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Abstract. Let L (H ) denote the algebra of all bounded linear operators on a separable
Hilbert space H . An L (H ) -valued holomorphic function F in the complement of the unit circle
T satisfying F (z̄−1) = −F (z)∗ such that the values of F in the unit disc have nonnegative real
part is called a Carathéodory operator function. A definitizable operator function is a function with
the same T -antisymmetry which can be transformed into a Carathéodory function by multiplying
with a rational scalar function and by adding a rational operator function.

We prove here, relying heavily on a result of T. Ya. Azizov, that the definitizable functions
are precisely those operator functions which can be represented in the form

F (z) = iS + Γ+(U + z)(U − z)−1Γ,

where S is a bounded selfadjoint operator in H , U is a definitizable unitary operator in some
Krĕın space K , Γ is a bounded operator of H in K , and Γ+ denotes the Krĕın space adjoint
of Γ . If the representing operator U for a given definitizable function fulfils some minimality con-
dition, then the restrictions of U to all Pontryagin type spectral subspaces are uniquely determined
up to unitary equivalence.

The main objective of this paper are the connections between sign properties of F , which
were introduced in [9], and similar properties of the representing operators U . The results are
carried over to a similar class of operator functions meromorphic in C \R .

Let H be a separable complex Hilbert space and let L (H ) denote the
algebra of bounded linear operators in H . By M

(
T;L (H )

)
we denote the

set of all L (H )-valued functions F which are meromorphic outside the unit
circle and at ∞ and satisfy the relation F (z̄−1) = −

(
F (z)

)∗
at all points z of

holomorphy.
A function F ∈M

(
T;L (H )

)
belongs to the Carathéodory class C

(
L (H )

)
,

i.e., F is holomorphic in C \T , and for every z in the open unit disc D its real
part 1

2

(
F (z)+F (z)∗

)
is a nonnegative operator if and only if it admits an integral

representation of the form

(0.1) F (z) = iS + (4π)−1

∫ 2π

0

(eiΘ + z)(eiΘ − z)−1 dM(Θ), z ∈ C \T,

1991 Mathematics Subject Classification: Primary 47A56; Secondary 47B50.

Research supported by the Hochschulsonderprogramm III/1.6 Land Brandenburg.



42 Peter Jonas

where S ∈ L (H ) is selfadjoint and M is a positive operator measure. Moreover,
F ∈ C

(
L (H )

)
if and only if there exist a Hilbert space K , a unitary operator

U in K , a mapping Γ ∈ L (H ,K ) and a bounded selfadjoint operator S in H
such that

(0.2) F (z) = iS + Γ∗(U + z)(U − z)−1Γ, z ∈ C \T.

Similarly, the classes Cκ
(
L (H )

)
, κ = 0, 1, . . . , of generalized Carathéodory

functions introduced and studied by M. G. Krĕın and H. Langer (see, e.g., [11])
can be described with the help of integral and operator representations. Recall
that, by definition, a function F ∈ M

(
T;L (H )

)
belongs to Cκ

(
L (H )

)
if the

kernel CF ,

(0.3) CF (z, ζ) := (1− zζ)−1
(
F (z) + F (ζ)∗

)
,

has κ negative squares. The class C0

(
L (H )

)
coincides with C

(
L (H )

)
.

A function F ∈M
(
T;L (H )

)
holomorphic at 0 belongs to one of the classes

Cκ
(
L (H )

)
if and only if (0.2) holds with the Hilbert space K replaced by a

Pontryagin space. For more precise results, see [11].
In the present paper, we consider a class of operator functions which was

introduced in [9]; here these functions will be called definitizable: A function
F ∈ M

(
T;L (H )

)
is definitizable if it can be “definitized”, which here means

transformed into a Carathéodory function, by multiplying with a rational scalar
function and by adding a rational operator function the poles of which are points
of holomorphy of F (see Definition 1.1). In [9], D0

(
L (H )

)
is the set of all

definitizable L (H )-valued functions which are holomorphic at zero. The latter
condition is no restriction; it can always be fulfilled with the help of a linear
fractional transformation of the argument.

The functions of all the classes Cκ
(
L (H )

)
are definitizable ([9, Proposi-

tion 2.5]). In [9], definitizable functions were characterized by representations
(0.1) with the measure M replaced by a distribution TF satisfying some sign
properties (see [9, Proposition 2.2]). In the present paper we deal with operator
representations (0.2) of definitizable functions where, in general, K is a Krĕın
space.

In [9] we considered operator functions z 7→ G(U +z)(U−z)−1 as examples of
definitizable functions, where G is a bounded and boundedly invertible selfadjoint
operator in a Hilbert space

(
K , ( · , · )

)
and U is a definitizable unitary operator

in the Krĕın space
(
K , (G · , · )

)
. It is not difficult to verify (Theorem 1.7 below)

that for Γ ∈ L (H ,K ) and selfadjoint S ∈ L (H ) the function

(0.4) z 7−→ iS + Γ∗G(U + z)(U − z)−1Γ

is again definitizable.
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On the other hand, by a result of T. Ya. Azizov ([1]), every function F ∈
M
(
T;L (H )

)
which is holomorphic at 0 admits an operator representation (0.4)

with a unitary but not necessarily definitizable operator U .

In Section 1 of the present paper we recall some definitions from [9] and in-
troduce the notion of a regular critical point. We prove that for every definitizable
function F in its representation (0.4), the operator U is definitizable if U ful-
fils a minimality condition. Relations between properties of F and of a minimal
representing operator U are studied.

In Section 2 we deal with the problem to which extent the representing op-
erator U is determined by the function F . It is well known that two minimal
representing operators, U1 and U2 , for the same definitizable function are weakly
isomorphic (cf. [3] or Theorem 1.8). We give an example which shows that, in
general, U1 and U2 may not be unitarily equivalent with respect to the Krĕın
space inner products.

In Section 3 the definitions and results are carried over by linear fractional
transformations to the case of operator functions which are symmetric with re-
spect to the real axis R . These operator functions often appear in applications.
For instance, R-symmetric definitizable functions occur in the theory of operator
polynomials, in connection with Sturm–Liouville problems with floating singu-
larity and in the extension theory of symmetric operators in Krĕın spaces (cf.
Section 3.4).

Similar results can be proved for some class of operator functions which locally
behave like definitizable functions. This case will be considered in a subsequent
paper.

All definitions and results of the present paper can be carried over without
difficulty to the case when the T-antisymmetry of the operator functions F is
understood with respect to a Krĕın space inner product [ · , · ] on H instead of
the Hilbert space scalar product ( · , · ) . Indeed, if G′ ∈ L (H ) is the boundedly
invertible operator defined by [x, y] = (G′x, y) , x, y ∈ H , then the relation
F (z̄−1) = −F (z)+ where F (z)+ denotes the adjoint of F (z) with respect to
[ · , · ] is equivalent to G′F (z̄−1) = −

(
G′F (z)

)∗
. The same applies for the other

properties which will be studied in the following, and for R-symmetric operator
functions.

1. Representations of definitizable functions skew
symmetric with respect to the unit circle

1.1. Notation and definitions. If S is a subset of the extended complex plane
C, we set Ŝ := {z ∈ C : z̄−1 ∈ S } . For a scalar (or L (H )-valued) function

f defined on a set D = D̂ ⊂ C, we define f̂ (µ) := f(µ̄−1) ( f̂ (µ) := f(µ̄−1)∗ ),
µ ∈ D . For a Banach space X , let R0,∞(X) denote the set of all functions
C 3 z 7−→ ∑

j∈Z cjz
j with cj ∈ X , where the sum is finite, R0,∞ := R0,∞(C) .

By Rs
0,∞ we denote the set of all functions g ∈ R0,∞ such that g = ĝ .
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The linear space of locally holomorphic functions on a compact set K ⊂ C is
denoted by H(K) . H(K;H ) denotes the analogous space of H -valued functions.
Similar notation is used for other spaces of vector-valued functions.

We recall the definitions of the analytic functionals TF and TF ( · , · ) from [9].
Let L = L̂ be a compact subset of C such that T ⊂ L and D \ L is connected.
Then with every L (H )-valued function F which is holomorphic in (D \ L) ∪
( D̂ \ L) and satisfies F (z̄−1) = −

(
F (z)

)∗
, z ∈ (D \ L) ∪ ( D̂ \ L) , we connect an

analytic functional TF ∈ L
(
H(L),L (H )

)
(cf. [9]):

(1.1) TF .f := −
∫

C

F (z)f(z)(iz)−1 dz, f ∈ H(L).

Here C is the oriented boundary of a finite union Ω of smooth bounded domains
containing L such that f is defined on Ω and 0 /∈ Ω. Moreover, for every f as
in (1.1) and u, v ∈ H(L,H ) we define

(1.2) TF (u, v).f := −
∫

C

(
F (z)u(z), v(z̄−1)

)
f(z)(iz)−1 dz,

where C is as above and such that u and v are defined on Ω. If f = f̂ holds,
the sesquilinear form (u, v) 7−→ TF (u, v).f is hermitian. If F is a Carathéodory
function and (0.1) holds, then TF coincides with M regarded as an operator-
valued Radon measure restricted to H(T) .

The set of all z ∈ C such that F ∈ M
(
T;L (H )

)
can analytically be

continued in z in a unique way is denoted by P(F ) . We set Σ(F ) := C \ P(F ) .
Note that in [9] the notation σ(F ) has been used instead of Σ(F ) .

If F ∈ M
(
T;L (H )

)
is holomorphic at 0 and ∞ , has only a finite number

of poles outside T and there exists an m ∈ N such that

(1.3) sup
{
‖F (z)‖

∣∣1− |z|
∣∣m : |z| ∈ (η, 1) ∪ (1, η−1)

}
<∞

for some η ∈ (0, 1), then TF can be extended by continuity to

Cm+1(T) ×H
(
Σ(F ) \T

)

([9, Proposition 1.1]). Under the same assumptions on F , TF ( · , · ) can be ex-
tended by continuity to

(
Cm+1(T,H ) ×H

(
Σ(F ) \T,H

))2 ×
(
Cm+1(T) ×H

(
Σ(F ) \T

))

([9, Proposition 1.2]). We use this extended form, as in [9], to introduce sign types
of open subsets of T with respect to F .

Let first L be a linear space equipped with a hermitian sesquilinear form
[ · , · ] . We denote by κ+

(
(L , [ · , · ])

)
(κ−

(
(L , [ · , · ])

)
) the least upper bound
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(≤ ∞) of the dimensions of the subspaces of L which are positive (resp., negative)
definite with respect to [ · , · ] .

For F as above and f ∈ C∞(T)×H
(
Σ(F ) \T

)
with f = f̂ , we define

κ±(f ;F ) := κ±
((

R0,∞(H ), TF ( · , · ).f
))

.

An open subset γ of T is said to be of positive type (negative type, type π+ and
type π− ) with respect to F if κ−(f ;F ) = 0 (κ+(f ;F ) = 0, κ−(f ;F ) < ∞ ,
κ+(f ;F ) < ∞) for all nonnegative functions f ∈ C∞(T) × H

(
Σ(F ) \ T

)
with

suppf ⊂ γ . We say that γ is of definite type (type π ), if it is of positive or of
negative type (resp., type π+ or type π− ). A point α ∈ T is called a critical point
(an essential critical point) with respect to F if α is not contained in an open
subset of T of definite type (resp., type π ) with respect to F ; we write α ∈ K(F )
(resp., α ∈ K∞(F )).

Definition 1.1. A function F ∈M
(
T;L (H )

)
is called definitizable if there

exists a scalar rational function g such that gF is the sum of a Carathéodory
function H , and an L (H )-valued rational function h the poles of which belong
to P(F ) :

(1.4) g(z)F (z) = H(z) + h(z)

for all points z ∈ C \T of holomorphy of gF . A rational operator function is by
definition a meromorphic operator function in C. A function g with the property
mentioned above is called a definitizing function for F .

Evidently, a definitizable function F has only a finite number of poles outside
T and (1.3) holds for some m ∈ N . There is no loss of generality in assuming that
the definitizing function g is T-symmetric, g = ĝ . Indeed, if (1.4) holds, then

ĝ(z)F (z) = −
(
g(z̄−1)F (z̄−1)

)∗
= −H(z̄−1)∗ − h(z̄−1)∗ = H(z) − h(z̄−1)∗.

Hence 1
2 (g + ĝ) = 1

2 (g + ĝ)̂ is definitizing.
The following lemma shows, in particular, that a function F ∈M

(
T;L (H )

)

which satisfies the conditions of the above definition except the requirement that
the poles of h belong to P(F ) is still definitizable. In this case, g is not necessarily
definitizing for F in the sense of Definition 1.1. Moreover, the subsequent lemma
will show that Definition 1.1 can equivalently be formulated with the help of special
definitizing functions g , see the definition in [9].

Lemma 1.2. Besides H let a further Hilbert space H ′ be given. Let
H ∈ M

(
T;L (H ′)

)
be a Carathéodory function, q a scalar rational function,

q = q̂ , k an L (H ,H ′)-valued rational function and h an L (H )-valued rational

function, h = −ĥ . Then the operator function F defined by

F (z) := q(z)k(z̄−1)∗H(z)k(z) + h(z)
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for all z ∈ C where q , H , k and h are holomorphic, is definitizable. Moreover,
if z0 ∈ D is a point of holomorphy of F , there exists a definitizing function g = ĝ
of F with the following properties:

(i) g has poles at most at z0 and z̄−1
0 .

(ii) There is a decomposition gF = H0 + h0 with the properties mentioned
in Definition 1.1 such that, in addition, P(F ) ⊂ P(H0) and h0 has poles at most
at z0 and z̄−1

0 .

Proof. We assume that z0 as in the lemma is not zero. This is no restriction.
Let αj , j = 1, . . . , j0 , be the poles of the functions q(z)−1 , k(z̄−1)∗ , k(z) and
q(z)−1h(z) and let νj be the sum of the orders of αj as a pole of these four

functions, ν :=
∑j0
j=1 νj . We set

p(z) :=

( j0∏

j=1

(z−1 − ᾱj)
νj (z − αj)

νj

)
(z−1 − z̄0)

−ν(z − z0)
−ν .

Then g := pq−1 has poles at most at z0 and z̄−1
0 , and we have

(1.5) g(z)F (z) = p(z)k(z̄−1)∗H(z)k(z) + p(z)q(z)−1h(z).

If z0 ∈ T , then z0 is no accumulation point of Σ(H) , and we denote by
γ a closed arc of T with z0 /∈ γ and Σ(H) \ {z0} ⊂ γ . If z0 /∈ T , we set
γ = T . Outside γ ∪ {z0, z̄

−1
0 } , the function p(z)k(z̄−1)∗H(z)k(z) , which belongs

to M
(
T;L (H )

)
, is holomorphic. We decompose this function,

(1.6) p(z)k(z̄−1)∗H(z)k(z) = H0(z) + h̃0(z)

such that H0 , h̃0 ∈ M
(
T;L (H )

)
, Σ(H0) ⊂ γ , Σ(h̃0) ⊂ {z0, z̄

−1
0 } (see, e.g., [9,

Section 1.3]). By (1.5) and (1.6) and since h̃0 and pq−1h are rational operator
functions which have no poles in C \ {z0, z̄

−1
0 } , it remains to verify that H0 ∈

C
(
L (H )

)
and P(F ) ⊂ P(H0) . The latter relation follows from (1.5), (1.6) and

the construction of H0 .
We choose ε > 0 so that z0 /∈ {z ∈ D : dist(z, γ) ≤ ε} =: U1 . Let C :=

∂(U1 ∪ Û 1) . If u ∈ R0,∞(H ) , then

TH0(u, u).1 = −
∫

C

(
H0(ζ)u(ζ), u(ζ̄−1)

)
H

(iζ)−1 dζ

= −
∫

C

p(ζ)
(
H(ζ)k(ζ)u(ζ), k(ζ̄−1)u(ζ̄−1)

)
H ′(iζ)−1 dζ

= TH(v, v).1 ≥ 0.

Here v is a function coinciding with
(∏j0

j=1(z − αj)
νj
)
(z − z0)

−νk(z)u(z) in a

neighbourhood of U1 ∪ Û 1 and equal to zero in a neighbourhood of {z0, z̄
−1
0 } .

Hence H0 is a Carathéodory function (see [9, relation (1.6)]).
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Remark 1.3. Evidently, the assertions of Lemma 1.2 remain true if H ∈
M
(
T;L (H ′)

)
is a definitizable function.

The following lemma can be proved in the same way as Lemma 1.2.

Lemma 1.4. Let F ∈M
(
T;L (H )

)
be definitizable. Let g = ĝ be a scalar

rational function such that its poles αj , j = 1, . . . , j0 , in D belong to P(F ) .

Denote by νj the order of the pole αj , ν :=
∑j0
j=1 νj . If βk ∈ D∩P(F ) , µk ∈ N ,

k = 1, . . . , k0 ,
∑k0

k=1 µk = ν and

p(z) :=

( j0∏

j=1

(z−1 − ᾱj)
νj (z − αj)

νj

)
×
( k0∏

k=1

(z−1 − β̄k)
µk (z − βk)

µk

)−1

,

then g is definitizing for F if and only if pg is definitizing for F .

In the following we mostly consider the class D0

(
T;L (H )

)
(in [9] denoted by

D0

(
L (H )

)
) of those definitizable functions which are holomorphic at 0 and ∞ .

This involves no loss of generality (see Introduction). By Lemma 1.2, for F ∈
D0

(
T;L (H )

)
, there is always a definitizing function g ∈ Rs

0,∞ .
Simple examples of definitizable functions are the differences F1 − F2 of two

Carathéodory functions F1 , F2 with Σ(F1) ∩Σ(F2) = ∅ . By [9, Proposition 2.2],
a definitizable function F is of this form if and only if it is holomorphic in C\T ,
i.e., Σ(F ) ⊂ T , and has no critical points, i.e., K(F ) = ∅ .

Similarly, if Fi ∈ Cκi
(
L (H )

)
, κi is a nonnegative integer, i = 1, 2, and

Σ(F1) ∩ Σ(F2) = ∅ , then F1 − F2 is definitizable. It is easy to verify that a
definitizable function F is of this form if and only if all poles of F outside T have
finite multiplicity (see [9, Lemma 1.5]) and F has no essential critical points, i.e.,
K∞(F ) = ∅ .

1.2. Poles and regular critical points of definitizable functions. Let F ∈
D0

(
T;L (H )

)
, α ∈ Σ(F )∩T , and assume that there is an open arc γ containing

α such that γ \ {α} ⊂ P(F ) . Then, by Definition 1.1, α is a pole of F . If k is
the order of the pole α , then the operator function

λ 7−→ iF

(
−α

λ− i

λ + i

)
=: G(λ)

which is holomorphic in {λ : 0 < |λ| < ρ} for sufficiently small ρ has a pole of
order k at 0. Let

G−kλ
−k + · · ·+ G−1λ

−1

be the principal part of G at 0. Then, by the skew-symmetry of F , G−i , i =

1, . . . , k , are bounded selfadjoint operators in H . Let G̃ denote the selfadjoint
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operator 


G−1 G−2 · · · G−k
G−2 G−3 · · · 0

...
...

...
G−k 0 · · · 0




in H k . In the following proposition we characterize some sign properties of the
pole with the help of the operator G̃ .

Proposition 1.5. Let F , α , γ , G̃ be as above. Then the multiplicity of the
pole α of F is equal to dimR( G̃) . If f ∈ C∞(T) ×H

(
Σ(F ) \T

)
, suppf ⊂ γ ,

and f is identically equal to one in some neighbourhood of α , then

κ+(f ;F ) = dimR
(
E
(
(−∞, 0); G̃

))
, κ−(f ;F ) = dimR

(
E
(
(0,∞); G̃

))
,

where E( · ; G̃) is the spectral function of G̃ .

Proof. The first statement is a well-known fact. If Cρ/2 := {λ : |λ| = ρ/2}
and p(λ) = p0 + p1λ + · · ·+ pk−1λ

k−1 , p0, . . . , pk ∈H , then we have

(1.7)

−4π







G−1 G−2 · · · G−k
G−2 G−3 · · · 0

...
...

...
G−k 0 · · · 0







p0

p1
...

pk−1


 ,




p0

p1
...

pk−1







H k

= −4π(2πi)−1

∫

Cρ/2

λ−1
{
G−1(p0, p0) + G−2

(
(p0, p1) + (p1, p0)

)

· · · + G−k
(
(p0, pk−1) + · · ·+ (pk−1, p0)

)}
dλ

= 2i

∫

Cρ/2

(
G(λ)p(λ), p(λ̄)

)
dλ.

With the substitution

λ = i
1− zα−1

1 + zα−1

we get
(1.8)

2i

∫

Cρ/2

(
G(λ)p(λ), p(λ̄)

)
dλ

= −4

∫

C

(
F (z)

1

1 + zα−1
p

(
i
1 − zα−1

1 + zα−1

)
,

1

1 + z̄−1α−1
p

(
i
1− z̄−1α−1

1 + z̄−1α−1

))
dz

iz
,

where C is a circle in P(F ) such that the interior domain corresponding to C
intersects Σ(F ) at the point α . Relations (1.7) and (1.8) imply the proposition.
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If α and γ are as in Proposition 1.5, then we define the sign type of the pole
α to be the sign type of γ with respect to F .

A critical point λ of F ∈ D0

(
T;L (H )

)
is called regular, if there exists

an open arc γ , λ ∈ γ , such that TF restricted to γ \ {λ} is a bounded operator
measure. The set of all regular critical points of F is denoted by Kr(F ) . A critical
point which is not regular is called singular. We set Ks(F ) := K(F ) \Kr(F ) . The
following proposition will be needed below for the construction of a special operator
representation.

Proposition 1.6. Let eiΘ0 ∈ K(F ) for some Θ0 ∈ R and let ε , 0 < ε < π ,
be chosen so that the arcs {eiΘ : Θ ∈ (Θ0 − ε,Θ0)} and {eiΘ : Θ ∈ (Θ0,Θ0 + ε)}
are of definite type with respect to F . Let γ1 := {eiΘ : Θ ∈ (Θ0 − ε1,Θ0)} ,
γ2 := {eiΘ : Θ ∈ (Θ0,Θ0 + ε2)} for some ε1 , ε2 , 0 < ε1, ε2 < ε . Then the
following statements are equivalent.

(1) eiΘ0 ∈ Kr(F ) .
(2) There exists a decomposition of F ,

F =
3∑

i=0

Fi, Fi ∈ D0

(
T;L (H )

)
, i = 0, 1, 2, 3,

with the following properties.

(i) Σ(F0) = {eiΘ0} , Σ(F1) ⊂ γ1 , Σ(F2) ⊂ γ2 , Σ(F3)∩(γ1∪{eiΘ0}∪γ2) = ∅ .
(ii) Fi ∈ C

(
L (H )

)
or −Fi ∈ C

(
L (H )

)
, i = 1, 2 . For arbitrary x ∈ H ,

the angular limits

̂limz→eiΘ0 (z − eiΘ0)(F1(z)x, x),

̂limz→eiΘ0 (z − eiΘ0)
(
F2(z)x, x

)
,

̂limz→ei(Θ0−ε1)(z − ei(Θ0−ε1))
(
F1(z)x, x

)
,

̂limz→ei(Θ0+ε2) (z − ei(Θ0+ε2))
(
F2(z)x, x

)

are zero.

If (2) holds, the functions Fi are unique up to terms of the form iS , S
selfadjoint, and the set of functions {F0(z) + iS} does not depend on the special
choice of γ1 and γ2 .

Proof. Assume that (1) holds. Let (χ1,n) , (χ2,n) be sequences of nonnegative
functions in C∞(T) × H

(
Σ(F ) \ T

)
, suppχ1,n ⊂ γ1 , suppχ2,n ⊂ γ2 with the

following properties: for any compact subsets K1 ⊂ γ1 , K2 ⊂ γ2 , there exists an
N such that for n ≥ N , χ1,n is equal to 1 on K1 and χ2,n is equal to 1 on
K2 , and (χ1,n) and (χ2,n) converge monotonically increasing to 1 on γ1 and γ2 ,
respectively. Then the operator functional Ti , i = 1, 2, defined by

Ti.f := lim
n→∞

TF .χi,nf, f ∈ C∞(T)×H
(
Σ(F ) \T

)
,
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is a positive or a negative operator measure with support contained in γi . For ar-
bitrary x ∈H , the measure

(
Ti( · )x, x

)
, i = 1, 2, has no masses at the endpoints

of γ1 and γ2 . Let χ0 ∈ C∞(T)×H
(
Σ(F )\T

)
with suppχ0 ⊂ γ1∪{eiΘ0}∪γ2 such

that χ0 is identically equal to one in some neighbourhood of eiΘ0 and define T0 :=
χ0(TF −T1−T2) , T3 := TF −T0−T1−T2 . If we set Fi(λ) := Ti.fλ− (4π)−1Ti.1 ,
i = 0, 1, 2, 3, we get (cf. [9, Section 1.3])

F (λ)− i Im F (0) =

3∑

i=0

Fi(λ).

This decomposition of F has the properties required in (2). It is easy to see that
(2) implies (1).

We note that the second part of (ii) is equivalent to the fact that the measures(
TFi ( · )x, x

)
, i = 1, 2, have no masses at the endpoints of γ1 and γ2 . Then, if (2)

holds, the uniqueness property of the functions Fi , i = 0, 1, 2, 3, follows from the
fact that the corresponding functionals TFi are uniquely determined. This proves
Proposition 1.6.

We shall say that the critical point eiΘ0 of F has a mass of positive type, if
the pole eiΘ0 of F0 is of positive type. It is the same for the other sign types.

1.3. Definitizable functions defined by operators. We now consider, besides
H , a further Hilbert space K and denote the scalar product in K by ( · , · ) ,
in the same way as in H . Let W be a bounded selfadjoint operator in K , let
U ∈ L (K ) , 0 ∈ ρ(U) and (WUx,Uy) = (Wx, y) for all x, y ∈ K . If S is a
selfadjoint bounded operator in H and Γ ∈ L (H ,K ) and U is a domain in C

such that 0 ∈ U and U ∪ Û ⊂ ρ(U) ∪ {∞} , then the function F defined by

(1.9) F (z) = iS + Γ∗W (U + z)(U − z)−1Γ, z ∈ U ∪ Û ,

satisfies the relation F (z) = −F (z̄−1)∗ . Indeed, from the relations U∗W =
WU−1 , (U∗)−1W = WU , by expansions of the resolvent of U at 0 and ∞
and analytic continuation, it follows that

(1.10) (U∗ − z̄)−1W = W (U−1 − z)−1, z ∈ U ∪ Û ,

which implies the skew-symmetry of F .
We give some relations connecting F and U , which will be used later on.

(1.9) and U∗W = WU−1 imply the following identities:

2ReF (0) = 2Γ∗WΓ,

(k!)−1F (k)(0) = 2Γ∗WU−kΓ, k ∈ N,

(k!)−1
(
F (k)(0)

)∗
= 2Γ∗WUkΓ, k ∈ N.
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Then, as in relation [9, (1.21)], we verify that

4πΓ∗WU lΓ = TF .λ̇l, l ∈ Z,

where λ̇l denotes the function λ 7−→ λl , and hence,

(1.11) 4πΓ∗Wg(U)Γ = TF .g, g ∈ R0,∞.

Therefore, if x−n, . . . , xn ∈H and g ∈ R0,∞ , we find

(1.12)

(4π)−1TF

( n∑

j=−n
xj λ̇

j ,

n∑

k=−n
xkλ̇

k

)
.g = (4π)−1

n∑

j,k=−n

(
(TF .gλ̇j−k)xj , xk

)

=
n∑

j,k=−n

(
Γ∗Wg(U)U j−kΓxj , xk

)

=
(
Wg(U)(U−nΓx−n + · · ·+ UnΓxn

)
, U−nΓx−n + · · ·+ UnΓxn).

With the help of (1.12) and [9, relation (1.6)] one could easily verify the
following theorem (cf. proof of Theorem 1.9), but we will give a short direct proof.

Theorem 1.7. Let K , W , U , S , Γ and U be as above and let F be the
L (H )-valued function defined by (1.9). Then the following holds.

(i) If for some rational function g = ĝ the poles of which belong to U ∪ Û
we have

(
Wg(U)x, x

)
≥ 0 for all x ∈ K , then F has an analytic continuation to

a definitizable function and g is a definitizing function for F .
(ii) If for some rational function g = ĝ the poles of which belong to U ∪ Û

the hermitian form
(
Wg(U) · , · ) on K has κ negative squares, then F has an

analytic continuation to a definitizable function. Moreover, there exist a function
H ∈ Cκ′

(
L (H )

)
, 0 ≤ κ′ ≤ κ , holomorphic in U ∪ Û , and a rational operator

function h holomorphic at all points where g is holomorphic such that

g(z)F (z) = H(z) + h(z)

for all points z of holomorphy of g , F , H and h .

Proof. Assertion (i) is a consequence of (ii). In order to prove (ii), assume
that

(
Wg(U) · , ·

)
has κ negative squares. We have

(1.13)
g(z)F (z) = ig(z)S + Γ∗Wg(U)(U + z)(U − z)−1Γ

− Γ∗W
(
g(U) − g(z)

)
(U + z)(U − z)−1Γ.

Since the first and the third term on the right of (1.13) are rational operator
functions holomorphic at all points where g is holomorphic, it remains to verify
that the function

H(z) := Γ∗Wg(U)(U + z)(U − z)−1Γ
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belongs to Cκ′
(
L (H )

)
for some κ′ , 0 ≤ κ′ ≤ κ . From (1.10) it follows

H(ζ)∗ = Γ∗Wg(U)(U−1 − ζ̄)−1(U−1 + ζ)Γ.

If x, y ∈H , z, ζ ∈ U ∪ Û , a simple computation gives

(1 − zζ̄)−1
((

H(z) + H(ζ)∗
)
x, y
)

= (1− zζ̄)−1
(
Wg(U)

{
(U + z)(U − z)−1

+ (U−1 + ζ̄)(U−1 − ζ̄)−1
}
Γx,Γy

)

= 2
(
Wg(U)(U − z)−1(U−1 − ζ̄)−1Γx,Γy

)

= 2
(
Wg(U)(U − z)−1Γx, (U − ζ)−1Γy

)
.

By assumption, this kernel has no more than κ negative squares and Theorem 1.7
is proved.

If 0 ∈ ρ(W ) , then (K , [ · , · ]) with [ · , · ] := (W · , · ) is a Krĕın space, U is
unitary in this Krĕın space, and in the above formulas Γ∗W can be replaced by
the Krĕın space adjoint Γ+ .

We recall that a unitary operator U in a Krĕın space (K , [ · , · ]) is called
definitizable if there exists a rational function g = ĝ whose poles belong to ρ(U)∪
{∞} such that [g(U)x, x] ≥ 0, x ∈ K . A function g with this property is called
a definitizing function for U . With this notation, Theorem 1.7(i) says that every
definitizing function for U is also definitizing for F (z) = iS+Γ+(U+z)(U−z)−1Γ.
It is well known that if for some rational function g0 = ĝ0 the form [g0(U) · , · ]
has a finite number of negative squares on K , then U is definitizable.

In the following subsections we shall make use of the spectral function E( · ;U)
and the notion of the critical point of a definitizable unitary operator U (see [14],
[7]). We denote by c(U) the set of critical points of U .

1.4. Operator representations of a given definitizable function. In this section
we consider operator representations of a given definitizable function. First we
recall T. Azizov’s result mentioned in the introduction, in a form convenient for
our purpose. If T is a closed operator or a closed linear relation in a Krĕın space
K with ρ(T ) 6= ∅ , R is a class of functions which are locally holomorphic on the
spectrum of T , and M is a subset of K , then we define

K (T,R,M ) := sp{g(T )x : g ∈ R, x ∈M }

and

K (T,R,M ) := K (T,R,M ).

Theorem 1.8 ([1], see also [3]). Let F be an L (H )-valued function holo-

morphic on Dr ∪ D̂r , Dr := {z : |z| < r} , for some r ∈ (0, 1) such that
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F (z) = −F (z̄−1)∗ , z ∈ Dr ∪ D̂r . Then there exist a Krĕın space K , a uni-

tary operator U in K , Dr ∪ D̂r ⊂ ρ(U) ∪ {∞} , and Γ ∈ L (H ,K ) such that

(1.14) F (z) = i Im F (0) + Γ+(U + z)(U − z)−1Γ, z ∈ Dr ∪ D̂r,

and

(1.15) K =K (U,R0,∞,ΓH ).

If F admits two such representations with Krĕın spaces (Kj, [ · , · ]j ) , operators
Γj ∈ L (H ,Kj) and unitary operators Uj ∈ L (Kj) , j = 1, 2 , then

(1.16) V :
m∑

i=1

fi(U1)Γ1xi 7−→
m∑

i=1

fi(U2)Γ2xi,

xi ∈ H , fi ∈ R0,∞ , i = 1, . . . ,m , defines a linear and isometric mapping
of the dense linear set K1(U1,R0,∞,Γ1H ) in K1 onto the dense linear set
K2(U2,R0,∞,Γ2H ) in K2 such that

U2V y = V U1y, y ∈ K1(U1,R0,∞,Γ1H ).

The relation (1.15) is called a minimality condition. The last relation can
easily be verified with the help of (1.14). It is called the weak isomorphy of the
two minimal representing operators U1 and U2 (cf. [3]).

Theorem 1.9. Let F ∈ D0

(
T;L (H )

)
and let, for some r ∈ (0, 1) ,

F (z) = i ImF (0) + Γ+(U + z)(U − z)−1Γ, z ∈ Dr ∪ D̂r,

be a minimal representation of F as in Theorem 1.8. Then the unitary operator
U in K is definitizable and we have ρ(U)∪{∞} = P(F ) . Moreover, the following
holds:

(i) Every definitizing function g ∈ Rs
0,∞ for F is definitizing also for U .

(ii) If, for some g ∈ Rs
0,∞ ,

g(z)F (z) = H(z) + h(z)

where H ∈ Cκ(L
(
H )

)
is holomorphic at 0 and h ∈ R0,∞

(
L (H )

)
and

equality holds for all those z ∈ C\T where g , F , H and h are holomorphic,
then g(U) has κ negative squares.
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Proof. Let g ∈ Rs
0,∞ and H be as in assertion (ii). Since TH( · , · ).1 =

TF ( · , · ).g has κ negative squares (cf. [9, relation (1.6)]), it follows with the help
of (1.12) that [g(U) · , · ] has κ negative squares on K (U,R0,∞,ΓH ) . Therefore,
g(U) has κ negative squares. With κ = 0, we get that U is definitizable and
assertion (i).

If µ ∈ ρ(U) ∪ {∞} , it follows by the definition of P(F ) that µ ∈ P(F ) . It
remains to verify that P(F ) ⊂ ρ(U) ∪ {∞} . By (1.12) we have

(1.17)
(4π)−1

n∑

j,k=−n

(
(TF .f λ̇j−k)xj , xk

)

= [f(U)(U−nΓx−n + · · ·+ UnΓxn), U
−nΓx−n + · · ·+ UnΓxn]

for all f ∈ R0,∞ , xi ∈H , i = −n, . . . , n . Let µ ∈ P(F )\ (T∪{0}∪{∞}) and let
(fn) be a sequence in R0,∞ converging uniformly to 1 in some neighbourhood of
µ and to 0 in some neighbourhood of Σ(F )∪

(
σ(U)\{µ}

)
. Then fn(U) converges

with respect to the operator norm. By (1.17) the limit is zero, hence µ ∈ ρ(U) .
Let µ ∈ P(F )∩T and let γ be an open arc of T such that µ ∈ γ , γ̄ ⊂ P(F )

and the endpoints of γ do not belong to c(U) . Then there exists a sequence (fn)
in R0,∞ such that (fn) converges uniformly to 0 in a neighbourhood of Σ(F )
and

(
fn(U)

)
converges strongly to E(γ;U) . By (1.17) we have E(γ;U) = 0 and,

hence, µ ∈ ρ(U) , which proves Theorem 1.9.

Remark 1.10. Under the assumptions of Theorem 1.9, a rational function
g = ĝ the poles of which belong to P(F ) = ρ(U) ∪ {∞} is definitizing for F if
and only if it is definitizing for U . This follows from Theorems 1.7 and 1.9 and
Lemma 1.4.

Remark 1.11. If J is a fundamental symmetry of the Krĕın space K and
U is a unitary operator in K , then, as a consequence of Theorems 1.7 and 1.9, U
is definitizable if and only if z 7−→ J(U + z)(U − z)−1 defined in a neighbourhood
of {0,∞} can analytically be continued to a definitizable operator function. The
sets of the corresponding definitizing rational functions the poles of which belong
to ρ(U) ∪ {∞} coincide.

The following theorem will show, in particular, that a definitizable function
and a minimal definitizable unitary representing operator have similar sign and
multiplicity properties.

First, we recall some definitions for a definitizable unitary operator U in a
Krĕın space K . Let E( · ) := E( · ;U) be the spectral function of U . A critical
point α of U is called regular (we write α ∈ cr(U)) if there exists an open arc
γ0 3 α with γ0∩(c(U)\{α}) = ∅ such that the projections E(γ) , γ = γ̄ ⊂ γ0\{α} ,
are uniformly bounded. The elements of cs(U) = c(U) \ cr(U) are called singular
critical points. A critical point α with the property that for every open arc γ
such that α ∈ γ and E(γ) is defined, the range of E(γ) is neither a Hilbert or
anti-Hilbert space nor a Pontryagin space, is called an essential critical point. The
set of essential critical points of U is denoted by c∞(U) .
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Theorem 1.12. Let F ∈ D0

(
T;L (H )

)
and let

(1.18) F (z) = i ImF (0) + Γ+(U + z)(U − z)−1Γ, z ∈ ρ(U),

be a representation of F with a definitizable unitary operator U in a Krĕın
space K . Let E be the spectral function of U . Then the following holds:

(i) Σ(F ) ⊂ σ(U) .
(ii) K(F ) ⊂ c(U) . If, in addition, the representation is minimal, we have K(F ) =

c(U) .
(iii) For every open subarc γ of T , the endpoints of which do not belong to c(U) ,

and every g ∈ Rs
0,∞ , we have

(1.19)
κ±
(({

C∞(T,H ) ×H
(
Σ(F ) \T,H

)}
γ
, TF (·, ·).g

))

≤ κ±
((

E(γ)K , [g(U) · , · ])
)
.

Here
{
C∞(T,H )×H

(
Σ(F ) \T,H

)}
γ

denotes the linear space of all func-

tions of C∞(T,H ) ×H(Σ(F ) \T,H ) with support in γ . In particular,

(1.20)
κ±
(({

C∞(T,H )×H
(
Σ(F ) \T,H

)}
γ
, TF ( · , · ).1

))

= κ±
((

R0,∞(H ), EF ( · , · ; γ)
))
≤ κ±

((
E(γ)K , [ · , · ]

))
,

where EF ( · , · ; · ) denotes the form spectral function of F (see [9, Section
2.3]). In the case of a minimal representation we have equality in (1.19) and
(1.20).

(iv) Let ν /∈ T be a pole of F . Then the multiplicity of the pole ν of F is less than
or equal to dimE({ν})K , where E({ν}) is the Riesz–Dunford projection
corresponding to U and {ν} . In the minimal case we have equality.

Proof. 1. Assertion (i) follows from the definition of P(F ) . In order to verify
(iii), let γ be an open subarc of T whose endpoints do not belong to c(F )∪ c(U) .
Let g ∈ Rs

0,∞ . Then, by extending the relation (1.12) we get

(1.21)
(4π)−1TF

( n∑

j=−n
xj λ̇

j ,
n∑

k=−n
xkλ̇

k

)
.αg

= [α(U)g(U)(U−nΓx−n + · · · + UnΓxn), U−nΓx−n + · · ·+ UnΓxn]

for all functions α ∈ C∞(T) × H
(
Σ(F ) \ T

)
with suppα ⊂ γ . Then a density

argument gives (1.19). With the help of [9, Lemma 2.8], we get (1.20). If the
representation (1.18) is minimal, then the set

{U−nΓxn + · · ·+ UnΓxn : xi ∈H , i = −n, . . . , n; n ∈ N}
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is dense in K . Therefore,

{E(γ)(U−nΓxn + · · ·+ UnΓxn) : xi ∈H , i = −n, . . . , n; n ∈ N}

is dense in E(γ)K .
Using the fact that E(γ) can be written as a strong limit of operators of the

form αm(U)g(U) , αm ∈ C∞(T) ×H
(
σ(U) \T

)
, suppαm ⊂ γ , we easily verify,

with the help of (1.21), that equality holds in (1.19) and (1.20). As a consequence,
we get assertion (ii). This shows that the above additional assumption concerning
the endpoints of γ is no restriction. Hence (iii) holds.

2. Let µ ∈ σ(U) \T and let ε > 0 be chosen so that

U := {z : 0 < |µ− z| ≤ ε} ⊂ ρ(U).

Let χ be the indicator function of U ∪Û . The function χ is locally holomorphic
on σ(U) and on Σ(F ) . Then by the extension by continuity of the relation (1.12)
we find, for x−n, . . . , xn ∈H ,

(1.22)
(4π)−1TF

( n∑

j=−n
xj λ̇

j ,

n∑

k=−n
xkλ̇

k

)
.χ

= [E0(U
−nΓx−n + · · ·+ UnΓxn), U

−nΓx−n + · · ·+ UnΓxn],

where E0 = E({µ})+E({µ̄−1}) . By [9, Lemma 1.5], the multiplicity l of the pole
µ of F coincides with the number of negative and with the number of positive
squares of the symmetric form on the right hand side of (1.22). Then by (1.22)

(1.23) l ≤ κ±
(
(E0K , [ · , · ])

)
.

By a well-known result for unitary operators in Krĕın space, we have

κ±
(
(E0K , [ · , · ])

)
= dimE({µ})K .

If the representation (1.18) is minimal, we see as above that equality holds
in (1.23), and, therefore, l = dimE({µ})K . Hence statement (iv) holds, and
Theorem 1.12 is proved.

1.5. Representations of definitizable functions with regular critical points.
Below, in Section 2.4, we shall see that a regular critical point of a definitizable
function is not necessarily a regular critical point for all minimal representing
operators. But the converse implication is true.

Theorem 1.13. If

F (z) = i ImF (0) + Γ+(U + z)(U − z)−1Γ, z ∈ ρ(U),

is a (not necessarily minimal) representation of F ∈ D0

(
T;L (H )

)
by a definiti-

zable unitary operator U in a Krĕın space K , then cr(U) ⊂ Kr(F ) .
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Proof. Let γ ⊂ T be an open arc whose endpoints do not belong to cs(U)
and assume that E(γ)K is a Hilbert space or anti-Hilbert space. Let M be the
set of all functions f ∈ C∞(T) ×H

(
σ(U) \T

)
with suppf ⊂ γ and sup{|f(s)| :

s ∈ γ} ≤ 1; then the set {f(U) : f ∈M } is bounded in L (H ) . Then, making
use of the extension by continuity of the relation (1.11), we find that TF is a
bounded operator measure on γ , which proves Theorem 1.13.

The following theorem shows that for every definitizable function we can find
a minimal representing operator which has the same regular critical points.

Theorem 1.14. Let F ∈ D0

(
T;L (H )

)
and Kr(F ) 6= ∅ . Then there

exists a minimal definitizable unitary representing operator U such that cr(U) =
Kr(F ) , and for every α ∈ Kr(F ) we have κ±(1, F0) = κ±(Lα) , where F0 is as in
Proposition 1.6 and Lα is the algebraic eigenspace of U corresponding to α .

Proof. Assume first that Kr(F ) = {eiΘ0} . Let F =
∑3

i=0 Fi be a decompo-
sition of F as in Proposition 1.6 and let

Fi(z) = i Im Fi(0) + Γ+

i (Ui + z)(Ui − z)−1Γi

be a minimal representation of Fi in some Krĕın space Ki . If we set K :=
K0 × · · · ×K3 , U := U0 × · · · × U3 and Γ := (Γ0, . . . ,Γ3)

T , then

(1.24) F (z) = i ImF (0) + Γ+(U + z)(U − z)−1Γ.

Since by Theorem 1.9 the unitary operators Ui , i = 0, 1, 2, 3, are definitizable and
the sets σ(Ui)∩σ(Uj ) , i 6= j , are empty or consist of one point, U is a definitizable
unitary operator in K . The spaces K1 and K2 are Hilbert or anti-Hilbert spaces.
Therefore, eiΘ0 ∈ cr(U) . Making use of the definition of F1 and F2 in the proof of
Proposition 1.6 and of (1.12) with F replaced by F1 and F2 one verifies without
difficulty that U1 and U2 have no eigenvalues at the endpoints of γ1 and γ2 . In
order to verify that the representation (1.24) is minimal, let yi , i = 0, 1, 2, 3, be
an arbitrary element of Ki . Every element of Ki can be approximated in Ki by
elements of the form

k∑

j=1

gj(Ui)Γixj , xj ∈H , gj ∈ R0,∞.

Hence it remains to prove that every element of the form w(i) = (w0, . . . , w3) ∈ K ,
where wj = 0 for j 6= i and wi = g(Ui)Γix , g ∈ R0,∞ , x ∈ H , can be
approximated in K by elements of the form h(U)Γx , h ∈ R0,∞ . Since R0,∞ is
dense in Cm(T)×H

(
σ(U) \T

)
for arbitrary m , it is sufficient to prove that w(i)

is the limit of a converging sequence
(
fn(U)Γx

)
, fn ∈ C∞(T) × H

(
σ(U) \ T

)
.

If i = 1 or i = 2, then the sequences (fn) = (χ1,ng) or (fn) = (χ2,ng) , where
χ1,n , χ2,n are as in the proof of Lemma 1.6, have the required property. For i = 0
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the sequence
(
χ0(1 − χ1,n − χ2,n)g

)
and for i = 3 the sequence

(
(1 − χ0)(1 −

χ1,n − χ2,n)g
)

have the required property, where χ0 is again as in the proof of
Lemma 1.6.

If F has more than one regular critical point, F has to be decomposed with
respect to all of its critical points. Then a similar reasoning applies. The last
assertion is a direct consequence of the minimality and Theorem 1.12(iii).

Remark 1.15. If F , U , α are as in Theorem 1.14 and, in addition, dimH <
∞ , that is, F is a matrix function, then in view of Proposition 1.5 we have
dimLα <∞ .

Remark 1.16. Theorem 1.14 will be supplemented in Proposition 2.7 below.

2. Relations between two minimal representing operators
of the same definitizable function

2.1. We consider now the situation of the second part of Theorem 1.8. Let
(K1, [ · , · ]1) and (K2, [ · , · ]2) be two Krĕın spaces and let U1 and U2 be defini-
tizable unitary operators in K1 and K2 , respectively. By E1 and E2 we denote
the spectral functions of U1 and U2 , respectively.

Moreover, let V be an isometric linear operator from K1 to K2 with

(2.1) D(V ) = K1, R(V ) = K2

and
U1D(V ) ⊂ D(V ), U−1

1 D(V ) ⊂ D(V ),

U2R(V ) ⊂ R(V ), U−1
2 R(V ) ⊂ R(V ),

such that

(2.2) V U1 = U2V, V U−1
1 = U−1

2 V.

In Sections 2.1–2.3 we do not assume that U1 and U2 are representing operators
of the same definitizable function and that the operator V is of the form (1.16).

As a consequence of (2.2) we have

(2.3) V p(U1) = p(U2)V

for every p ∈ Rs
0,∞ . Then, for every x ∈ D(V ) ,

[p(U1)x, x]1 = [V p(U1)x, V x]2 = [p(U2)V x, V x]2,

which implies that U1 and U2 have the same definitizing functions in Rs
0,∞ .

By (2.1), the isometric operator V is closable and V is again an isometric
operator from K1 into K2 . It is easy to see that all properties mentioned above
for V remain valid for V .
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2.2. Let γ be a subarc of T such that there exists a definitizing polynomial
for U1 (or U2 ) which does not have zeros at the endpoints of γ . Then there exists
a sequence (pn) ⊂ Rs

0,∞ such that

pn(U1) 7−→ E1(γ), pn(U2) 7−→ E2(γ)

in the strong sense. Then it follows from (2.3) that

E1(γ)D(V ) ⊂ D(V ), E2(γ)R(V ) ⊂ R(V )

and

(2.4) V E1(γ) = E2(γ)V .

Evidently, E1(γ)D(V ) is dense in E1(γ)K1 and E2(γ)R(V ) is dense in E2(γ)K2 .
For x ∈ D(V ) we get

[E1(γ)x, x]1 = [V E1(γ)x, V x]2 = [E2(γ)V x, V x]2.

Hence, U1 and U2 have the same critical points, and for every arc γ ⊂ T whose
endpoints are not critical points, we have

κ±
(
(E1(γ)K1, [ · , · ]1)

)
= κ±

(
(E2(γ)K2, [ · , · ]2)

)
.

In particular, E1(γ)K1 is a Pontryagin space if and only if E2(γ)K2 is a Pontrya-
gin space.

Lemma 2.1. If γ is a subarc of T such that the endpoints of γ are not
critical points of U1 and E1(γ)K1 is a Pontryagin space, then E1(γ)K1 ⊂ D(V ) ,
V is an isometric isomorphism of E1(γ)K1 onto E2(γ)K2 and U1 = V−1U2 V on
E1(γ)K1 .

Proof. The first two assertions follow from the fact that a densely defined
isometric operator with dense range between Pontryagin spaces is automatically
continuous. The last relation follows from the relation (2.4) with Ei(γ) replaced
by UiEi(γ) .

Evidently, in Lemma 2.1 γ can be replaced by a finite union of pairwise dis-
joint arcs fulfilling the assumptions of Lemma 2.1. These arcs may also degenerate
to points of T .

In the same way, the following can be proved.

Lemma 2.2. Let γ be a subarc of T such that the endpoints of γ are not
critical points of U1 . Assume that γ ∩ c(U1) = γ ∩ c(U2) = {λ} and that λ is a
regular critical point for U1 and U2 . Also assume that the algebraic eigenspaces
corresponding to λ with respect to U1 and U2 are Pontryagin spaces. Then the
same assertions hold as in Lemma 2.1.
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Remark 2.3. Assume that the point 1 belongs to c(U1) , i.e., to c(U1)∩c(U2) ,
and is not a regular critical point for at least one of the operators U1 and U2 . Let
γ be an open arc of T such that 1 ∈ γ , the endpoints of γ are not critical points
of U1 and the components of γ \ {1} are definite with respect to U1 (and U2 ).
Let qn(λ) := in(λ−1 − λ)n , n = 1, 2, . . . . We have qn ∈ Rs

0,∞ , and qn has a zero
of n-th order at 1. Then we see as above that

[qn(U1)E1(γ)x, x]1 = [qn(U2)E2(γ)V x, V x]2, x ∈ D(V ).

Hence, for n = 1, 2, . . . , we have

(2.5) κ±
((

E1(γ)K1, [qn(U1) · , · ]1
))

= κ±
((

E2(γ)K2, [qn(U2) · , · ]2
))

.

Some of these quantities may be finite even if 1 is an essential singular critical
point of U1 and U2 . The point 1 can be replaced by any other point λ ∈ T .

2.3. The sets σ(U1) \T and σ(U2) \T are finite. Let G be a C∞ -domain

such that 0 /∈ G ⊂ D and ∂G ∩
(
σ(U1) ∪ σ(U2)

)
= ∅ . Let E1(G ∪ Ĝ) and

E2(G∪ Ĝ) be the Riesz–Dunford projections corresponding to U1 and U2 and the

part of σ(U1) or σ(U2) , respectively, lying in G ∪ Ĝ . It is easy to see that there
exists a sequence (qn) ⊂ Rs

0,∞ such that

lim
n→∞

qn(U1) = E1(G ∪ Ĝ), lim
n→∞

qn(U2) = E2(G ∪ Ĝ)

with respect to the norm convergence. Then we get, as above,

E1(G ∪ Ĝ)D(V ) ⊂ D(V ), E2(G ∪ Ĝ)R(V ) ⊂ R(V )

and
V E1(G ∪ Ĝ) = E2(G ∪ Ĝ)V .

This implies, as above, that σ(U1) \ T = σ(U2) \ T and that for every λ be-
longing to this set, the dimensions of the ranges of the Riesz–Dunford projections
corresponding to λ coincide. Moreover, the following lemma holds.

Lemma 2.4. If λ /∈ T is a normal eigenvalue of U1 , then λ is also a
normal eigenvalue of U2 and V maps the algebraic eigenspace Lλ(U1) of U1

corresponding to λ on the algebraic eigenspace Lλ(U2) of U2 corresponding to λ
and U1 = V−1U2 V on Lλ(U1) .

From Lemmas 2.1, 2.2 and 2.4 we get the following slight generalization of [2,
Theorem 7.1]. The latter result was formulated for selfadjoint operators.

Theorem 2.5. Assume that all eigenvalues of U1 in D ∪ D̂ are normal,
c∞(U1) ⊂ cr(U1) , c∞(U2) ⊂ cr(U2) and that all algebraic eigenspaces of U1 and
U2 corresponding to regular critical points are Pontryagin spaces. Then U1 and
U2 are unitarily equivalent.
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2.4. If F ∈ D0

(
T;L (H )

)
and U1 and U2 are two minimal representing

operators for F and V is the operator introduced in Theorem 1.8, Lemmas 2.1–3
show which parts of U1 and U2 are unitarily equivalent. As a consequence of
these local results, we get the following

Theorem 2.6. Let F ∈ D0

(
T;L (H )

)
. Assume that all poles of F in D∪ D̂

have finite multiplicities, K∞(F ) ⊂ Kr(F ) and that the masses of all points of
Kr(F ) are of type π . Then all minimal representing definitizable unitary operators
for F , the essential critical points of which are regular, are unitarily equivalent.

As a consequence of Lemma 2.1 and Theorem 1.14, we get the following
supplement to Theorem 1.14.

Proposition 2.7. Let F ∈ D0

(
T;L (H )

)
and α ∈

(
K(F )\K∞(F )

)
∩Kr(F ) .

Then for every minimal unitary representing operator U for F we have α ∈ cr(U) .

Now we give an example of a definitizable operator function F with K(F ) =
Kr(F ) = {1} which has two not unitarily equivalent minimal representing opera-
tors.

Example. Let
(
G0, ( · , · )0) be a Hilbert space and let H be a positive

bounded operator in G0 such that 0 ∈ σ(H) \ σp(H) . We assume, in addition,
that H is a cyclic operator. Let e0 ∈ D(H−1/4) be a generating element for H .
We denote by G−1/4 the completion of G0 with respect to the scalar product

(x, y)−1/4 :=
(
H1/4x,H1/4y

)
0
, x, y ∈ G0,

and by G1/4 the domain of H−1/4 provided with the graph scalar product

(x, y)1/4 :=
(
(H−1/4 + 1)x, (H−1/4 + 1)y

)
0
, x, y ∈ D(H−1/4).

It is easy to see that the form ( · , · )0 can be extended by continuity to G1/4×G−1/4

and G−1/4 × G1/4 . We provide H := G0 × G0 with the Krĕın space inner product

(2.6)

[(
u1

u2

)
,

(
v1

v2

)]
:= (u2, v1)0 + (u1, v2)0, u1, u2, v1, v2 ∈ G0.

In the Krĕın space (H , [ · , · ]) we consider the positive bounded operator

A :=

(
0 1
H 0

)
.

It is easy to see that A is cyclic and

e :=

(
0

e0

)
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is a generating element.
At the same time we consider the space H ′ := G−1/4 × G1/4 with an in-

ner product [ · , · ]′ defined as in (2.6), where u1, v1 ∈ G−1/4 , u2, v2 ∈ G1/4 .
(H ′, [ · , · ]′) is also a Krĕın space. The operator A′ defined by

A′ :=

(
0 1
H 0

)

with respect to H ′ = G−1/4 × G1/4 is a positive bounded operator in H ′ , it is
cyclic, and

e =

(
0

e0

)

is a generating element.
The operators (A− z)−1 and (A′ − z)−1 , z ∈ C \R , can be written as

(2.7)

(
z(H − z2)−1 (H − z2)−1

1 + z2(H − z2)−1 z(H − z2)−1

)

with respect to the above decompositions of H and H ′ , respectively. The resol-
vents (A− z)−1 and (A′ − z)−1 coincide on H ∩H ′ and map this linear set into
itself.

Let ε > 0. Making use of (2.7), we see ([16], cf. also [10]) that the spectral
projections corresponding to the operators A and A′ and the interval (ε, 1) can
be written as

1

2

(
E
(
(ε, 1)

)
H−1/2E

(
(ε, 1)

)

H1/2E
(
(ε, 1)

)
E
(
(ε, 1)

)
)

.

For the spectral projections corresponding to the interval (−1,−ε) , we find

1

2

(
E
(
(ε, 1)

)
−H−1/2E

(
(ε, 1)

)

−H1/2E
(
(ε, 1)

)
E
(
(ε, 1)

)
)

.

Here E is the spectral function of H1/2 . Since
∥∥H−1/2E

(
(ε, 1)

)∥∥ −→ ∞ if
ε −→ 0, the point 0 is a singular critical point of A . One easily verifies that 0 is
a regular critical point for A′ .

Now we consider the unitary operators U = −(A − i)(A + i)−1 and U ′ =
−(A′− i)(A′+ i)−1 in H and H ′ , respectively. We have σ(U) ⊂ T , σ(U ′) ⊂ T ,
and U and U ′ are definitizable with the definitizing function g(z) := i(z−1 − z) ,
g ∈ Rs

0,∞ . The point 1 is a singular critical point for U and a regular critical
point for U ′ . Since A and A′ are bounded, there exists a function f ∈ C1(T)
such that A = f(U) and A′ = f(U ′) holds. The elementary functional calculi of
U and U ′ are continuous with respect to the topology of C1(T) (cf. [6, Theorem 1]
for the selfadjoint case). Let (pn) , n = 1, 2, . . . , be a sequence of functions from
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R0,∞ which converges to f in C1(T) . Then Ae = limn→∞ pn(U)e and A′e =
limn→∞ pn(U

′)e . Since e is a generating element for A and A′ , we obtain

(2.8) H = closp{p(U)e : p ∈ R0,∞}, H ′ = closp{p(U ′)e : p ∈ R0,∞}.

For an arbitrary ζ ∈ C \T , the operator (U + ζ)(U − ζ)−1 ((U ′ + ζ)(U ′ − ζ)−1 )
can be written as a linear combination of the identity and (A− z)−1 ((A′ − z)−1 ,
respectively) with z = i(1−ζ)(1+ζ)−1 /∈ R . Hence the operators (U+ζ)(U−ζ)−1

and (U ′ + ζ)(U ′ − ζ)−1 coincide on H ∩H ′ and map this linear set into itself.
If we define linear mappings Γ: C −→ H and Γ′: C −→ H ′ by C 3 a 7−→

ae , then we find

Γ+(U + ζ)(U − ζ)−1Γ = [(U + ζ)(U − ζ)−1e, e]

= [(U ′ + ζ)(U ′ − ζ)−1e, e] = Γ′+(U ′ + ζ)(U ′ − ζ)−1Γ′.

In other words, the scalar definitizable function F (ζ) = [(U ′ + ζ)(U ′ − ζ)−1e, e]
can be represented by the operators U and U ′ . By (2.8) U and U ′ are minimal
representing operators. But these operators are not unitarily equivalent since
1 ∈ cs(U) \ cs(U

′) .

3. Definitizable functions symmetric with respect to the real axis

3.1. Notation for the real axis case and relations to the unit circle case. In
this section we consider classes of operator functions which are closely connected
with those considered in Sections 1 and 2. The real axis and the open upper half
plane C+ take over the role the unit circle and the open unit disc were playing
before. In the following, we will carry over definitions and results from [9] and
Section 1 with the help of the fractional linear transformations ψ and φ defined
by

ψ(λ) := −λ− i

λ + i
, φ(z) := i

1− z

1 + z
.

We have φ ◦ ψ = id and ψ(R) = T . For any subset S of C, we set S ∗ :=
{z̄ : z ∈ S } , and for any scalar (or L (H )-valued) function f defined on a
set D = D∗ ⊂ C, we define f∗(µ) = f(µ̄) (f∗(µ) =

(
f(µ̄)

)∗
) , µ ∈ D . Put

C− := (C+)∗ . For a Banach space X , let Ri,−i(X) denote the set of all functions
of the form

C 3 λ 7−→ d0 +

n∑

k=1

dk(λ − i)−k +

n∑

j=1

d−j(λ + i)−j

with arbitrary n , dl ∈ X , l = −n, . . . , n . We put Ri,−i := Ri,−i(C) . Rs
i,−i

denotes the set of all functions f ∈ Ri,−i such that f = f∗ . Then f ∈ Ri,−i
(f ∈ Rs

i,−i ) if and only if f ◦ φ ∈ R0,∞ (f ◦ φ ∈ Rs
0,∞ ).
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Let L′ = (L′)∗ be a compact subset of C such that R ⊂ L′ , i /∈ L′ and
C+ \ L′ is connected. Similarly to the unit circle case, we connect with every
L (H )-valued function G holomorphic in (C+ \L′) ∪ (C− \L′) with G = G∗ an
analytic functional SG ∈ L

(
H(L′),L (H )

)
:

(3.1) SG.g = 2i

∫

C ′
G(λ)g(λ)(λ2 + 1)−1 dλ, g ∈ H(L′),

where C ′ is the oriented boundary of a finite union Ω′ of smooth domains of C
containing L′ such that g is defined on Ω′ and i,−i /∈ Ω′ . For every g as in (3.1)
and u′, v′ ∈ H(L′,H ) , we define

(3.2) SG(u′, v′).g := 2i

∫

C ′

(
G(λ)u′(λ), v′(λ̄)

)
g(λ)(λ2 + 1)−1 dλ.

Here C ′ is as above and such that u′ and v′ are defined on Ω′ . If g = g∗ , the
sesquilinear form (u′, v′) 7−→ SG(u′, v′).g is hermitian. If we put L = ψ(L′) ,
F = −i(G ◦ φ) , f = g ◦ φ , u = u′ ◦ φ , v = v′ ◦ φ , then L , F , f , u , v fulfil the
assumptions of (1.1) and (1.2) and an easy computation gives the relations

(3.3) TF .(g ◦ φ) = SG.g, TF (u′ ◦ φ, v′ ◦ φ).(g ◦ φ) = SG(u′, v′).g.

The set of all L (H )-valued functions G meromorphic in C \ R and satisfying
the relation G = G∗ will be denoted by M

(
R;L (H )

)
. For a function G ∈

M
(

R;L (H )
)
, the set of all λ ∈ C such that G can analytically be continued

in λ in a unique way is denoted by P(G) . We set Σ(G) := C \ P(G) .
In the rest of this subsection, let G ∈ M

(
R;L (H )

)
be holomorphic at i

and −i , let G have only a finite number of poles outside R , and assume that
there exists an m ∈ N such that, for some η > 0,

(3.4) sup{‖G(λ)‖ | Im λ|m(|λ| + 1)−2m : λ ∈ C \ R, distC(λ, R) < η} <∞,

where distC( · , · ) is the distance on the Riemann complex sphere. Then F :=
−iG ◦ φ fulfils the relation (1.3), and by (3.3) SG and SG( · , · ) can be extended
by continuity to

Cm+1(R)×H(Σ(G) \ R)

and

(
Cm+1(R,H ) ×H

(
Σ(G) \ R,H

))2 × (Cm+1(R)×H
(
Σ(G) \ R)

)
,

respectively. Here R is regarded as a real-analytic manifold in a natural way.
If g ∈ C∞(R) ×H

(
Σ(G) \ R

)
, g = g∗ , we define

(3.5) κ±(g;G) = κ±
((

Ri,−i(H ), SG( · , · ).g
))

.
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If ∆ is an open subset of R , we say that ∆ is of positive type (negative type,
type π+ , type π− ) with respect to G if κ−(g;G) = 0 (κ+(g;G) = 0, κ−(g;G) <∞ ,
κ+(g,G) < ∞) for all nonnegative functions g ∈ C∞(R) × H

(
Σ(G) \ R

)
with

suppg ⊂ ∆. The set ∆ is said to be of definite type (type π ) with respect to
G if ∆ is of positive or negative type (of type π+ or type π− , respectively) with
respect to G .

By (3.3) ∆ has one of the properties mentioned above with respect to G if
and only if ψ(∆) has the corresponding property with respect to −iG ◦ φ . Then
one verifies without difficulty that the criteria in [9, Lemma 1.7] for an open subset
of T to be of positive type can be taken over to the real axis case. Here we mention
only one of these criteria: An open subset ∆ of R is of positive type with respect
to G if the following two conditions are satisfied for every x ∈H .

(i) lim infε↓0
{
−i
((

G(t+ iε)−G(t− iε)
)
x, x
)}
≥ 0 for almost every t ∈ ∆\{∞} .

(ii) For every bounded closed subset ∆0 of ∆ and sufficiently small ε0 > 0,

inf
{
−i
((

G(t + iε) −G(t− iε)
)
x, x
)

: t ∈ ∆0, 0 < ε ≤ ε0

}
> −∞.

If ∞ ∈ ∆, then, in addition, for sufficiently small δ0 > 0, ε0 > 0,

inf
{
−i
((

G(−(t + iε)−1
)
−G

(
−(t− iε)−1

))
x, x
)

:

− δ0 ≤ t ≤ δ0, 0 < ε ≤ ε0

}
> −∞.

A point t ∈ R is called a critical point of G (we write t ∈ K(G)) if it is
not contained in an open subset of R of definite type with respect to G . By
K∞(G) we denote the set of those points t ∈ R which are not contained in
an open subset of R of type π with respect to G . The points of K∞(G) are
called essential critical points. If F := −i(G ◦ φ) , we have K(G) = φ

(
K(F )

)
and

K∞(G) = φ
(
K∞(F )

)
.

3.2. Definitizable functions. Let N
(
L (H )

)
denote the class of L (H )-

valued Nevanlinna functions, i.e., the class of all functions G ∈ M
(

R;L (H )
)

holomorphic in C+ ∪ C− , such that for every z ∈ C+ the imaginary part of G
(that is, (2i)−1

(
G(z) −G(z)∗

)
) is a nonnegative operator. By Nκ

(
L (H )

)
, κ =

0, 1, . . . , we denote the classes of L (H )-valued generalized Nevanlinna functions
introduced and studied in [12], [13]. Recall that a function G ∈ M

(
R;L (H )

)
,

by definition, belongs to Nκ

(
L (H )

)
if the kernel NG ,

NG(z, ζ) := (z − ζ̄)−1
(
G(z) −G(ζ)∗

)
,

has κ negative squares. The class N0

(
L (H )

)
coincides with N

(
L (H )

)
. We

have G ∈ Nκ

(
L (H )

)
if and only if −iG ◦ φ ∈ Cκ

(
L (H )

)
.
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Definition 3.1. A function G ∈ M
(

R;L (H )
)

is called definitizable if
there exists a scalar rational function r such that the product rG is the sum of
a Nevanlinna function N and an L (H )-valued rational function n whose poles
belong to P(G) :

r(z)G(z) = N(z) + n(z)

for all points z ∈ C+∪C− of holomorphy of rG . A function r with the properties
mentioned above is called a definitizing function for G .

It follows from Definitions 1.1 and 3.1 that G is a definitizable function in
M
(

R;L (H )
)

if and only if −iG◦φ is a definitizable function in M
(
T;L (H )

)
.

If r is definitizing for G , then r ◦ φ is definitizing for −iG ◦ φ , and conversely.
Therefore, by the remark following Definition 1.1, there exist always R-symmetric
definitizing functions. Lemmas 1.2 and 1.4 imply analogous results for the R-
symmetric case. In the following lemma we mention only a consequence of Lem-
ma 1.2.

Lemma 3.2. Let G ∈M
(

R;L (H )
)

be definitizable and z0 ∈ P(G) . Then
there exists a rational definitizing function r0 = r∗0 for G which has no poles except
in z0 and z̄0 . In particular, if G is holomorphic at ∞ , there exists a definitizing
polynomial; if G is holomorphic at i and −i , there exists a definitizing function
from Rs

i,−i .

In the following, we restrict ourselves to the class Di

(
R;L (H )

)
of those

definitizable functions which are holomorphic at i and −i . This involves no loss
of generality. The following definitizability criterion is an immediate consequence
of [9, Proposition 2.2].

Proposition 3.3. For G ∈M
(

R;L (H )
)

the following assertions are equiv-
alent.

(i) G ∈ Di

(
R;L (H )

)
.

(ii) G is holomorphic at i and −i , has only a finite number of poles outside R ,
and fulfils (3.4) for some m ∈ N . Moreover, there exists a finite set e′ ⊂ R
such that all components of R \ e′ are of definite type with respect to G .

3.3. Poles and regular critical points of definitizable functions. The following
lemma is a consequence of [9, Lemma 1.5].

Lemma 3.4. Let G ∈ M
(

R;L (H )
)

and let µ ∈ C \ R be a pole of G

with multiplicity l . Assume that χ ∈ H
(

R ∪ Σ(G)
)

is equal to 1 in an open

neighbourhood of {µ, µ̄} and equal to 0 in an open neighbourhood of
(
R ∪

Σ(G)
)
\ {µ, µ̄} . Then κ+(χ;G) = κ−(χ;G) = l .

Let G ∈ Di

(
R;L (H )

)
and let β ∈ Σ(G)∩ R be an isolated point of Σ(G)

and δ a connected open subset of R containing β such that δ \ {β} ⊂ P(G) .
Then β is a pole of G . Let the principal part of G at β be

G−k(λ− β)−k + · · ·+ G−1(λ− β)−1
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for β 6=∞ or
G−kλk + · · ·+ G−1λ

for β =∞ , and let G̃ denote the selfadjoint operator



G−1 G−2 · · · G−k
G−2 G−3 · · · 0

...
...

...
G−k 0 · · · 0




in H k . Then a straightforward calculation gives the second part of the following
proposition (cf. Proposition 1.5).

Proposition 3.5. Let G , β , δ , G̃ be as above. Then the multiplicity of the
pole β of G is equal to dim R(G̃) . If g ∈ C∞(R) ×H

(
Σ(G) \ R

)
, suppg ⊂ δ

and g is identically equal to one in some neighbourhood of β , then

κ+(g;G) = dimR
(
E
(
(−∞, 0); G̃

))
, κ−(g;G) = dimR

(
E
(
(0,∞); G̃

))
,

where E( · ; G̃) is the spectral function of G̃ .

A critical point t of G is called regular (we write t ∈ Kr(G)) if there exists
an open connected subset δ of R , t ∈ δ , such that SG restricted to δ \ {t} is a
bounded operator measure. A critical point which is not regular is called singular.
We set Ks(G) := K(G) \Kr(G) .

If F := −i(G ◦φ) , then the relations (3.3) imply Kr(G) = φ
(
Kr(F )

)
and the

regularity criterion Proposition 1.6 can be carried over to the R-symmetric case. If
λ0 ∈ Kr(G) and G =

∑3
i=0 Gi is a decomposition of G with properties analogous

to that of Proposition 1.6 and F0 is the function connected by Proposition 1.6
with F and the critical point eiΘ0 := ψ(λ0) , which is unique up to a constant iS ,
S selfadjoint, then we have

(3.6) G0 := i(F0 ◦ ψ) + S0,

where S0 is some selfadjoint constant. Similarly to the T-antisymmetric case, we
may define the sign types of the mass at λ0 with the help of G0 .

3.4. Definitizable functions defined by relations. Let
(
K , ( · , · )

)
be a Hilbert

space and let A be a closed linear relation in K . For linear relations and, in
particular, for selfadjoint linear relations in Krĕın spaces, we refer to [4] and [5].
We define the extended spectrum σe(A) of A by σe(A) = σ(A) if A is a bounded
operator, and σe(A) = σ(A) ∪ {∞} otherwise. Put ρe(A) := C \ σe(A) . If
i,−i ∈ ρ(A) , then U := ψ(A) = −1+2i(A+ i)−1 and U−1 = −1−2i(A− i)−1 are
bounded operators in K . We have σ(U) = ψ

(
σe(A)

)
. If λ ∈ ρ(A) and z = ψ(λ) ,

then an easy computation gives

(U + z)(U − z)−1 = −i
(
λ + (λ2 + 1)(A − λ)−1

)
.

Now the following analogue of Theorem 1.7 is a consequence of the above consid-
erations.
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Theorem 3.6. Let
(
K , ( · , · )

)
be a Hilbert space, W a bounded selfadjoint

operator in K , and V a domain in C with i ∈ V . Let A be a closed linear
relation in K ,V ∪ V ∗ ⊂ ρe(A) , such that

(3.7)
(
(A + i)−1

)∗
W = W (A − i)−1.

Let, further, S be a bounded selfadjoint operator in H and Γ ∈ L (H ,K ) . If
then, for some rational function r = r∗ whose poles belong to V ∪ V ∗ , the form(
Wr(A) · , · ) on K has κ negative squares, the function

G(λ) := S + Γ∗W
(
λ + (λ2 + 1)(A − λ)−1

)
Γ,

defined in V ∪V ∗ has an analytic continuation to a definitizable function. More-
over, there exist a function N ∈ Nκ′

(
L (H )

)
, 0 ≤ κ′ ≤ κ , holomorphic in

V ∪ V ∗ , and a rational operator function n holomorphic at all points where r is
holomorphic such that

r(λ)G(λ) = N(λ) + n(λ)

for all points λ of holomorphy of r , G , N and n .

Remark 3.7. Let, in addition to the assumptions of Theorem 3.6, A be
bounded. Then (3.7) is equivalent to A∗W = WA . Let, moreover, S̃ be a

bounded selfadjoint operator in H and Γ̃ ∈ L (H ,K ) . Then the assertions of

Theorem 3.6 remain true for G replaced by G̃ ,

G̃(λ) = S̃ + Γ̃∗W (A− λ)−1Γ̃.

Indeed, if we set S = Γ̃∗WA(A2 + 1)−1Γ̃ , Γ = (A− i)−1Γ̃ , then G̃(λ) = G(λ) .

If W in Theorem 3.6 is even boundedly invertible, then A is a selfadjoint
linear relation in the Krĕın space (K , [ · , · ]) , [ · , · ] := (W · , · ) , with i,−i ∈ ρ(A) .
Such a linear relation is called definitizable, if there exists a rational function r = r∗

whose poles belong to ρe(A) such that [r(A)x, x] ≥ 0, x ∈ K . It is easy to see
that this definition is equivalent to the one in [5]. A is definitizable if and only if
the unitary operator U := ψ(A) is definitizable. The function r is definitizing for
A if and only if r ◦ φ is definitizing for U . If 0 ∈ ρ(W ) , the linear relation A in
Theorem 3.6 is definitizable.

As examples for the application of Theorem 3.6 we mention two operator
functions, occurring in connection with λ-nonlinear eigenvalue problems.

Examples. (1) Let L be an operator polynomial in H ,

L(λ) = λn + An−1λ
n−1 + · · ·+ A1λ + A0,

where Ai , i = 0, . . . , n−1, are bounded selfadjoint operators in H . Assume that
L is weakly hyperbolic, i.e., for every x ∈ H , x 6= 0, all zeros of the polyno-
mial

(
L(λ)x, x

)
are real. Then the companion operator A of L is a definitizable
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bounded selfadjoint operator in the space H n provided with a certain Krĕın space
inner product ([15]). We have σ(A) ⊂ R and

L(λ)−1 = Q+(A − λ)−1Q, λ ∈ ρ(A),

where Q ∈ L (H ,H n) maps H identically onto the first factor of H n . Then, by
Theorem 3.6 and Remark 3.7, L(λ)−1 is a definitizable operator function and every
definitizing polynomial for A is also definitizing for L(λ)−1 . The same conclusion
can be drawn for L being a compact perturbation of a strongly hyperbolic operator
polynomial (for this notion, see [17]).

(2) Assume that on H , besides the Hilbert scalar product ( · , · ) , a Krĕın
space inner product [ · , · ] is given. Let W be the Gram operator of [ · , · ] : [ · , · ] =
(W · , · ) . Let H ′ be a further Krĕın space and let A and D be definitizable
selfadjoint operators in the Krĕın spaces H and H ′ , respectively, such that the
operator

(
A 0
0 D

)
is definitizable in K = H ×H ′ and has no finite critical points.

If B ∈ L (H ,H ′) is compact, then

M :=

(
A B+

B D

)

is definitizable ([8]). We consider the operator function

(3.8) T (λ) := A− λ−B+(D − λ)−1B, λ ∈ ρ(D).

Its inverse can be represented in the form

T (λ)−1 = I+

1 (M − λ)−1I1,

where I1 is the natural embedding of H in K . If i ∈ ρ(M) , we have

WI+

1 (M − λ)−1I1 = W
(
(M − i)−1I1

)+
M(M − i)−1I1

+ W
(
(M − i)−1I1

)+{λ + (λ2 + 1)(M − λ)−1}(M − i)−1I1.

Since W
(
(M−i)−1I1

)+
is the adjoint of (M−i)−1I1 regarded as an operator from(

H , ( · , · )
)

in K , Theorem 3.6 gives that WT (λ)−1 is a definitizable function
and that every definitizing function for M is definitizing for WT (λ)−1 .

Sturm–Liouville operators with a floating singularity are of the form (3.8),
with a differential operator A and matrix multiplication operators B and D .

3.5. Representations of a given definitizable function. First we formulate (a
slightly weaker variant of) T. Azizov’s result and the minimality of the represen-
tation for the R-symmetric case.
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Theorem 3.8. Let G be an L (H )-valued function locally holomorphic in
an R-symmetric neighbourhood of {i,−i} such that G = G∗ . Then there exist
a Krĕın space K , a selfadjoint linear relation A in K with i,−i ∈ ρ(A) , and
Γ ∈ L (H ,K ) such that

G(λ) = Re G(i) + Γ+
(
λ + (λ2 + 1)(A − λ)−1

)
Γ,

for all λ in some neighbourhood of {i,−i} , and

K =K (A,Ri,−i,ΓH ).

If G admits two such representations with Krĕın spaces (Kj , [ · , · ]j) , opera-
tors Γj ∈ L (H ,Kj) and selfadjoint linear relations Aj in Kj , j = 1, 2 , then

(3.9) V :
m∑

k=1

gk(A1)Γ1xk 7−→
m∑

k=1

gk(A2)Γ2xk,

xk ∈H , gk ∈ Ri,−i , k = 1, . . . ,m , is an isometric linear mapping of the dense lin-
ear set K1(A1,Ri,−i,Γ1H ) in K1 onto the dense linear set K2(A2,Ri,−i,Γ2H )
in K2 such that

(A2 ± i)−1V y = V (A1 ± i)−1y, y ∈ K1(A1,Ri,−i,Γ1H ).

The following result is a direct consequence of Theorem 1.9 and Remark 1.10.

Theorem 3.9. Let G ∈ Di

(
R;L (H )

)
, and let, for some neighbourhood

V of i ,

(3.10) G(λ) = Re G(i) + Γ+
(
λ + (λ2 + 1)(A − λ)−1

)
Γ, λ ∈ V ∪ V ∗,

be a minimal representation of G as in Theorem 3.8. Then the selfadjoint linear
relation A in K is definitizable and we have ρe(A) = P(G) . A rational function
r = r∗ whose poles belong to ρe(A) = P(G) is definitizing for G if and only if it
is definitizing for A .

Moreover, if for some r ∈ Rs
i,−i

r(z)G(z) = N(z) + n(z),

where N ∈ Nκ

(
L (H )

)
is holomorphic at i and −i and n ∈ Ri,−i

(
L (H )

)
, and

equality holds for all λ ∈ C \ R , where r , G , N and n are holomorphic, then
r(A) has κ negative squares.

Remark 3.10. If G ∈ Di

(
R;L (H )

)
is holomorphic in a neighbourhood of

∞ , then by Theorem 3.9 in the representation (3.10) the operator A is bounded.
Then G can be represented in the form

G(λ) = S̃ + Γ̃+(A − λ)−1Γ̃

with S̃ = G(∞) . Γ̃ = (A− i)Γ (see Remark 3.7).
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Remark 3.11. Let J be a fundamental symmetry of the Krĕın space K and
A a selfadjoint linear relation in K with i , −i ∈ ρ(A) . Then by Theorems 3.6 and
3.9, A is definitizable if and only if the function J{λ+(λ2 +1)(A−λ)−1} defined
on a neighbourhood of {−i, i} can be continued analytically to a definitizable
operator function G . The sets of the corresponding definitizing rational functions
the poles of which belong to ρe(A) = P(G) coincide.

A definitizable selfadjoint relation A possesses a spectral function E( · ;A)
with properties similar to the spectral function of a definitizable selfadjoint oper-
ator. It can be defined with the help of the Cayley transform: Let i,−i ∈ ρ(A) ,
U = ψ(A) and let E( · ;U) be the spectral function of U . If ∆ is a connected sub-
set of R and E( · ;U) is defined for the arc ψ(∆), we set E(∆;A) := E

(
ψ(∆);U

)
.

The set of critical points and its subsets are defined for A in the same way
as for unitary operators; they are denoted by c(A) , c∞(A) , cr(A) . We have
c(A) = φ

(
c(U)

)
, c∞(A) = φ

(
c∞(U)

)
and cr(A) = φ

(
cr(U)

)
.

Now Theorems 1.12–1.14 can be carried over to the R-symmetric case. The
R-symmetric versions are completely analogous to the T-skew-symmetric ones.
Here we give only the analogue of Theorem 1.14.

Theorem 3.12. Let G ∈ Di

(
R;L (H )

)
and Kr(G) 6= ∅ . Then there

exists a minimal definitizable selfadjoint representing linear relation A such that
cr(A) = Kr(G) , and for every λ0 ∈ Kr(G) we have κ±(1, G0) = κ±(Lλ0) , where
G0 is as in (3.6) and Lλ0 is the algebraic eigenspace of A corresponding to λ0 .

The formulation of the results of Section 2 for the R-symmetric case is not
difficult and is left to the reader.
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