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Abstract. In this paper we discuss the growth and factorization of entire solutions of some
classes of first-order algebraic differential equations and prove that any entire solution of a first-
order algebraic differential equation must be pseudo-prime.

1. Introduction

In the study of the solutions of complex differential equations, the growth of a
solution is a very important property. For linear differential equations of the form

(1.1) f (n) + an−1(z)f (n−1) + · · · + a0(z)f = a(z),

where a(z) , a0(z), . . . , a(n−1)(z) are polynomials, it is known that any entire so-
lution must be of finite and positive order; see Laine [13, pp. 52–73, pp. 144–164],
Gundersen, et al. [6]. This can be proved by mainly using the Wiman–Valiron the-
ory. However, there are only a few results concerning the growth of the solutions
of a nonlinear algebraic differential equation

(1.2) P (z, f, f ′ , . . . , f (n)) = 0,

where P is a polynomial in all its arguments. Equation (1.2) can be rewritten in
the form

(1.3)
∑

λ∈I
aλ(z)f i0 · · · (f (n))

in
= 0,

where I is a finite set of multi-indices (i0, . . . , in) = λ . We define a differential
monomial in f as

M [f ] = aλ(z)f i0 · · · (f (n))
in
.
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The degree γM and the weight ΓM of M are defined by

γM = i0 + i1 + · · · + in, ΓM = i0 + 2i1 + · · ·+ (n+ 1)in.

Then the left-hand side of equation (1.3) can be expressed as a finite sum of
differential monomials. From now on we shall call this a differential poynomial
in f , i.e.

P [f ] = P (z, f, f ′ , . . . , fn) =
∑

λ∈I
Mλ[f ].

The degree γP and the weight ΓP of P are defined by γP = maxλ∈I γMλ , ΓP
= maxλ∈I ΓMλ . Some results have been obtained on the growth estimates for
solutions of algebraic differential equations; see e.g. [13]. However, in general, a
complete growth estimate for nonlinear algebraic differential equations remains
to be resolved. The first important result on the growth estimate was due to
A. Gol’dberg [4] (or see e.g. [13]). Some variations of Gol’dberg’s result were
obtained by Bank–Kaufman [1], W. Bergweiler [2], and others.

Theorem A (Gold’berg). Let P (u1, u2, u3) be a polynomial in all of its ar-
guments u1 , u2 and u3 and consider the first-order algebraic differential equation

(1.4) P (z, f, f ′) = 0.

Then all meromorphic solutions of (1.4) are of finite order of growth.

Note that the order can be zero (see e.g. [13]).
For nonlinear differential equations of second-order Steinmetz [18] proved the

following theorem (see also e.g. [13]):

Theorem B. Suppose that in equation (1.2) P is homogeneous in f , f ′ and
f ′′ . Then all meromorphic solutions of (1.2) satisfy

T (r, f) = O(exp rb)

as r → ∞ for some b > 1 depending only on the degrees of the polynomial
coefficients of (1.3).

Recently W.K. Hayman [8] studied the growth of solutions of (1.2) and posed
the following

Conjecture. If f(z) is an entire solution of (1.2), then

T (r, f) < a expn−1(brc), 0 ≤ r <∞

where a , b and c are positive constants and expl(x) is the exponential iterated l
times.
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Hayman also showed that the conjecture is true for some special class of
equations.

Set
Λ = {λ = (i0, i1, . . . , in) | γMλ = γP , ΓMλ = ΓP }.

Theorem C (Hayman [8]). Suppose that equation (1.3) holds with Λ defined
as above. Let d be the maximum degree among all the polynomials aλ(z) in (1.3)
and suppose that

(1.5)
∑

λ∈Λ

aλ(z) 6≡ 0.

Then any entire solution of (1.3) has finite order ρ , with ρ ≤ max{2d, 1 + d} .

On the other hand, Sh. Strelitz [20] proved

Theorem D. Every entire transcendental solution of a first-order algebraic
differential equation with rational coefficients has an order no less than 1

2 .

Definition (Gross [5]). A meromorphic function f is called pseudo-prime if
whenever f = g(h) with g , h entire or meromorphic, implies that either g is a
rational function or h is a polynomial.

As regards the factorization of the solutions of differential equations, the fol-
lowing two results are well known.

Theorem E (Steinmetz [17]). Any meromorphic solution of (1.1) is pseudo-
prime.

Theorem F (Mues [14]). Let f be a meromorphic solution of the Riccati
differential equation

w′ = a(z) + b(z)w + c(z)w2,

where a(z) , b(z) , c(z) are polynomials. Then f is pseudo-prime.

For some other related results on the factorization of solutions of some first-
order algebraic differential equations, see e.g. He–Laine [9] and He–Yang [10]. In
this paper we shall mainly discuss the growth and factorization of the transcen-
dental entire solutions of the first-order algebraic differential equation in its most
general form. Subsequently, we always assume that f denotes an entire function
and write

f(z) =
∞∑

n=0

anz
n.

We denote the maximum term of f by µ(r, f) , the central index by ν(r, f) , and
the maximum modulus by M(r, f) , i.e.

µ(r, f) = max
|z|=r

|anzn|, ν(r, f) = sup{n | |an|rn = µ(r, f)}, M(r, f) = max
|z|=r

|f(z)|.

As usual, we use T (r, f) to denote the Nevanlinna characteristic function of f and
ρ(f) to denote the order of f .
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2. Lemmas

In order to obtain our theorems, we need some basic results of the Wiman–
Valiron theory .

Lemma 1 (Laine [13]). If f is an entire function of order ρ , then

(2.1) ρ = lim sup
r→∞

log+ ν(r, f)

log r
= lim sup

r→∞

log log+ µ(r, f)

log r
.

Lemma 2 (Laine [13]). Let f be a transcendental entire function, and let
0 < δ < 1

4 . Suppose that at the point z with |z| = r the inequality

(2.2) |f(z)| > M(r, f)ν(r, f )
−(1/4)+δ

holds. Then there exists a set F ⊂ R+ of finite logarithmic measure, i.e.,
∫
dt/t <

+∞ such that

(2.3) f (m)(z) =

(
ν(r, f)

z

)m(
1 + o(1)

)
f(z)

holds for all m ≥ 0 and all r /∈ F .

By Lemma 1, we can easily derive

Lemma 3. Let f be a transcendental entire function of order ρ < 1 . Then

(2.4) lim
r→∞

ν(r, f)

r
= 0.

The following lemma due to Polya [15] plays a very important role in our
discussions.

Lemma 4. If f and g are entire functions, the composite function f ◦ g is
of infinite order unless (a) f is of finite order and g is a polynomial or (b) f is
of zero order and g is of finite order.

Lemma 5 (Steinmetz [16]). Let f1, . . . , fn and g be entire functions and let
h1, . . . , hn be meromorphic functions such that the inequality

n∑

j=1

T (r, hj) ≤ KT (r, g)

holds, with K a constant. Suppose that fj and hj (j = 1, 2, . . . , n) satisfy

f1

(
g(z)

)
h1(z) + · · · + fn

(
g(z)

)
hn(z) ≡ 0.

Then there exist two sets of polynomials {Pj} and {Qj} (j = 1, 2, . . . , n) not all
identically zero in either of the two sets such that

(2.5) P1

(
g(z)

)
h1(z) + · · · + Pn

(
g(z)

)
hn(z) ≡ 0

and

(2.6) f1(z)Q1(z) + · · · + fn(z)Qn(z) ≡ 0.

Lemma 6 (Zimogljad [21]). Every entire transcendental solution of a second-
order algebraic differential equation with rational coefficients has a positive order.
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3. Growth of solutions of certain types
of first-order algebraic differential equations

In this section, we shall provide a more precise estimation of the growth of
entire solutions of algebraic differentional equations of the form

(3.1) C(z,w)(w′)2 +B(z,w)w′ +A(z,w) = 0,

where C(z,w) 6≡ 0, B(z,w), and A(z,w) are polynomials in z and w . Here we
refer the reader to Ishizaki’s works [11], [12] for the cases where the cofficients of
the powers of w in A(z,w) , B(z,w) and C(z,w) are transcendental functions.
Steinmetz [19] showed that if (3.1) has a transcendental meromorphic solution,
then

degw C(z,w) = 0, degwB(z,w) ≤ 2, degw A(z,w) ≤ 4.

Thus we can assume that C(z,w) ≡ a(z) is a polynomial in z only and that (3.1)
can be rewritten in the following form:

(3.2)
a(z)w′2 +

(
b2(z)w2 + b1(z)w + b0(z)

)
w′ = d4(z)w4 + d3(z)w3

+ d2(z)w2 + d1(z)w + d0(z),

where a(z) , bi(z) (i = 0, 1, 2) and dj(z) (j = 0, . . . , 4) are polynomials. If
(3.2) has a transcendental entire solution, one can derive d4(z) ≡ 0 by comparing
the characteristic functions on both sides of (3.2). Finally equation (3.2) can be
reduced to the following form:

(3.3) a(z)f ′
2

+
(
b2(z)f2 +b1(z)f +b0(z)

)
f ′ = d3(z)f3 +d2(z)f2 +d1(z)f +d0(z).

Theorem 1. If deg d2(z) 6= deg a(z)−1 in (3.3) and f(z) is a transcendental
entire solution of equation (3.2), then ρ(f) ≥ 1 .

Proof. We assume that f has an order ρ(f) < 1 and satisfies equation (3.3).
Now we can rewrite (3.3) as follows:

(3.4)

(
d3(z) − b2(z)

f ′(z)
f(z)

)
=

[
a(z)

(
f ′(z)

)2

(
f(z)

)2 + b1(z)
f ′(z)
f(z)

+ b0(z)
f ′(z)
(
f(z)

)2

+ d2(z) +
d1(z)

f(z)
+

d0(z)
(
f(z)

)2

]
1

f(z)
.

We choose rn /∈ F and zn such that rn → ∞ , n → ∞ , |zn| = rn , |f(zn)| =
M(rn, f) . From Lemmas 2 and 3 we have

(3.5)
f ′(zn)

f(zn)
=
ν(rn, f)

zn

(
1 + o(1)

)
→ 0.
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Thus

(3.6)

∣∣∣∣a(z)

(
f ′(z)

)2

(
f(z)

)2 +b1(z)
f ′(z)
f(z)

+b0(z)
f ′(z)
(
f(z)

)2 +d2(z)+
d1(z)

f(z)
+

d0(z)
(
f(z)

)2

∣∣∣∣ < crm,

where c is a constant and m is the degree of d2(z) . Hence

(3.7) lim
n→∞

[
d3(zn) − b2(zn)

ν(rn, f)

rn

(
1 + o(1)

)]
= 0.

If b2(z) 6≡ 0, then

(3.8) lim
n→∞

d3(zn) − b2(zn)
(
ν(rn, f)/rn

)(
1 + o(1)

)

b2(zn)
= 0.

Equation (3.7) and Lemma 3 yield

(3.9) lim
n→∞

d3(zn)

b2(zn)
= 0.

It follows that deg d3(z) < deg b2(z) , and hence

(3.10) lim
n→∞

znd3(zn)

b2(zn)
= t,

where t is a finite constant. If d3(z) 6≡ 0, then deg b2(z) ≥ 1. Then, again from
(3.7), and noting that |z/b2(z)| is bounded for sufficiently large r = |z| and f is
a transcendental function, we have

(3.11) lim
n→∞

znd3(zn)

b2(zn)
= lim
n→∞

ν(rn, f)
(
1 + o(1)

)
=∞.

This contradicts (3.10). Hence d3(z) ≡ 0. It follows that equation (3.3) becomes

(3.12) a(z)f ′
2

+
(
b2(z)f2 + b1(z)f + b0(z)

)
f ′ = d2(z)f2 + d1(z)f + d0(z).

Assume that a(z) 6≡ 0. If b2(z) 6≡ 0, then

(3.13)

f ′(z) =
d2(z)

b2(z)
+
d1(z)

b2(z)

1

f(z)
+
d0(z)

b2(z)

1
(
f(z)

)2

− b1(z)

b2(z)

f ′(z)
f(z)

− b0(z)

b2(z)

f ′(z)
(
f(z)

)2 −
a(z)

b2(z)

(
f ′(z)

)2

(
f(z)

)2 .
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Applying Lemmas 2 and 3 to the above equation, the following result holds for a
sequence of rn →∞ :

(3.14)
(
1 + o(1)

)
ν(rn, f)M(rn, f) ≤ ArnB,

where A and B are constants. This is impossible. Thus b2(z) ≡ 0. Similarly, if
a(z) ≡ 0, we can also conclude b2(z) ≡ 0. Therefore (3.12) reduces to

(3.15) a(z)f ′
2

+
(
b1(z)f + b0(z)

)
f ′ = d2(z)f2 + d1(z)f + d0(z).

Now if a(z) 6≡ 0, by (3.15) and Lemma 2 we have for a sequence of rn → ∞ (as
in (3.5))

(3.16)

a(zn)

(
ν(rn, f)

rn

)2(
1 + o(1)

)
+ b1(zn)

ν(rn, f)

rn

(
1 + o(1)

)
− d2(zn)

=

[
b0(zn)

ν(rn, f)

rn

(
1 + o(1)

)
+ d1(zn) +

d0(zn)

f(zn)

]
1

f(zn)
.

By Lemma 3, (3.16) and noting limr→∞
(
rk/M(r, f)

)
= 0 for any k , we have

(3.17) lim
n→∞

{
a(zn)

(
ν(rn, f)

rn

)2(
1 + o(1)

)
+ b1(zn)

ν(rn, f)

rn
− d2(zn)

}
= 0.

Now we will discuss three cases separately.

Case 1: deg b1(z) > deg a(z) . From (3.17) we have

(3.18) lim
n→∞

d2(zn)

b1(zn)
= 0.

Thus deg d2(z) < deg b1(z) and hence

(3.19) lim
n→∞

znd2(zn)

b1(zn)
= c,

where c is a finite constant. But, on the other hand, from (3.17) we have

(3.20) lim
n→∞

[
b1(zn)

a(zn)

ν(rn, f)

rn
− d2(zn)

a(zn)

]
= 0.

By (20), and noting that |za(z)/b1(z)| is bounded for sufficiently large r = |z| and
f is a transcendental function, we can get a conclusion which contradicts (3.19)
by using the same argument as in the derivation of (3.11).
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Case 2: deg b1(z) = deg a(z) . Then

(3.21) lim
n→∞

d2(zn)

a(zn)
= c 6= 0.

From (3.17) and Lemma 3 we have

(3.22) lim
n→∞

d2(zn)

a(zn)
= 0.

It follows that from this, (3.16), and (3.21) we have

(3.23)

∣∣∣∣
(
c+ o(1)

)ν(rn, f)

rn

∣∣∣∣M(rn, f) ≤ Arkn,

where A , k are constants. This is impossible.

Case 3: deg b1(z) < deg a(z) . In this case, we also have (3.22). This means
deg a(z) > deg d2(z) . However, by the assumption of the theorem, we have
deg a(z) > deg d2(z) + 1. If d2(z) 6≡ 0, then deg a(z) > 1. Thus

(3.24) lim
n→∞

rnb1(zn)

a(zn)
= c1, lim

n→∞
r2
nd2(zn)

a(zn)
= c2.

From (3.17) we get

(3.25) lim
n→∞

{(
ν(rn, f)

)2
+
rnb1(zn)

a(zn)
ν(rn, f) − r2

nd2(zn)

a(zn)

}
= 0.

This is also impossible. Now we assume that d2(z) ≡ 0. Then by (3.16) and
noting that |zb1(z)/a(z)| is bound for sufficiently large |z| , we have

(3.26)
∣∣(1 + o(1)

)
a(zn)

(
ν(rn, f)

)2∣∣M(rn, f) < Arkn,

where A , k are constants. This is again impossible. From the above discussions
we can conclude that a(z) ≡ 0 if f satisfies (3.15), i.e., f must satisfy

(3.27)
(
b1(z)f + b0(z)

)
f ′ = d2(z)f2 + d1(z)f + d0(z).

By Lemmas 2 and 3, and noting limr→∞
(
rk/M(r, f)

)
= 0 for any k , we have

(3.28) lim
n→∞

{
b1(zn)

ν(rn, f)

rn

(
1 + o(1)

)
− d2(zn)

}
= 0.
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By the same argument as in the case of (3.7), we have b1(z) ≡ 0 and d2(z) ≡ 0.
Thus (3.15) becomes

(3.29) b0(z)f ′(z) = d1(z)f(z) + d0(z).

From this and Lemma 2, we have for a sequence of zn , ( |zn| = rn →∞),

(3.30) b0(zn)
ν(rn, f)

rn

(
1 + o(1)

)
= d1(zn) +

d0(zn)

f(zn)
,

where f(zn) = M(rn, f) . From this it is easily seen that either limn→∞ ν(rn, f) =
c , where c is a constant, or ν(rn, f) ≥ Arkn + o(1), where A is a constant, and
k is a positive integer. However, both cases are impossible. The proof is thus
completed.

Remark 1. The condition deg d2(z) 6= deg a(z) − 1 in Theorem 1 cannot be
omitted. For example, f(z) = cos

√
z , which has an order ρ(f) = 1

2
. However, it

satisfies the following first-order algebraic differential equation:

4z(w′)2 +w2 − 1 = 0.

Remark 2. The conclusion is sharp in Theorem 1. There exists the function
f(z) = z sin z , which is of order one and satisfies the following first-order algebraic
differential equation:

z3(1− z2)(w′)2 − 2z2ww′ + (z2 + z)w2 − z5 = 0.

4. Factorization of the solutions of first-order
algebraic differential equations

In general, a solution of a higher-order algebraic differential equation may not
be pseudo-prime. For example f2(z) = ee

z

satisfies the homogeneous second-order
algebraic differential equation

ww′′ −w′2 − ww′ = 0.

Furthermore, according to Hayman [8], fn(z) = expn(z) satisfies a homogeneous
nth-order algebraic differential equation, where expn(z) is the nth iterate of ex-
ponential function. In this section, we consider the factorization of the entire
solutions of the most general first-order algebraic differential equation,

(4.1)
∑

λ∈I
aλ(z)f i0 (f ′)

i1 = 0,

where aλ(z) denotes a rational function. First we prove



82 Liang-Wen Liao and Chung-Chun Yang

Theorem 2. All transcendental entire solutions of (4.1) are pseudo-prime.

Proof. If f is a transcendental entire solution of (4.1), then ρ(f) < ∞ by
Theorem A. Now we assume that f is not pseudo-prime. i.e.,

(4.2) f = g(h),

where g is a transcendental meromorphic function and h is a transcendental entire
function. First we assume that g is entire. From Lemma 4 we have ρ(g) = 0. By
substituting (4.2) into (4.1), we have

(4.3)
∑

λ∈I
aλ(z)

[
g
(
h(z)

)]i0[
g′
(
h(z)

)]i1
[h′(z)]

i1 = 0.

We denote Fλ(w) =
(
g(w)

)i0(
g′(w)

)i1
. Then we can rewrite (4.3) as

(4.4)
∑

λ∈I
aλ(z)Fλ

(
h(z)

)
[h′(z)]i1 = 0.

Noting that T (r, h′) = m(r, h′) ≤ m(r, h) + m(r, h′/h) = T (r, h) + S(r, h) and
using Lemma 5, we see that there exist some polynomials Qλ which are not all
identically zero such that ∑

λ∈I
QλFλ ≡ 0,

i.e.

(4.5)
∑

λ∈I
Qλ(z)

(
g(z)

)i0(
g′(z)

)i1 ≡ 0.

From this and Theorem D we have ρ(g) > 0. This contradicts the fact ρ(g) = 0.
Now if g is not entire, it is easily shown that g has one and only one pole w1 .
Thus g(w) = g1(w)/(w − w1)n , where g1(z) is a transcendental entire function.
Then

(4.6) f(z) =
g1

(
h(z)

)

h(z) − w1
.

By substituting (4.6) into (4.1), we get

(4.7)
∑

λ∈J
bλ(z)Qλ

(
h(z), h′(z)

)[
g1

(
h(z)

)]i0[
g′1
(
h(z)

)]i1
= 0,

where bλ(z) denotes a rational function, Qλ(η, ζ) being a rational function of
η and ζ . From this and (2.6) it follows that g1 satisfies a first-order algebraic
differential equation. This will lead to ρ(g1) > 0, which contradicts the fact that
ρ(g1) = ρ(g) = 0. Thus f must be pseudo-prime, which also completes the proof
of the theorem.
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By using Lemmas 5 and 6, and the argument similar to that used in the proof
of Theorem 2, we can prove

Theorem 3. Every finite-order transcendental entire solution of a second-
order algebraic differential equation with rational coefficients must be pseudo-
prime.

Remark 3. The proof of Theorem 2 cannot be used to show that every
transcendental meromorphic solution of (4.1) must be pseudo-prime, since it is
known that there exists a transcendental meromorphic (non-entire) function f
which satisfies a first-order algebraic differential equation and is of zero order. For
example, there exists a meromorphic function H (see [13]), which satisfies the
differential equation

(4.8) (z2 − 4)H ′(z)2 = 4
(
H(z) − e1

)(
H(z) − e2

)(
H(z) − e3

)

with the growth condition

(4.9) T (r,H) = O(log r)2, r →∞.

Question. Is every transcendental meromorphic solution of a first-order al-
gebraic differential equation pseudo-prime?

The answer to the question is negative. As indicated by W. Bergweiler, the
meromorphic function f(z) = H

(
g(z)

)
satisfies the differential equation

f ′(z)2 = 4(f(z) − e1)
(
f(z) − e2

)(
f(z) − e3

)
,

where H satisfies (4.8) and g satisfies (g2 − 4) = g′2 . Apparently f is not
pseudo-prime.

Remark 4. For some higher-order algebraic differential equations with ratio-
nal coefficients, periodic entire solutions of finite order have been presented which
are not pseudo-prime (see e.g. [3, pp. 164, Theorem 4.13]). Also all known non-
pseudo-prime entire solutions of some higher-order algebraic differential equations
are periodic functions. However, by using the same method as in [3], one can eas-
ily construct non-periodic entire functions which are not pseudo-prime and satisfy
some higher-order algebraic differential equations.

Acknowledgement. The authors want to express their thanks to the anony-
mous referee for his valuable comments and suggestions.
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[15] Polya, G.: Zur Untersuchung der Grössenordnung ganzer Funktionen, die einer Differen-
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in Komplexen. - Karlsruhe Dissertations, 1978.
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