analogy with initial conditions corresponding
the exceptional case is obvious. Observe that the change of boundary conditions
is just a rank-1 perturbation.

In [12] we proposed a characteristic function, let us call it here T1 , for square
matrices with meromorphic elements which satisfies the analogy of (1.1):

(1.3) T1(r, F ) = T1(r, F
−1)
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provided F (0) = I . The starting point was the following observation: writing

log |det F | =
∑

log+ σj (F ) −
∑

log+ σj (F
−1)

where σj denote the singular values, provides the analogy of the key formula
log |f | = log+ |f | − log+(1/|f |) .

In this paper we extend T1 for functions of the form I−F where F is finitely
S1 -meromorphic, that is, functions which take values in the trace class with the
extra property that the principal parts of poles are of finite rank each. Now, these
have inverses (I − F )−1 in the same class and the analogy of (1.3) holds.

We can use T1 in perturbation analysis as follows. Suppose F−1 and G are
meromorphic, then

T∞(r, (F + G)−1) ≤ T∞(r, F−1) + T∞
(
r, (I + F−1G)−1

)
.

If now F and G are such that F−1G is finitely S1 -meromorphic, then

T∞
(
r, (I + F−1G)−1

)
≤ T1

(
r, (I + F−1G)−1

)
= T1(r, I + F−1G) + C

where C depends on F−1G at the origin.

The basic concepts are presented in Section 2, Section 3 contains the identity
for inversion, while in Section 4 we present some applications to perturbation
theory. Finally, the concepts are applied to the resolvent in Section 5.

2. Basic definitions

In this paper H is a separable complex infinite dimensional Hilbert space. We
discuss two different extensions of the theory of scalar meromorphic functions to
operator valued functions. The first one reduces to the scalar theory when applied
to operators of the form fI where f is a meromorphic scalar function and I the
identity operator. The second one agrees with the scalar theory when applied to
operators of the form diag(f, 1, 1, 1, . . .) .

Let

(2.1) F : z 7→ F (z) =
∞∑

−m
Aj(z − z0)

j

be such that it has expansions of this form around every z0 in |z0| < R ≤ ∞ . Here
Aj are bounded linear operators in H and

∑∞
−m ‖Aj‖ηj < ∞ for some η > 0,

and A−m is nontrivial.
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Definition 2.1. Let F be a meromorphic operator valued function as above.
If −m < 0, then F has a pole at z0 of order m , otherwise F is analytic at z0 .
Denote m(z0) := max{m, 0} and define

(2.2) n∞(r, F ) :=
∑

|b|≤r
m(b).

Thus n∞ counts the poles together with their orders. We then define as usual

(2.3) N∞(r, F ) :=

∫ r

0

n∞(t, F ) − n∞(0, F )

t
dt + n∞(0, F ) log r.

Also, we set

(2.4) m∞(r, F ) :=
1

2π

∫ π

−π
log+ ‖F (reiφ)‖ dφ

and

(2.5) T∞(r, F ) := m∞(r, F ) + N∞(r, F ).

Finally, we denote

(2.6) M∞(r, F ) := sup
|z|=r

‖F (eiφ)‖.

We collect the main properties of T∞ into the following two theorems.

Theorem 2.1. Let F , G and Fi be meromorphic for |z| < R ≤ ∞ . Then
T∞(r, F ) is a nonnegative and nondecreasing function in r for 0 ≤ r < R which
is convex in the variable log r . The following inequalities hold

T∞(r, FG) ≤ T∞(r, F ) + T∞(r,G),(2.7)

T∞

(
r,

k∑

1

Fi

)
≤

k∑

1

T∞(r, Fi) + log k.(2.8)

Proof. The proof is as for the scalar case. See any recent text book on the
topic, or compare with the proof of Theorem 2.4. The important fact is that
log+ ‖F‖ is subharmonic whenever F is analytic [1].

Theorem 2.2. If F is analytic for |z| < R and 0 < r < θr < R , then

(2.9) T∞(r, F ) ≤ log+ M∞(r, F ) ≤ θ + 1

θ − 1
T∞(θr, F ).

Proof. Again, since log+ ‖F‖ is subharmonic if F is analytic, the claim follows
using the Poisson–Jensen formula as in the scalar case.
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If f is a scalar meromorphic function (with f(0) = 1) then by the first main
theorem

T (r, f) = T

(
r,

1

f

)
.

It is clear that we cannot have an identity in the operator valued case for T∞ . For
example, if

F : z 7→ I − zA

where A is a bounded operator, then T∞(r, F ) = log+ r + O(1) but the inverse
(I − zA)−1 need not even be meromorphic in the whole plane.

Example 2.1. Let in particular H := l2 and A := diag(αj) where {αj} is a
decreasing sequence of positive numbers. Now (I − zA)−1 has poles at 1/αj and
it is meromorphic in the whole plane if and only if limαj = 0. That is, if and
only if A is compact. Observe that

m∞
(
r, (I − zA)−1

)
= O(1)

no matter whether A is compact. All growth in T∞
(
r, (I − zA)−1

)
comes from

counting the poles (this is true for all self-adjoint operators, see Theorem 5.5). In
fact

T∞
(
r, (I − zA)−1

)
=
∑

log+(αjr) + O(1).

Observe that here the eigenvalues αj are also the singular values of A . If we
like to conclude from the growth of I − zA the growth for its inverse we have to
see more growth in it. We do this by including all the singular values into the
characteristic function, and not just the largest one, the norm.

Definition 2.2. The singular values σj(B) of a bounded operator B are

(2.10) σj(B) := inf
rank(Bj)<j

‖B −Bj‖.

Also, we set

(2.11) σ∞(B) := lim
j→∞

σj(B).

Remark 2.1. It is well known that K is compact if and only if σ∞(K) = 0.

Lemma 2.1. If K is compact, then

(2.12) σ∞(I −K) = 1

and in particular σj(I −K) ≥ 1 for all j .
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Proof. Since K is compact, there exists a sequence of finite rank operators,
{Aj} converging to K and thus

σ∞(I −K) = lim
i→∞

σi(I −K) ≤ lim inf ‖I −K + Aj‖ ≤ 1.

If the inequality would be proper, then for some k , σk(I −K) < 1 and further,
there would be an operator Kk of rank less than k such that

‖I −K −Kk‖ < 1.

Taking large enough j we would then have

‖I −Aj −Kk‖+ ‖K −Aj‖ < 1.

But Aj+Kk is finite dimensional and its distance to identity cannot be less than 1.

Definition 2.3. A compact operator K is in the Schatten class Sp , if

‖K‖p :=

(∑

j

σj (K)p
)1/p

<∞.

Lemma 2.2. If K ∈ S1 , then

(2.13)
∑

j

log+ σj(I −K) ≤ ‖K‖1.

Proof. The claim follows from σj (I−K) ≤ 1+σj(K) and log+
(
1+σj(K)

)
≤

σj (K) .

Definition 2.4. Let A be a bounded linear operator. We define [12] the
total logarithmic size of A by

(2.14) s(A) :=
∑

j

log+ σj (A)

whenever finite.

Lemma 2.3. If A and B are compact, then for all k

(2.15)
k∑

1

|σj (I + A + B) − σj(I + A)| ≤
k∑

1

σj (B).

Proof. Fix any k . If B is bounded one can define |||B|||k :=
∑k

j=1 σj (B) .
These are sometimes called Ky Fan norms. In finite dimensional spaces they have



Growth of operator valued meromorphic functions 9

the following property. Let Σ(B) := diag
(
σj (B)

)
where the singular values are

listed decreasingly. Then

|||Σ(A)− Σ(B)|||k ≤ |||A−B|||k,

see [6, p. 448]. So, (2.15) holds in finite dimensional spaces. Since A and B are
compact we can approximate them within any ε > 0 by finite rank operators Am

and Bn . But then we can take a large enough finite dimensional subspace H0 such
that Am and Bn are invariant in it, and vanish in the orthogonal complement.
We can then add extra dimensions to it, so many as needed to guarantee that the
k largest singular values of I + Am and of I + Am + Bn , when restricted to that
subspace, are all ≥ 1. This is possible by Lemma 2.1. But then the result in finite
dimensional spaces can be used and we have

k∑

1

|σj(I + A + B)− σj (I + A)| ≤
k∑

1

|σj(I + Am + Bn) − σj(I + Am)| + 3kε

≤
k∑

1

σj(B) + 4kε.

Continuity Lemma 2.4. If A , B ∈ S1 , then

(2.16) |s(I + A) − s(I + B)| ≤ ‖A−B‖1.

Proof. If a and b are nonegative numbers then

| log(1 + a) − log(1 + b)| ≤ |a− b|.

But σj(I + A) , σj(I + B) ≥ 1 so that

| log+ σj(I + A) − log+ σj(I + B)| ≤ |σj(I + A) − σj(I + B)|.

The conclusion now follows from Lemma 2.3.

Theorem 2.3. Suppose F : z 7→ F (z) is an analytic S1 -valued function for
|z − z0| < R0 . Then the function u :

z 7→ u(z) := s
(
I − F (z)

)
=
∑

j

log+ σj
(
I − F (z)

)

is continuous and subharmonic for |z − z0| < R0 .

To prove this we first state some lemmas.
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Approximation Lemma 2.5. If F is an analytic S1 -valued function in
|z − z0| < R0 , then F can be approximated in S1 by finite rank polynomials
uniformly in discs |z − z0| ≤ η < R0 .

Proof. Let the Taylor coefficients of F at z0 be Aj . Then in particular

∞∑

n+1

‖Aj‖1ηj → 0 as n→∞.

Let A
(n)
j be a finite rank approximation to Aj such that

‖Aj −A
(n)
j ‖1 <

1

n

1

j!
.

Set

Fn(z) :=
n∑

j=0

A
(n)
j (z − z0)

j .

Then for |z − z0| < η

‖F (z) − Fn(z)‖1 ≤
n∑

j=0

1

n

1

j!
ηj +

∞∑

n+1

‖Aj‖1ηj ≤
1

n
eη +

∞∑

n+1

‖Aj‖1ηj → 0

as n→∞ .

Lemma 2.6. The function
∑

log+ σj
(
F (z)

)
is subharmonic for analytic F

in finite dimensional spaces.

Proof. This is in [2].

Proof of Theorem 2.3. We start by approximating F by a finite rank poly-
nomial Fn in a neighborhood of a point z0 . Then there exists a subspace, say
Hn of dimension d ≤ 2 rank(Fn) such that Fn is invariant in Hn and vanishes in
the orthogonal complement. Now, at most d singular values of I − Fn(z) can be
different from 1. Denote by An(z) the finite dimensional operator obtained by
restricting I − Fn(z) to Hn . Then by Lemma 2.6

z 7→
∑

log+ σj
(
An(z)

)

is subharmonic. It is continuous as An is a polynomial and the singular values
are continuous. By construction, however

∑
log+ σj

(
An(z)

)
=
∑

log+ σj
(
I − Fn(z)

)
.

But combining the Approximation and Continuity lemmas we conclude that

z 7→
∑

log+ σj
(
I − F (z)

)
= s
(
I − F (z)

)

is the uniform limit of subharmonic continuous functions and therefore itself also
subharmonic and continuous.
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Theorem 2.3 suggests that we could look at the following quantities.

Definition 2.5. If F is an analytic S1 -valued function then we set

(2.17) M1(r, I − F ) := sup
|z|=r

∞∏

1

σj
(
I − F (z)

)

and

(2.18) m1(r, I − F ) :=
1

2π

∫ π

−π
s
(
I − F (reiφ)

)
dφ.

Recall, that in (2.17) σj
(
I − F (z)

)
≥ 1 by Lemma 2.1.

Example 2.2. An operator valued function can be entire in the uniform
norm but have a finite domain if considered as an analytic function taking values
in S1 . In fact, let Aj be a diagonal operator with positive decaying diagonal
elements αj,k such that

∞∑

k=1

αj,k = 1

while αj,1 = 1/j!. Then ‖Aj‖ = 1/j! while ‖Aj‖1 = 1 and if F (z) :=
∑

j Ajz
j

then
‖F (r)‖1 =

r

1− r
while

‖F (r)‖ = er − 1.

For 1 + x ≤ e we have x/(e − 1) ≤ log(1 + x) ≤ x which then gives

1

(e − 1)(1− r)
≤ logM1(r, I + F ) ≤ 1

1− r

while
logM∞(r, I + F ) = r.

What still remains, is to specify what we here mean by a pole and how to
count their multiplicities. As long as F is analytic as an S1 -valued function,
either I − F (z) has an inverse

(
I − F (z)

)−1
= I + F (z)

(
I − F (z)

)−1

with
F (z)

(
I − F (z)

)−1 ∈ S1,

or 1 is an eigenvalue of F (b) with a finite dimensional eigenspace. In particular,

at such a point b , F (z)
(
I − F (z)

)−1
has an expansion of the form

∞∑

−m
Bj(z − b)j

where the operators Bj are all in S1 and of finite rank when j < 0.
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Example 2.3. Let F (z) := diag
(
αj/(1− z)

)
where {αj} is a decreasing

sequence of positive numbers so that their sum is finite. Then F is clearly a
meromorphic S1 -valued function in the whole plane. However, the inverse

(I − F )−1 = I + diag

(
αj

1− z − αj

)

has an accumulation point of poles at 1 and we see that it is essential to assume
the principal parts to be of finite rank.

Definition 2.6. We say that a meromorphic operator valued function F
is finitely S1 -meromorphic in |z| < R1 ≤ ∞ , for short F ∈ F1(R1) , if the
Laurent-series (2.1) converges in S1 , and the coefficients Aj in the principal part

−1∑

−m
Aj(z − z0)

j

are of finite rank, at every pole z0 .

In [16] there are some related concepts. In particular, compact operator valued
functions such that the principal parts are of finite rank are there called essentially
meromorphic.

Lemma 2.7. If F,G ∈ F1(R) , then

FG ∈ F1(R),(2.19a)

F + G ∈ F1(R),(2.19b)

and

F (I − F )−1 ∈ F1(R).(2.19c)

If A is an analytic operator valued function in |z| < R , then also

(2.19d) AF and FA ∈ F1(R).

Proof. All claims are easy. Recall that for linear operators A,B : ‖AB‖1 ≤
‖A‖‖B‖1 .

Definition 2.7. If F ∈ F1(R) then set

(2.20) µ(z0) := lim sup
z→z0

s
(
I − F (z)

)

log
1

|z − z0|
.

Lemma 2.8. If F ∈ F1(R) , then at poles b , µ(b) is a positive integer,

depending only on the principal part
∑−1
−m Aj (z − b)j .
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Proof. Write

F (z) =:
−1∑

−m
Aj(z − b)j + G(z)

with G analytic near b . Then by the Continuity Lemma

∣∣s
(
I − F (z)

)
− s
(
I − F (z) + G(z)

)∣∣ ≤ ‖G(z)‖1.

But ‖G‖1 is bounded near b and has thus no effect on µ(b) . Now

F (z) −G(z) =
−1∑

−m
Aj(z − b)j

is of finite rank and therefore (I−F +G) only has a finite number, say n , singular
values which are not identically 1. As for any A , |σj (I − A) − σj(A)| ≤ 1, we
have ∣∣s

(
I − F (z) + G(z)

)
− s
(
F (z) −G(z)

)∣∣ ≤ n

which shows that µ(b) depends only on the principal part.
We can now assume without restricting the generality that b = 0 and that

F (z) =
∑−1
−m Aj(z − b)j is a d × d matrix. Let λj(z) denote the eigenvalues of

F (z)∗F (z) , ordered decreasingly. These are nonnegative and their square roots are
the singular values. The characteristic polynomial can be “expanded by diagonal
elements”:

det
(
λI − F (z)∗F (z)

)
= λd − b1(z)λd−1 + · · ·+ (−1)dbd(z)

where b1 =
∑

λj , b2 =
∑

i6=j λiλj etc. As all eigenvalues are nonnegative, the
functions bj are nonnegative as well. Also, if bk = 0 then bj = 0 for j =
k + 1, . . . , d . The coefficients bj are sums of all principal minors of order j in
det(F ∗F ) . These are determinants of j × j submatrices which in turn are of the
form F ∗j Fj where each Fj is a d × j matrix consisting of j columns of F . Let
Ij denote a selection of j rows from a matrix so that Fj(Ij) denotes a j × j
submatrix of Fj . The Cauchy–Binet Theorem allows us to conclude that then

bj =
∑
|det Fj(Ij)|2

where the summation is over all j × j minors Fj(Ij) of F . But determinants are
meromorphic and therefore there exists cj > 0 and an integer mj such that

bj (z) = cj
(
1 + o(1)

)
r2mj
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as |z| = r → 0. Consider now b1 =
∑d

1 λj . As the eigenvalues are numbered
decreasingly we have

1

d
b1 ≤ λ1 ≤ b1

which further implies

c1

d
≤ lim inf

z→0

λ1(z)

r2m1
≤ lim sup

z→0

λ1(z)

r2m1
≤ c1.

For the coefficient b2 we have in the same way

λ1λ2 ≤ b2 ≤
(

d

2

)
λ1λ2.

This implies

c2

c1

(
d

2

) ≤ lim inf
z→0

λ2(z)

r2(m2−m1)
≤ lim sup

z→0

λ2(z)

r2(m2−m1)
≤ c2d

c1
.

Continuing this way we see that if λj is not identically 0, then there exists con-
stants aj > 0 and an integer kj such that

a2
j ≤ lim inf

z→0

λj (z)

r2kj
≤ lim sup

z→0

λj(z)

r2kj
≤ 1

a2
j

.

Taking the logarithm and dividing by 2 gives

log aj ≤ lim inf
z→0

[
logσj

(
F (z)

)
+ kj log

1

r

]

≤ lim sup
z→0

[
log σj

(
F (z)

)
+ kj log

1

r

]
≤ log

1

aj
.

Since the eigenvalues were ordered decreasingly there is a J such that kj < 0 for
j ≤ J . Summing over j then gives

α ≤ lim inf
z→0

[∑
log+ σj

(
F (z)

)
+

J∑

j=1

kj log
1

r

]

≤ lim sup
z→0

[∑
log+ σj

(
F (z)

)
+

J∑

j=1

kj log
1

r

]
≤ β

where α :=
∑J
j=1 log aj and β :=

∑J
j=1 log(1/aj ) . Thus, in particular, µ(0) :=

−∑J
j=1 kj is an integer.
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Lemma 2.9. If F ∈ F1(R) , then

(2.21) µ(z0) = lim
z→z0

s
(
I − F (z)

)

log
1

|z − z0|
,

and there are constants α and β such that

α ≤ lim inf
z→z0

[
s
(
I − F (z)

)
− µ(z0) log

1

|z − z0|

]

≤ lim sup
z→z0

[
s
(
I − F (z)

)
− µ(z0) log

1

|z − z0|

]
≤ β.

Proof. These inequalities were actually derived while proving the previous
lemma. The limit in (2.21) is then obtained by dividing with log

(
1/(|z − z0|)

)
.

Definition 2.8. If F ∈ F1(R1) , then for |z| ≤ R < R1 set (when z is not a
pole)

(2.22) uR(z) := s
(
I − F (z)

)
+
∑

|b|≤R
µ(b) log

∣∣∣∣
R(z − b)

R2 − bz

∣∣∣∣.

At poles b define uR(b) := lim supz→b uR(z) .

Lemma 2.10. uR is subharmonic in |z| ≤ R and equals s(I−F ) on |z| = R .

Proof. By Lemma 2.9 uR is bounded near poles and as it is a sum of subhar-
monic and harmonic functions except at poles we conclude that uR is subharmonic
also at poles.

It is now natural to count the multiplicities as follows.

Definition 2.9. If F ∈ F1(R1) , then for r < R1 denote

(2.23) n1(r, I − F ) :=
∑

|b|≤r
µ(b).

Likewise,

(2.24) N1(r, I − F ) :=

∫ r

0

n1(t, I − F ) − n1(0, I − F )

t
dt + n1(0, I − F ) log r.

As m1 was given already in Definition 2.5 we can finally set

T1(r, I − F ) := m1(r, I − F ) + N1(r, I − F ).



16 Olavi Nevanlinna

Lemma 2.11. If F ∈ F1(R1) , then in the notation above, for r ≤ R < R1

(2.25)
1

2π

∫ π

−π
uR(reiφ) dφ = T1(r, I − F )−N1(R, I − F ).

Proof. This is a direct calculation, based on

1

2π

∫ π

−π
log |a− eiφ| dφ = log+ |a|.

The following theorem summarizes the main properties of the characteristic
function T1 .

Theorem 2.4. If F is finitely S1 -meromorphic in |z| < R1 ≤ ∞ , then
T1(r, I − F ) is well defined, nonnegative, nondecreasing in r < R1 such that it is
convex as a function of log r . It satisfies

T∞(r, I − F ) ≤ T1(r, I − F ).

If G is another function in F1(R1) , then

(2.26) T1

(
r, (I − F )(I −G)

)
≤ T1(r, I − F ) + T1(r, I −G).

Proof. Positivity of T1 is clear from the definition. It is increasing and
convex in the variable log r by Lemma 2.11 as this is a general fact of mean values
of subharmonic functions, see [5, p. 127]. The inequality (2.26) follows from the
next lemma.

Lemma 2.12. If A,B ∈ S1 , then

(2.27) s
(
(I −A)(I −B)

)
≤ s(I −A) + s(I −B).

Proof. It is clear from the previous proofs that this inequality again follows
by approximation arguments if we have for all d× d-matrices A,B

s(AB) ≤ s(A) + s(B).

However, this follows easily from the following inequality of A. Horn, see [7, The-
orem 3.3.4]: for all k ≤ d

k∏

1

σj(AB) ≤
k∏

1

σj(A)σj (B).

The analogue of Theorem 2.2 holds also for T1 , by the same argument, since
s(I − F ) is subharmonic.

Theorem 2.5. If F is an analytic S1 -function for |z| < R1 and 0 < r <
θr < R1 , then

(2.28) T1(r, I − F ) ≤ log+ M1(r, I − F ) ≤ θ + 1

θ − 1
T1(θr, I − F ).
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3. An identity for inversion

We shall establish the identity starting from the corresponding identity for
the determinant function.

Lemma 3.1. Let f be a meromorphic scalar function in |z| < R . Let
{aj} denote the zeros and {bj} the poles of f (only nonzero ones and repeated if
multiple). Assume that at the origin

(3.1) f(z) =
∞∑

j=−ν
cjz

j ,

where c−ν is the first nonvanishing coefficient. Then for r < R

(3.2) log |c−ν| =
1

2π

∫ π

−π
log |f(reiφ)| dφ −

∑
log+ r

|aj |
+
∑

log+ r

|bj |
+ ν log r.

Proof. This is the standard starting point in proving the first main theorem,
see [15].

Lemma 3.2. If F ∈ F1(R) , then det
(
I −F (z)

)
is meromorphic for |z| < R

and for z not a pole of F , nor a zero of det
(
I − F (z)

)
we have

(3.3) log
∣∣det

(
I − F (z)

)∣∣ = s
(
I − F (z)

)
− s
((

I − F (z)
)−1)

.

Proof. Let F be given and fix η < R . Then there are only a finite number
of poles bj such that |bj | ≤ η . We can write

F =
∑

Pj + G

where Pj is the principal part of F at bj , and G is analytic for r < η + δ for
some δ > 0. By Approximation Lemma 2.5 there exist finite rank polynomials Gn

approximating G in S1 uniformly in the disc |z| ≤ η . Set now Fn :=
∑

Pj +Gn .
As Fn is of finite rank, det

(
I − Fn(z)

)
is a rational function. Since the poles are

not moving with n take small neighborhoods of poles out and then the rational
functions converge uniformly to det

(
I − F (z)

)
by definition of det for operators

of the form I −A with A ∈ S1 , see e.g. [3]. The limit function is analytic outside
these small neighborhoods. Now remove the poles by multiplying the rational
functions by (z − bj)

νj and conclude that the limit function det
(
I − F (z)

)
has

a pole of the same multiplicity νj at bj . Notice in particular that there may be
poles of F which are not poles of det(I − F ) , i.e. νj can be 0.

To prove the identity (3.3) fix z which is not a pole of F and such that
det
(
I − F (z)

)
does not vanish. Denote F (z) =: A . We want to show that if 1 is

not an eigenvalue of A ∈ S1 , then

log |det(I −A)| = s(I −A) − s
(
(I −A)−1

)
.
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Choose a sequence {An} converging to A in S1 with rank(An) ≤ n . Let Hn be
a subspace of dimension d ≤ 2n such that An is invariant in Hn and vanishes in
the orthogonal complement. We may also assume n to be large enough so that
for j ≥ n

‖(I −Aj)
−1‖ ≤ 2‖(I −A)−1‖.

In particular, then

‖(I −A)−1 − (I −Aj )
−1‖1 ≤ 2‖(I −A)−1‖2‖A−Aj‖1

shows that also the differences of the inverses converge in S1 . Let Bn denote the
restriction of I − An to Hn . Then also, B−1

n is the restriction of the inverse of
I −An to Hn and the determinant satisfies detBn = det(I −An) . However, the
singular values of Bn and those of I − An agree only as long as they are larger
than 1. But when σk(Bn) < 1 we can write

σk(Bn) =
1

σd+1−k(B
−1
n )

and here σd+1−k(B−1
n ) is again a singular value of (I −An)

−1 . Since |detBn| =∏d
1 σk(Bn) we obtain

log |det(Bn)| =
∑

log+ σk(Bn)−
∑

log+ σk(B
−1
n )

and, written differently,

log |det(I −An)| = s(I −An)− s
(
(I −An)−1

)
.

Letting n→∞ gives now the identity as both det and s are continuous in S1 .

Lemma 3.2 gives immediately, with f = det(I − F )

(3.4)
1

2π

∫ π

−π
log |f(reiφ)| dφ = m1(r, I − F )−m1

(
r, (I − F )−1

)
.

Also, (3.3) and Definition 2.9 imply that

(3.5) N(r, f) −N

(
r,

1

f

)
= N1(r, I − F )−N1

(
r, (I − F )−1)

)

where N(r, f) denotes the usual averaged counting function of f = det(I − F ) :

(3.6) N(r, f) =
∑

log+ r

|bj |
+ max{ν, 0} log r.

Theorem 3.1. Let F be finitely S1 -meromorphic in |z| < R and if around
origin

det
(
I − F (z)

)
= c−νz−ν + c−ν+1z

−ν+1 + · · ·
then for r < R

(3.7) T1(r, I − F ) = T1

(
r, (I − F )−1

)
+ log |c−ν|.

Proof. We only have to substitute (3.4) and (3.5) into (3.2).
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Remark 3.1. Notice that Lemma 2.9 and (3.3) give

(3.8) log |c−ν| = a(I − F )− a
(
(I − F )−1

)

where

a(I − F ) := lim sup
z→0

[
s
(
I − F (z)

)
− µ(0) log

1

|z|

]
.

This allows one to write the identity (3.7) in a symmetric form with no reference
to the determinant function:

(3.9) T1(r, I − F )− a(I − F ) = T1

(
r, (I − F )−1

)
− a
(
(I − F )−1

)
.

If F is finitely meromorphic in a larger Schatten class, then Theorem 3.1 can
still be used to give an upper bound for the inverse.

Theorem 3.2. If m is a positive integer such that Fm ∈ F1(R) , then for
r < R

(3.10) T∞
(
r, (I − F )−1

)
≤ T1(r, I − Fm) + (m− 1)

[
T∞(r, F ) + log 2

]
− log |c−ν|

where c−ν is as in (3.1) with f = det(I − Fm) .

Proof. For any bounded A with 1 not in the spectrum we have

(3.11) (I −A)−1 = (I −Am)−1
m−1∏

j=1

(I − eiφjA),

where φj := 2πj/m . Thus, by (2.7) we have

T∞
(
r, (I − F )−1

)
≤ T∞

(
r, (I − Fm)−1

)
+ T∞

(
r,
m−1∏

j=1

(I − eiφjF )

)
.

Here, by Theorem 3.1

T∞
(
r, (I − Fm)−1

)
≤ T1

(
r, (I − Fm)−1

)
= T1(r, I − Fm)− log |c−ν|

while Theorem 2.1 implies

T∞

(
r,

m−1∏

j=1

(I − eiφjF )

)
≤
m−1∑

j=1

[
T∞(r, F ) + log 2

]
.

The first main theorem in the scalar case is obtained from the inversion iden-
tity by noting that f and f − a are large at the same time, whatever constant a
we choose. Inverting f − a results in a statement on how often f is close to a .
As

T (r, f) = T

(
r,

1

f − a

)
+ O(1)

f visits a equally often, independently of the value a . In the operator valued
case nothing like this can hold if the “value” is taken as an “arbitrary” operator.
We formulate a version here where the function F in F1 is perturbed by a small
constant operator A . Our main use of Theorem 3.1 is in perturbation theory and
that is discussed in the next chapter.
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Theorem 3.3. Let F ∈ F1(R) and A ∈ S1 be given. Then

(3.12) T1

(
r, (I − F −A)−1

)
= T1(r, I − F ) + log |c−ν |+ ε(r,A)

where c−ν is the first nonzero coefficient in the expansion of det[(I − F − A)−1]
at origin and

|ε(r,A)| ≤ ‖A‖1.
Proof. By the Continuity Lemma we have |m1(I−F−A)−m1(I−F )| ≤ ‖A‖1

and since F and F −A have the same poles

|T1(r, I − F −A) − T1(r, I − F )| = |m1(I − F −A)−m1(I − F )| ≤ ‖A‖1.

4. Perturbation results

Our first perturbation result concerns with perturbations of meromorphic
operators by finite rank ones.

Theorem 4.1. Assume that F , F−1 and G are meromorphic for |z| < R
and rankG ≤ k . Then (F + G)−1 is meromorphic for |z| < R and

(4.1) T∞
(
r, (F + G)−1

)
≤ (k + 1)T∞(r, F−1) + kT∞(r,G) + C,

where
C ≤ k log 2− log |c−ν|

and c−ν is the first nonzero coefficient in the Laurent series of det(I + F−1G) at
the origin.

Proof. Away from poles we can write F + G = F (I + F−1G) and thus

(4.2) T∞
(
r, (F + G)−1

)
≤ T∞(r, F−1) + T∞

(
r, (I + F−1G)−1

)
.

Here F−1G ∈ F1(R) as G is of finite rank. This allows us to use the inversion
identity:

(4.3) T∞
(
r, (I +F−1G)−1

)
≤ T1

(
r, (I +F−1G)−1

)
= T1(r, I +F−1G)− log |c−ν|.

If a, b ≥ 0 then always

log(1 + ab) ≤ log+ a + log+ b + log 2.

We use this in estimating log+ σj (I +F−1G) . For j > k , σj (I +F−1G) = 1 while
for j ≤ k we have σj (I + F−1G) ≤ 1 + ‖F−1‖‖G‖ . Thus

s(I + F−1G) ≤ k[log+ ‖F−1‖+ log+ ‖G‖+ log 2]

and
T1(r, I + F−1G) ≤ k[T∞(r, F−1) + T∞(r,G) + log 2]

from which the claim follows.
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Definition 4.1. Let F be a meromorphic operator valued function in the
whole plane. Then the order ω∞ is

(4.4) ω∞ := lim sup
r→∞

logT∞(r, F )

log r

and if 0 < ω∞ <∞ then the type τ∞ is

(4.5) τ∞ := lim sup
r→∞

T∞(r, F )

rω∞
.

If F is in F1(∞) , then the order ω1 and type τ1 are defined in the same way for
F and for I − F .

Notice that if F is entire, then it also has order and type as an entire function
based on M∞(r) . The order is then the same as a meromorphic function while
the type can be somewhat different. In fact, an easy estimate between the types
can be obtained from Theorem 2.2. This holds as such also for entire S1 -valued
functions by Theorem 2.5.

Corollary 4.1. If in addition to the assumptions of Theorem 4.1, R = ∞
and F−1 and G are of finite orders, ω∞(F−1) and ω∞(G) respectively, then
(F + G)−1 is also of finite order and

ω∞
(
(F + G)−1

)
= max{ω∞(F−1), ω∞(G)}.

If F−1 and G are also of finite type, τ∞(F−1) and τ∞(G) , then the type of
(F + G)−1 satisfies

τ∞
(
(F + G)−1

)
≤ (k + 1)τ∞(F−1), if ω∞(F−1) > ω∞(G),

τ∞((F + G)−1) ≤ k τ∞(G), if ω∞(F−1) < ω∞(G),

and

τ∞((F + G)−1) ≤ (k + 1)τ∞(F−1) + k τ∞(G), if ω∞(F−1) = ω∞(G).

Example 4.1. Let F (z) := (1−z)I and G(z) := −z diag(β1, . . . , βk, 0, 0, . . .) ,
where β1 > β2 > · · · > βk > 0. We have poles at 1 and at 1/(1 + βj ) and so

N∞
(
r, (F + G)−1

)
= log+ r +

k∑

1

log+
(
(1 + βj)r

)
≥ (k + 1) log+ r.

For r ≥ 2 we have T∞(r, F−1) = log+ r and thus

T∞
(
r, (F + G)−1

)
≥ (k + 1)T∞(r, F−1) for r ≥ 2.

Thus, multiplying with k + 1 is really needed.
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Example 4.2. Now we look at the term kT∞(r,G) . Let

F := diag(k, k − 1, k − 2, . . . , 2, 1, 1, 1, . . .)

so that T∞(r, F−1) = 0 for all r , while G(z) := ez Ik where Ik = diag(1, . . . , 0, . . .)
is the rank k projection onto the k first components. Then

T∞(r,G) =
r

π
.

On the other hand, (F + G)−1 has poles at z = log j + 2πin for all n and for
j = 1, 2, . . . , k . Therefore

T∞
(
r, (F + G)−1

)
≥ k

r

π
+ O(log+ r).

Again, multiplying with k is really needed.

Example 4.3. The previous examples have all been based on diagonal map-
pings. Here we point out that rank 1 updates can change the nature of the
operator dramatically. In fact, we have two operators, V 2 and K where V 2 is
a quasinilpotent Volterra operator while K is a self-adjoint Fredholm operator
which are rank 1 perturbations of each other. Now the resolvent (see the next
section) of V 2 is entire and thus N∞

(
r, (I − zV 2)−1

)
= 0 while as K is self-

adjoint, m∞
(
r, (I − zK)−1

)
= O(1) (see Theorem 5.5). So, V 2 corresponds to

the Picard exceptional case while K is as “regular” as possible. The space is
L2[0, 1], and

V 2f(t) =

∫ t

0

(t− s)f(s) ds

and

Kf(t) =

∫ 1

0

k(t, s)f(s) ds

where k(t, s) = k(s, t) and for 0 ≤ s ≤ t ≤ 1

k(t, s) = s(t − 1).

Here V 2 is the solution operator for the initial value problem u′′ = f with u(0) =
u′(0) = 0 while K solves the same problem with boundary conditions u(0) =
u(1) = 0. Thus

Kf(t) = V 2f(t) − V 2f(1)t.

It can be shown that both resolvents are of order 1/2 and of type 2/π .

The next result relaxes the assumption on finite rank to S1 but assumes F−1

to be analytic instead.
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Theorem 4.2. Assume that F is meromorphic, F−1 analytic, and G finitely
S1 -meromorphic for |z| < R . Then (F + G)−1 is meromorphic and for r < R
(4.6)
T∞
(
r, (F +G)−1

)
≤ T∞(r, F−1)+max{M∞(r, F−1), 1}

[
m̂1(r,G)+N1(r,G)

]
+C,

where

m̂1(r,G) :=
∞∑

j=1

m
(
r, 1 + σj(G)

)
,

C ≤ − log |c−ν|
and c−ν is the first nonzero coefficient in the Laurent series of det(I + F−1G) at
the origin.

Proof. We start the proof in the same way as before but the estimation of
the term T1(r, I + F−1G) in (4.3) is different. Let, again, a, b ≥ 0. Then we have

log(1 + ab) ≤ max{a, 1} log(1 + b).

Put for short, M := max{M∞(r, F−1), 1} . Then this inequality gives

log+ σj (I + F−1G) ≤M log
(
1 + σj (G)

)

and so
s(I + F−1G) ≤M

∑
log
(
1 + σj(G)

)
.

Now the claim follows from this.

Corollary 4.2. If, in addition to the assumptions in Theorem 4.2, G is
analytic for |z| < R , then for r < R

(4.7) T∞
(
r, (F + G)−1

)
≤ max{M∞(r, F−1), 1} sup

|z|≤r
‖G(z)‖1 + T∞(r, F−1) + C,

where
C ≤ − log |c−ν|.

Proof. We have log
(
1 + σj (G)

)
≤ σj(G) which gives the term ‖G‖1 .

Example 4.4. F (z) = ezI and G = diag(j−1−ε) . For r large one has

N∞
(
r, (F + G)−1

)
≥ er/(1+2ε)

while the right hand side in (4.7) is bounded from above by O(1/ε)er +(r/π)+C .
Thus, the order and type of (F + G)−1 are the same as those of the bound.

The previous results are natural in a setting where one of the functions is
treated as large and the other one as a perturbation. If both functions are finitely
S1 -meromorphic we can formulate a result directly for their sum without inverting
as the inverse is equally large by Theorem 3.1.
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Theorem 4.3. If both F and G are in F1(R) , then for r < R

(4.8) T1(r, I + F + G) ≤ 2T1(r, I + 2F ) + 2T1(r, I + 2G).

The result follows immediately from the following lemma.

Lemma 4.1. If A,B ∈ S1 , then

(4.9) s(I + A + B) ≤ 2s(I + 2A) + 2s(I + 2B).

Proof of the lemma. We have for any a, b

(4.10) log+ 1
2
(a + b) ≤ log+ a + log+ b.

On the other hand, writing I +A+B = 1
2
[(I +2A)+ (I +2B)] and using the fact

that singular values are obtained as distances to finite rank operators, we get

σ2j−1(I + A + B) ≤ 1
2 [σj (I + 2A) + σj (I + 2B)].

As σ2j(I + A + B) ≤ σ2j−1(I + A + B) this and (4.10) imply (4.9).

Example 4.5. If F = G then we have trivially

T1(r, I + F + G) = 1
2 [T1(r, I + 2F ) + T1(r, I + 2G)].

5. Growth of resolvents

In the following we specialize to resolvents. It is natural to write them here
in the form (I − zA)−1 instead of the usual (λ−A)−1 .

We start with a result which generalizes a similar statement for quasinilpotent
trace class operators, see Theorem 2.2 in Chapter X, [3].

Theorem 5.1. Assume A ∈ Sp . Then (I − zA)−1 is of order ω∞ ≤ p and
if ω∞ = p then it is of zero type.

Proof. We prove first the result in the case p ≤ 1. To that end it suffices to
show that for any ε > 0 we have

T∞
(
r, (I − zA)−1

)
≤ εrp + O(log r).

Since A ∈ Sp there exists an m , large enough so that

1

p

∞∑

m+1

σj(A)p < ε.
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Then, however, we can proceed as follows:

T∞
(
r, (I − zA)−1

)
≤ T1(r, I − zA) ≤ logM1(r, I − zA)

≤
m∑

1

log
(
1 + rσj (A)

)
+

1

p
rp
∞∑

m+1

σj(A)p

≤ O(log r) + εrp.

Here we used the inequality log(1 + x) ≤ xp/p , valid for x > 0 and 0 < p ≤ 1.
In the general case, let k be a positive integer such that k < p ≤ k +1. Then

in particular Ak+1 ∈ S1 , and in fact

∑
σj(A

k+1)p/(k+1) ≤
∑

σj(A)p,

see e.g. Corollary II.4.2 in [4]. We have, see Theorem 3.2, or Theorem 5.3 below,

T∞
(
r, (I − zA)−1

)
≤ T1(r, I − zk+1Ak+1) + k log(1 + r‖A‖).

Here we proceed as above and in particular use

log
(
1 + rk+1σj (A

k+1)
)
≤ k + 1

p
rpσj(A

k+1)p/(k+1)

to split the sum at a proper place in order to have the growth again bounded by
εrp + O(log r) .

The proof above is based on

T1(r, I − zk+1Ak+1) = T1

(
r, (I − zk+1Ak+1)−1

)
,

valid for k + 1 ≤ p . We shall next study the behavior of k−1T1

(
r, (I − zkAk)−1

)

as k grows.

Lemma 5.1. Let A ∈ S1 and {λj} denote the spectrum, indexed so that
|λj | ≥ |λj+1| , each eigenvalue repeated according to the dimension of the corre-
sponding eigenspace. Then

(5.1) N1

(
r, (I − zA)−1

)
=
∑

j

log+ |λjr|.

Proof. Choose r and take the Riesz spectral projection of A including all
eigenvalues which are larger than, say, 1/(r + 1) in modulus. This gives a finite
rank operator, say, Ar . Then A −Ar can be approximated arbitrarily well with
another finite rank operator and this shows that N1

(
r, (I − zA)−1

)
only depends
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on Ar , compare with the Continuity Lemma 2.4. But since this is of finite rank, it
can be transformed unitarily into a finite dimensional upper triangular (that is, a
sum of diagonal and nilpotent) operator and then with a similarity transformation
into a form where the nilpotent part is made arbitrarily small and so N1 only
depends on the eigenvalues. In fact, if S denotes the similarity transformation,
and if B = SCS−1 with d = dimB , then

(5.2) s(B) ≤ d log[‖S‖ ‖S−1‖] + s(C)

and therefore the multiplicity µ(1/λj) is not affected by the similarity transfor-
mation.

Observe that the right hand side of (5.1) makes sense for all compact operators
as it is always a finite sum for any fixed r . We introduce the following notation
for it:

(5.3) N(r, {λj}) :=
∑

j

log+ |λjr|.

Now the following holds.

Theorem 5.2. Assume A ∈ Sp with some p . Then

(5.4) lim
k→∞

1

k
T1

(
r, (I − zkAk)−1

)
= N(r, {λj}),

where {λj} denotes the spectrum of A with multiplicities counted according to
the dimensions of the corresponding eigenspaces.

Proof. Recall that if A ∈ Sp then Ak ∈ S1 for k ≥ p . Then for such k
T1

(
r, (I − zkAk)−1

)
and T1(r, I − zkAk) are both well defined and equal. The

proof is given by several simple lemmas, some of which have some independent
interest.

Lemma 5.2. If A is compact, then

(5.5) lim
k→∞

[σj (A
k)]1/k = |λj |.

Proof of Lemma 5.2. This is Proposition 2.d.6 in [8].

The aim is to show that

(5.6)
1

k
m1(r, I − zkAk)→ N(r, {λj}).

This would imply (5.4) as

T1

(
r, (I − zkAk)−1

)
= T1(r, I − zkAk)
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and, trivially,
N1(r, I − zkAk) = 0.

We shall first reduce the claim into a finite dimensional problem. Since our basic
claim is about a limit with a fixed r we can without lack of generality set r = 1
in the following. Choose a small 0 < δ < 1. Then take a spectral decomposition
of A = A1 ⊕A2 as follows:

A2 :=
1

2πi

∫

|λ|=1−δ
λ(λI −A)−1 dλ.

By the spectral radius formula we have for large enough n

‖An2 ‖1/n ≤ 1− 1
2δ.

Lemma 5.3. Assume that A ∈ Sp and ρ(A) < 1 . Then we have

m1(1, I − zkAk) → 0

as k →∞ .

Proof of Lemma 5.3. If ρ(A) < ρ < 1 then for large enough n we have
‖An‖ ≤ ρn . If also n ≥ k where k such that Ak ∈ S1 , then we can estimate as
|z| = 1,

σj(I − znAn) ≤ 1 + ρn−kσj(A
k)

which shows that
s(I − znAn) ≤ ρn−k‖Ak‖1.

The claim follows.

Lemma 5.4. If A ∈ S1 and B is of finite rank and they operate in invariant
subspaces HA , HB respectively with HA ∩HB = {0} , then

(5.7) s
(
I + (A ⊕B)

)
≤ s(I + A) + s(I + B) + rank(B)[log(1 + ‖A‖) + log 2].

Proof of Lemma 5.4. If j ≤ rank(B) = d then

σj
(
I + (A⊕B)

)
≤ 1 + ‖A‖+ σj(I + B)

while for j > d we have

σj
(
I + (A ⊕B)

)
≤ σj−d(I + A).

We obtain (5.7) by taking the logarithm and summing up.
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If A = A1 ⊕A2 as above and rankA1 = d then Lemma 5.4 gives
(5.8)
m1(1, I − znAn) ≤m1(1, I − znAn1 ) + m1(1, I − znAn2 ) + d[log(1 + ‖An

2‖) + log 2].

This follows because An = An1 ⊕ An2 allows us to apply Lemma 5.4 with −znAn

in place of A . By Lemma 5.3 we have m1(1, I − znAn2 )→ 0 and since ‖An
2 ‖ → 0,

then inequality (5.8) implies

(5.9) lim sup
1

n
m1(1, I − znAn) ≤ lim sup

1

n
m1(1, I − znAn1 ).

What we need still to prove is the reverse inequality

(5.10) lim inf
1

n
m1(1, I − znAn1 ) ≤ lim inf

1

n
m1(1, I − znAn)

and that the limit exists and satisfies

(5.11) lim
1

n
m1(1, I − znAn1 ) = N(1, {λj}).

Consider first (5.10). Let P denote the spectral projection A1 = PA . Then for
j ≤ d we have

σj(I + A1) ≤ ‖P‖σj(I + A)

while for j > d we have σj(I + A1) = 1. Thus

s(I + A1) ≤ s(I + A) + d log ‖P‖.

Applying this to −znAn in place of A gives (5.10).

To prove (5.11) observe first that by construction N1

(
1, (I − zA1)

)−1
=

N(1, {λj}) . And recall that we have set r = 1. For |z| = 1 we have

−1 + σj (A
n) ≤ σj (I − znAn1 ) ≤ 1 + σj (A

n)

which implies, as A1 is of rank d ,

∣∣∣∣
1

n
m1(1, I − znAn)− 1

n

∑
log+ σj (A

n)

∣∣∣∣ ≤
1

n
d log 2.

By Lemma 5.2 we know that

1

n

∑
log+ σj(A

n)→ N(1, {λj})

which proves (5.11). The proof of Theorem 5.2 is now completed.



Growth of operator valued meromorphic functions 29

Definition 5.1. We denote by ρ∞(A) the smallest radius such that the
resolvent (I − zA)−1 is meromorphic for |z| < 1/ρ∞(A) .

Remark 5.1. Notice that the analogous concept, say ρ1(A) in F1 is not
needed as by the inversion identity everything depends on whether −zA ∈ F1 or
not, that is, whether A ∈ S1 .

Theorem 5.3. If A is bounded, then (I − zA)−1 and (I − zkAk)−1 are
meromorphic at the same discs: ρ∞(A) = ρ∞(Ak)1/k and

(5.12) T∞
(
r, (I − zkAk)−1

)
≤ kT∞

(
r, (I − zA)−1

)

while

(5.13) T∞
(
r, (I − zA)−1

)
≤ T∞

(
r, (I − zkAk)−1

)
+ (k − 1) log(1 + r‖A‖).

Proof. Write, with φj := 2πj/k ,

(I − zkAk) = (I − zA)(I − eiφ1zA) · · · (I − eiφk−1zA).

This gives (5.12). Writing it for the inverses as in (3.11) gives in the same
way (5.13).

So in particular, the order is preserved while the type can change somewhat.
If the operator is quasinilpotent, so that the resolvent is entire, then we can also
look at the growth of the maximum and here the type is preserved as well.

Theorem 5.4. If A is bounded and ρ(A) denotes the spectral radius, then
for r < 1/ρ(A) we have

(5.14) M∞
(
r, (I − zkAk)−1

)
≤M∞

(
r, (I − zA)−1

)
,

and

(5.15) M∞
(
r, (I − zA)−1

)
≤ [1 + r‖A‖]k−1M∞

(
r, (I − zkAk)−1

)
.

Proof. Here (5.15) is analogous to (5.13) while (5.14) follows from writing

(I − zkAk)−1 =
1

k

k∑

1

(I − eiφj zA)−1.

For reference, it is useful to formulate the following simple fact.

Theorem 5.5. Let A be bounded and selfadjoint. Then for r < 1/ρ∞(A)

(5.16) m∞
(
r, (I − zA)−1

)
≤ log 2.

Proof. Since the operator is self-adjoint, we have ‖(I − zA)−1‖ = 1/d(z)
where

d(reiφ) := inf
λ∈σ(A)

|1− zλ| ≥ inf
λ∈R
|1− zλ| = | sinφ|.

Thus
1

2π

∫ π

−π
log+ 1

d(reiϕ)
dϕ ≤ 1

2π

∫ π

−π
log

1

| sinϕ| dϕ = log 2.
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