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Abstract. We study the dynamical behavior of quasiconformal groups and of quasiregular
semigroups near attracting fixed points. In the homeomorphic case we show that there is a 1-
parameter quasiconformal loxodromic group of R

n
, n ≥ 3 , that cannot be quasiconformally

linearized. This implies that Martin’s result, which says that the cyclic quasiconformal loxodromic
groups are all quasiconformal conjugates of 〈x 7→ 2x〉 , cannot be quantitative. In the non-injective
situation we exhibit an example of a quasiregular semigroup whose elements have a common
attracting fixed point and which cannot be quasiconformally linearized at this point. For the
dynamics of uniformly quasiregular mappings at superattracting fixed points, we show that there
are several distinct quasiconformal conjugacy classes by classifying the power mappings of [My2].

1. Introduction

A semigroup F of uniformly quasiregular mappings is called a quasiregular
semigroup. For invertible mappings, we consider quasiconformal groups, i.e. groups
of uniformly quasiconformal mappings. In each case we consider semigroups whose
elements are defined on R

n
, n ≥ 3, and have a common attracting fixed point.

We are interested in the classification of the dynamics of F at such a point by
means of quasiconformal conjugacy.

The simplest quasiconformal groups whose elements have a common attract-
ing fixed point are the cyclic loxodromic ones, that is G = 〈g〉 is loxodromic if
there are distinct points p, q ∈R

n
so that either gk or g−k converges uniformly

on compact sets of R
n \{q} to p as k →∞ .

Theorem (Martin). A cyclic quasiconformal group generated by a loxo-
dromic element is quasiconformally conjugate to the Möbius group generated by
x 7→ 2x .

In other words, up to quasiconformal conjugacy, all the cyclic quasiconformal
groups are identical. For general uniformly quasiregular mappings, there is the
following corresponding local result.

Theorem (Hinkkanen and Martin). Suppose that f is a uniformly quasi-
regular mapping of R

n
having an attracting fixed point p . Then there is a quasi-

conformal mapping h of R
n

with h(p) = 0 and such that h ◦ f ◦ h−1(x) = 1
2x in

a neighborhood of the origin 0 .
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Our first aim is to establish sharpness of these results. Their proofs are based
on deep topological facts that do not allow one to get quantitative results. More
precisely, it was not known if the conjugating mapping can be chosen to have
a dilatation depending only on the dilatation of the semigroup and possibly the
dimension. We prove that this is not true in general and that these results cannot
be extended to the non-discrete case: there are examples of non-discrete uniformly
quasiregular semigroups which are not locally quasiconformally conjugate at a
repelling fixed point to the corresponding conformal model.

We also consider the case of superattracting fixed points. These are fixed
points which are at the same time branch points. Note that in this case there is no
conformal model since 1-quasiregular mappings have no branch points. In [My2]
we gave examples of uniformly quasiregular mappings having superattracting fixed
points. Here we classify them and, in particular, we show that it is possible to
choose two of them having the same degree and which are not, locally at the
superattracting fixed points, in the same quasiconformal conjugacy class.

2. Definition of quasiregular mappings and notations

Let D ⊂ Rn be a domain and f : D → Rn a mapping of Sobolev class
W 1,n

loc (D) . We consider only orientation preserving mappings, thus the Jaco-
bian determinant Jf (x) ≥ 0 for a.e. x ∈ D . Such a mapping is said to be
K -quasiregular, where 1 ≤ K <∞ , if

max
|h|=1

|f ′(x)h| ≤ K min
|h|=1

|f ′(x)h| for a.e. x ∈ D.

The smallest number K for which the above inequality holds is called the linear
dilatation of f . A non-constant quasiregular mapping can be redefined on a set of
measure zero so as to be continuous, open and discrete, and we shall always assume
that this has been done. If D is a domain of the compactification R

n
(equipped

with the spherical metric; thus R
n

is isometric via stereographic projection with
the n-sphere Sn ), then we use the chart at infinity x 7→ x/|x|2 to extend, in
the obvious manner, the notion of quasiregularity to mappings f : D →R

n
. Such

mappings are said to be quasimeromorphic. The branch set Bf is the set of points
x ∈ D for which f is not locally homeomorphic at x . The notation i(x, f) stands
for the local index of f at x , as defined in [R, p. 18].

A mapping f of a domain D into itself is called uniformly quasiregular if
there is some 1 ≤ K < ∞ such that all the iterates fk are K -quasiregular.
We abbreviate this by f ∈ UQR(D) . Quasiconformal groups and quasiregular
semigroups are (semi-) groups whose elements are all K -quasiconformal, K -quasi-
regular respectively, for some fixed K ≥ 1.
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3. The quasiconformal group case

We consider here cyclic and 1-parameter quasiconformal loxodromic groups.
Using an example of Tukia [T] we find:

Theorem 1. For any K > 1 , there exists a 1-parameter quasiconformal
loxodromic group that cannot be conjugate by a quasiconformal mapping to a
Möbius group.

Before proving this, let us first deduce the announced distortion result in the
discrete case. Given G a cyclic quasiconformal loxodromic group, we denote by
K(G) the smallest possible dilatation K ≥ 1 for which there exists a K -quasi-
conformal mapping h with h ◦ G ◦ h−1 a Möbius group. By Martin’s result,
K(G) <∞ .

Corollary 3.1. For any K > 1 , there exists a sequence of cyclic K -quasi-
conformal loxodromic groups Gk with limk→∞K(Gk) =∞ .

Proof. Let K > 1 and G = {gt : t ∈ R} be a 1-parameter K -quasiconformal
loxodromic group which cannot be quasiconformally conjugate to a Möbius group.
Such a group exists by Theorem 1. Denote by Gk the cyclic subgroup of G
generated by g2−k . This is an increasing sequence of subgroups exhausting G .
Suppose now that there is H > 1 and, for any k ≥ 1, a H -quasiconformal
mapping hk , normalized so that it fixes 0, 1,∞ , with hk ◦Gk ◦ h−1

k ⊂Möb( R
n

) .
The normalization implies that there is a uniformly convergent subsequence hkj
with limit h a quasiconformal mapping. We have now a contradiction since this
limit mapping conjugates G to a subgroup of Möb(R

n
): let g ∈ G and choose

gt(kj) ∈ Gkj such that gt(kj) converges uniformly to g . Then we see that

ϕ = h ◦ g ◦ h−1 = lim
j→∞

hkj ◦ gt(kj) ◦ h−1
kj

is a Möbius transformation.

We give now a version of Tukia’s group, the main ingredient for the proof of
Theorem 1. Let f be a quasiconformal mapping of R2 such that f|R is bihölder

α with α ∈] 1
2 , 1[: there is c ≥ 1 with

(1)
1

c
|x− y|α ≤ |f(x) − f(y)| ≤ c|x− y|α for all x, y ∈ R.

So Γ = f(R) is a 1/α-dimensional fractal curve. In Tukia’s example it is the Von
Koch Snowflake curve and, more generally, one can use other fractal bilipschitz
homogeneous curves [My1]. The mapping f can be chosen to have a dilatation
K tending to 1 when α → 1 [Mc]. The 1-parameter quasiconformal loxodromic
group we look for is the conjugate of the group

H = {x = (u, v) ∈ R2 ×Rn−2 7→ ht(x) = (etu, eαtv) : t ∈ R}
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by the mapping F = f × Id: R2 ×Rn−2 → R2 ×Rn−2 :

(2) G = F ◦H ◦ F−1 = {gt = F ◦ ht ◦ F−1 : t ∈ R}.

Proof of Theorem 1. Let u ∈ Γ, v0 ∈ Rn−2 and p0 = (u, v0) . Consider
the segment σ = [(u, 0), p0] . For p = (u, v) we have gt(p) =

(
f
(
etf−1(u)

)
, eαtv

)
.

From this and from the bihölder α inequality (1) follows that there exists t0 > 0
and C ≥ 1 such that

(3)
|t|α
C
≤ |gt(p)− p| ≤ C|t|α for every p ∈ σ and 0 ≤ |t| ≤ t0.

Suppose now that there is a quasiconformal mapping h conjugating G to a sub-
group of Möb(R

n
). After normalization we have that h is a mapping of R

n
fixing

0 and that the conformal group Φ = h ◦ G ◦ h−1 has the form Φ = {ϕ(x) =
etUtx : t ∈ R} with Ut ∈ O(n) . Evidently, the orthogonal matrices Ut depend
continuously on t and U0 = Id. Since the conjugation induces an isomorphism of
groups, there is r 6= 0 so that h ◦ gt = ϕrt ◦ h .

Take p ∈ σ , t ∈ [−t0, 0] and let a ∈Rn be any point with |a| = |gt(p) − p| .
Since h is quasiconformal, we have

|h(p + a)− h(p)| . |h
(
gt(p)

)
− h(p)| = |ϕrt ◦ h(p) − h(p)|,

where . stands for “≤ up to a constant depending only on n and the dilatation
constant of h”. If t0 is sufficiently small, this can be majorized by

|h(p + a) − h(p)| . |ert − 1| |h(p)| . |th(p)|.

On the other hand, |t| ≤ (C|a|)1/α in view of inequality (3). Therefore

lim
a→0
|h(p + a) − h(p)|/|a| = 0

for all p ∈ σ . In other words, h restricted to σ is constant which is impossible.

4. Attracting fixed points

For the notion of an attracting fixed point we use the definition of [HM]: a fixed
point p of f is called attracting if there is a topological ball U with f(U) ⊂ U
and that f|U is injective.

The proof of Theorem 1 is entirely local and thus these groups cannot be
made conformal by a quasiconformal change of coordinates in any neighborhood
of the fixed point 0. Therefore, if the restriction of a quasiregular semigroup
to a neighborhood of an attracting fixed point (which in our cases will always be
common to all the elements of the semigroup) behaves like the quasiconformal wild
groups of Theorem 1 around 0, then this semigroup cannot be quasiconformally
linearized at this point. It turns out that we can construct such a semigroup as
follows.
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Theorem 2. There exists a quasiregular semigroup F generated by two
mappings, with 0 a common attracting fixed point for all the mappings f ∈ F
and for which there is no quasiconformal mapping defined in a neighborhood W of
0 conjugating the restriction to W of the elements of F to conformal mappings.

Note that the restriction of F to a neighborhood of 0 is an abelian semigroup
with two generators, so in some sense our example is as close as possible to the
cyclic case.

We now explain how to get such a semigroup. Let f be a uniformly quasi-
regular mapping of R

n
with attracting fixed point p . The existence of non-

homeomorphic such mappings can be found in [IM]. Hinkkanen and Martin’s result
asserts that there is h ∈ QC(R

n
) with

h ◦ f ◦ h−1(x) = 1
2x in some neighborhood W of 0.

We set f̃ = h◦f◦h−1 . Let G be the quasiconformal group of (2) and g = g−2 ∈ G .
This time we use Martin’s linearization result to get H ∈ QC( R

n
) conjugating g :

H−1 ◦ g ◦H(x) = 1
2x for all x ∈ R

n
.

The first generator of our semigroup will be

f2 = (H ◦ h) ◦ f ◦ (H ◦ h)−1 = H ◦ f̃ ◦H−1.

The second generator will behave like the mapping g−3 of G near 0 and be
identically f2 outside some ball. To obtain it we modify the construction of g−2 .
For this we suppose that the neighborhood W satisfies H(W ) ⊃ F

(
B(0, 1)

)
where

F is the mapping of (2). Let r: Rn → [−3,−2] be smooth with r ≡ −2 in |x| > 1,
r ≡ −3 in

h−2

(
B(0, 1)

)
= {(e−2u, e−2αv) : x = (u, v) ∈ B(0, 1)}

and so that the restriction of r to any ray τy = {sy : s > 0} , y ∈ Sn−1 , is
increasing. The conjugate of the mapping x = (u, v) 7→ ϕ(x) = (er(x)u, eαr(x)v)
by the mapping F of (2), so the mapping g̃ = F ◦ ϕ ◦ F−1 , is uniformly quasi-

conformal and loxodromic. It also admits a quasiconformal conjugacy H̃ , that we
need to construct explicitly starting from the conjugacy H of g : since g(x) = g̃(x)

for x ∈ Ω′ = F ({|x| > 1}) we can define H̃ = H in H−1(Ω′) . For x /∈ H−1(Ω′)
choose k ∈ N so that 2kx ∈ H−1(Ω′) . Then define H̃(x) = g̃k ◦H ◦ (2kx) . Now

it is clear that H̃ is a quasiconformal mapping with

H̃−1 ◦ g̃ ◦H̃(x) = 1
2x for all x ∈ Rn.

The mapping we are looking for is

f3 = (H̃ ◦ h) ◦ f ◦ (H̃ ◦ h)−1 =H̃ ◦ f̃ ◦H̃−1.

Consider now the semigroup F = 〈f2, f3〉 generated by these mappings. By
construction, fj ≡ g−j in Ω = F ◦ h−2

(
B(0, 1)

)
, j = 2, 3, where the g−j are the

elements of the group G . This gives the following elementary properties of F :
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Lemma 4.1. The semigroup F is a quasiregular semigroup and its restric-
tion to Ω is an abelian semigroup generated by g−2 and g−3 .

Proof. We show that any mapping f ∈ F is K3 -quasiregular, where K is
supposed to be the dilatation constant common to f2 , f3 and all its iterates. Let
x ∈R

n
, y = f(x) and consider the following points which correspond to a (not

necessarily unique) decomposition of f ,

(4) x0 = x, x1, . . . , xk = y where xl = f2(xl−1) or xl = f3(xl−1).

Then we have two cases: either all the xl ∈ Ω′ , l = 0, . . . , k , and in that case
we have a dilatation K of f at x due to the fact that H ≡ H̃ in H−1(Ω′) . In
the other case there is a first point xj outside Ω′ . If j = k , then the dilatation
of f at x is still K since we can choose in (4) always the same mapping f2 or
f3 for every l = 0, . . . , k − 1. If j < k − 1, then we proceed as follows. The
condition H(W ) ⊃ F

(
B(0, 1)

)
implies f2 = g−2 and f3 = g̃ in cΩ′ . Since

g(cΩ′) = g̃(cΩ′) = Ω, necessarily xl ∈ Ω for all l > j . In Ω the mappings coincide
with the mappings g−2, g−3 of the (uniformly) quasiconformal group G . Therefore
we have in this last case a dilatation K for the composition of the mappings that
map x0 to xj , a factor K when xj is mapped to xj+1 and one more dilatation
factor K for the remaining step when xj+1 is mapped to xk .

Proof of Theorem 2. We prove by contradiction that the semigroup F =
〈f2, f3〉 described above cannot be quasiconformally linearized at 0. Suppose that
there is h a quasiconformal mapping defined on a neighborhood W of 0 such that
h ◦ fj |W ◦ h−1 is the restriction of a Möbius transformation ϕj , j = 2, 3. Choose

% ∈]0, e−2[ so that U = F
(
B(0, %)

)
⊂ W . Then fj |U = g−j |U for j = 2, 3 and

gt(U) ⊂ U for all t < 0. Since the fj are commuting in U , ϕ2 and ϕ3 must

have the same fixed points. The group Φ = 〈ϕ2, ϕ3〉 is a 1-parameter loxodromic
group since it cannot be discrete. It follows that

h ◦ {gt|U : t < 0} ◦ h−1 ⊂ Φ|h(U)

which is impossible in view of the proof of Theorem 1.

5. Superattracting fixed points

A fixed point of a uniformly quasiregular mapping f which is also a branch
point is called a superattracting fixed point. Recall that f is attracting at such a
point, an immediate consequence of the local behavior of quasiregular mappings;
see [R], [My2].

5.1. Counterparts of power mappings. In [My2] we gave examples

of uniformly quasiregular mappings of R
3

having superattracting fixed points.
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These mappings are the natural counterparts of the power mappings and they are
obtained in a similar manner: Let h: R3 → R3 \ {0} be Zorich’s mapping (see [R]
for a construction). This is the three-dimensional counterpart of the exponential
mapping and is characterized by the fact that it is automorphic with respect to
the group of isometries

Γ = 〈(z, t) 7→ (−z, t) : (z, t) 7→ (z + 2, t) : (z, t) 7→ (z + 2i, t)〉.

The analogue of the power mappings are the solutions fA of Schröder’s equation

(5) fA ◦ h = h ◦A

where A(z, t) = (λz, |λ|t) with λ ∈ C , |λ| > 1 and where we identified x ∈ R3

with (z, t) ∈ C×R . This conformal mapping A has to satisfy A ◦Γ ◦A−1 ⊂ Γ in
order to get a well defined solution fA of Schröder’s equation. The superattracting
fixed points of these mappings are 0 and ∞ .

Note that to each such mapping fA there corresponds a Lattès rational map-
ping ϕA which is again a solution of a Schröder equation:

ϕA ◦ ℘(z) = ℘(λz), z ∈ C,

where ℘ is the Weierstrass P -function. Moreover, after a quasiconformal change
of coordinates, we may suppose that the restriction of fA to the two-sphere S2 is
precisely ϕA [My2].

5.2. Classification. As in the attracting case we are interested in the quasi-
conformal classification of the dynamics of uniformly quasiregular mappings near
superattracting fixed points. In contrast to the attracting case there is no confor-
mal model, since Liouville’s theorem asserts that in the conformal case there can
be no branching. We classify the above power mappings and deduce in particular
that there cannot be a unique model.

Since we are dealing with quasiconformal conjugacy we have to respect a
topological invariant, namely the local index. Two mappings f1 , f2 can only be
locally conjugate near their superattracting fixed points p1 , p2 respectively, if
they have the same local index there: i(p1, f1) = i(p2, f2) . Hence conjugate power
mappings must have the same degree given by |λ|2 .

Theorem 3. If fA and fB are two solutions of Schröder’s equation (5)
having the same degree, then there is a local quasiconformal conjugacy between
these mappings near their superattracting fixed point 0 if and only if A = B .

This result shows in particular that there are mappings fA and fB having
the same degree but for which there is no local quasiconformal conjugacy relating
them near their superattracting fixed point 0.
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It suffices to choose A(z, t) = (dz, dt) and B(z, t) = (idz, dt) , d ∈ {2, 3, . . .} .
Since there is no conformal model and motivated by the particular construc-

tion of the above power mappings—which gives in dimension n = 2 precisely the
mappings z 7→ zd—we are led to think that these power mappings may in fact
be the standard models for the local behavior of uniformly quasiregular mappings
at their superattracting fixed points. We do not know any examples of a different
kind.

Proof. When we express Zorich’s mapping by h(z, t) = (r, ξ) , where (r, ξ) ∈
R+ ×S2 are spherical coordinates, then r = et and ξ = ξ(z) is independent of t .
Due to this special form we see that fA(r, ξ) =

(
r|λ|, gA(ξ)

)
, with gA ∈ UQR(S2)

and, moreover, up to a quasiconformal change of coordinates, gA is the Lattès
mapping ϕA corresponding to fA .

Suppose now that there is a quasiconformal mapping Φ defined near 0 with
fA ◦ Φ = Φ ◦ fB still near the origin. We show that this implies that ϕA and
ϕB are equivalent, which means that there are θ1 , θ2 homeomorphisms that are
isotopic rel PϕB , the post critical set of ϕB , with θ1 ◦ ϕB = ϕA ◦ θ2 (cf. [DH]).

First we show that

(6) |Φ(r, ξ)| = sr, with sr independent of ξ ∈ S2.

If this is not true, then there is r > 0, ξ1, ξ2 ∈ S2 and s1 < s2 with |Φ(r, ξ1)| =
s1 < s2 = |Φ(r, ξ2)| . Then it follows that

fkA
(
Φ(r, ξi)

)
= Φ

(
fkB(r, ξi)

)
= Φ

(
r|λ|

k

, gkB(ξi)
)

and, when we set (si, ηi) = Φ(r, ξi) ,

fkA
(
Φ(r, ξi)

)
= fkA(si, ηi) =

(
s
|λ|k
i , gkA(ηi)

)
.

Therefore, for every k ∈ N there is ai,k = gkB(ξi) for which

|Φ(r|λ|
k

, a1,k)|
|Φ(r|λ|k , a2,k)|

=
(s1

s2

)|λ|k
−→ 0 (k →∞).

But this conflicts with our assumption of the quasiconformality of Φ.
Equation (6) means that Φ(rS2) = srS

2 . Set Φr(ξ) = Φ(r, ξ) . This is a
quasiconformal mapping of S2 with

gA ◦ Φr = Φr|λ| ◦ gB .

It is clear that Φr(CgB ) = CgA and the post critical set is also fixed by these
mappings: Φr(PgB ) = PgA . This implies that gA and gB are equivalent and
therefore the same is true for the associated Lattès mappings ϕA , ϕB . The
assertion A = B follows.
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