ON THE GROWTH AND FACTORIZATION OF ENTIRE SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS

Liang-Wen Liao and Chung-Chun Yang

The Hong Kong University of Science & Technology, Department of Mathematics Kowloon, Hong Kong, China; mayang@uxmail.ust.hk

Abstract. In this paper we discuss the growth and factorization of entire solutions of some classes of first-order algebraic differential equations and prove that any entire solution of a first-order algebraic differential equation must be pseudo-prime.

1. Introduction

In the study of the solutions of complex differential equations, the growth of a solution is a very important property. For linear differential equations of the form

(1.1)
$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = a(z),$$

where a(z), $a_0(z)$,..., $a_{(n-1)}(z)$ are polynomials, it is known that any entire solution must be of finite and positive order; see Laine [13, pp. 52–73, pp. 144–164], Gundersen, et al. [6]. This can be proved by mainly using the Wiman–Valiron theory. However, there are only a few results concerning the growth of the solutions of a nonlinear algebraic differential equation

(1.2)
$$P(z, f, f', \dots, f^{(n)}) = 0,$$

where P is a polynomial in all its arguments. Equation (1.2) can be rewritten in the form

(1.3)
$$\sum_{\lambda \in I} a_{\lambda}(z) f^{i_0} \cdots (f^{(n)})^{i_n} = 0,$$

where I is a finite set of multi-indices $(i_0, \ldots, i_n) = \lambda$. We define a differential monomial in f as

$$M[f] = a_{\lambda}(z) f^{i_0} \cdots (f^{(n)})^{i_n}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 34A20, 30D35.

The reseach was partially supported by a UGC grant of Hong Kong (Project No: HKUST 712/96p).

The degree γ_M and the weight Γ_M of M are defined by

$$\gamma_M = i_0 + i_1 + \dots + i_n, \quad \Gamma_M = i_0 + 2i_1 + \dots + (n+1)i_n.$$

Then the left-hand side of equation (1.3) can be expressed as a finite sum of differential monomials. From now on we shall call this a differential poynomial in f, i.e.

$$P[f] = P(z, f, f', \dots, f^n) = \sum_{\lambda \in I} M_{\lambda}[f].$$

The degree γ_P and the weight Γ_P of P are defined by $\gamma_P = \max_{\lambda \in I} \gamma_{M_\lambda}$, $\Gamma_P = \max_{\lambda \in I} \Gamma_{M_\lambda}$. Some results have been obtained on the growth estimates for solutions of algebraic differential equations; see e.g. [13]. However, in general, a complete growth estimate for nonlinear algebraic differential equations remains to be resolved. The first important result on the growth estimate was due to A. Gol'dberg [4] (or see e.g. [13]). Some variations of Gol'dberg's result were obtained by Bank–Kaufman [1], W. Bergweiler [2], and others.

Theorem A (Gold'berg). Let $P(u_1, u_2, u_3)$ be a polynomial in all of its arguments u_1 , u_2 and u_3 and consider the first-order algebraic differential equation

(1.4)
$$P(z, f, f') = 0.$$

Then all meromorphic solutions of (1.4) are of finite order of growth.

Note that the order can be zero (see e.g. [13]).

For nonlinear differential equations of second-order Steinmetz [18] proved the following theorem (see also e.g. [13]):

Theorem B. Suppose that in equation (1.2) P is homogeneous in f, f' and f''. Then all meromorphic solutions of (1.2) satisfy

$$T(r,f) = O(\exp r^b)$$

as $r \to \infty$ for some b > 1 depending only on the degrees of the polynomial coefficients of (1.3).

Recently W.K. Hayman [8] studied the growth of solutions of (1.2) and posed the following

Conjecture. If f(z) is an entire solution of (1.2), then

$$T(r,f) < a \exp_{n-1}(br^c), \qquad 0 \le r < \infty$$

where a, b and c are positive constants and $\exp_l(x)$ is the exponential iterated l times.

Hayman also showed that the conjecture is true for some special class of equations.

Set

$$\Lambda = \{ \lambda = (i_0, i_1, \dots, i_n) \mid \gamma_{M_{\lambda}} = \gamma_P, \ \Gamma_{M_{\lambda}} = \Gamma_P \}.$$

Theorem C (Hayman [8]). Suppose that equation (1.3) holds with Λ defined as above. Let d be the maximum degree among all the polynomials $a_{\lambda}(z)$ in (1.3) and suppose that

(1.5)
$$\sum_{\lambda \in \Lambda} a_{\lambda}(z) \neq 0.$$

Then any entire solution of (1.3) has finite order ρ , with $\rho \leq \max\{2d, 1+d\}$.

On the other hand, Sh. Strelitz [20] proved

Theorem D. Every entire transcendental solution of a first-order algebraic differential equation with rational coefficients has an order no less than $\frac{1}{2}$.

Definition (Gross [5]). A meromorphic function f is called pseudo-prime if whenever f = g(h) with g, h entire or meromorphic, implies that either g is a rational function or h is a polynomial.

As regards the factorization of the solutions of differential equations, the following two results are well known.

Theorem E (Steinmetz [17]). Any meromorphic solution of (1.1) is pseudoprime.

Theorem F (Mues [14]). Let f be a meromorphic solution of the Riccati differential equation

$$w' = a(z) + b(z)w + c(z)w^2,$$

where a(z), b(z), c(z) are polynomials. Then f is pseudo-prime.

For some other related results on the factorization of solutions of some firstorder algebraic differential equations, see e.g. He–Laine [9] and He–Yang [10]. In this paper we shall mainly discuss the growth and factorization of the transcendental entire solutions of the first-order algebraic differential equation in its most general form. Subsequently, we always assume that f denotes an entire function and write

$$f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

We denote the maximum term of f by $\mu(r, f)$, the central index by $\nu(r, f)$, and the maximum modulus by M(r, f), i.e.

$$\mu(r,f) = \max_{|z|=r} |a_n z^n|, \ \nu(r,f) = \sup\{n \mid |a_n|r^n = \mu(r,f)\}, \ M(r,f) = \max_{|z|=r} |f(z)|.$$

As usual, we use T(r, f) to denote the Nevanlinna characteristic function of f and $\rho(f)$ to denote the order of f.

2. Lemmas

In order to obtain our theorems, we need some basic results of the Wiman–Valiron theory .

Lemma 1 (Laine [13]). If f is an entire function of order ρ , then

(2.1)
$$\rho = \limsup_{r \to \infty} \frac{\log^+ \nu(r, f)}{\log r} = \limsup_{r \to \infty} \frac{\log \log^+ \mu(r, f)}{\log r}.$$

Lemma 2 (Laine [13]). Let f be a transcendental entire function, and let $0 < \delta < \frac{1}{4}$. Suppose that at the point z with |z| = r the inequality

(2.2)
$$|f(z)| > M(r, f)\nu(r, f)^{-(1/4)+\delta}$$

holds. Then there exists a set $F \subset R^+$ of finite logarithmic measure, i.e., $\int dt/t < +\infty$ such that

(2.3)
$$f^{(m)}(z) = \left(\frac{\nu(r,f)}{z}\right)^m (1+o(1))f(z)$$

holds for all $m \ge 0$ and all $r \notin F$.

By Lemma 1, we can easily derive

Lemma 3. Let f be a transcendental entire function of order $\rho < 1$. Then

(2.4)
$$\lim_{r \to \infty} \frac{\nu(r, f)}{r} = 0.$$

The following lemma due to Polya [15] plays a very important role in our discussions.

Lemma 4. If f and g are entire functions, the composite function $f \circ g$ is of infinite order unless (a) f is of finite order and g is a polynomial or (b) f is of zero order and g is of finite order.

Lemma 5 (Steinmetz [16]). Let f_1, \ldots, f_n and g be entire functions and let h_1, \ldots, h_n be meromorphic functions such that the inequality

$$\sum_{j=1}^{n} T(r, h_j) \le KT(r, g)$$

holds, with K a constant. Suppose that f_j and h_j (j = 1, 2, ..., n) satisfy

$$f_1(g(z))h_1(z) + \dots + f_n(g(z))h_n(z) \equiv 0.$$

Then there exist two sets of polynomials $\{P_j\}$ and $\{Q_j\}$ (j = 1, 2, ..., n) not all identically zero in either of the two sets such that

(2.5)
$$P_1(g(z))h_1(z) + \dots + P_n(g(z))h_n(z) \equiv 0$$

and

(2.6)
$$f_1(z)Q_1(z) + \dots + f_n(z)Q_n(z) \equiv 0.$$

Lemma 6 (Zimogljad [21]). Every entire transcendental solution of a secondorder algebraic differential equation with rational coefficients has a positive order.

3. Growth of solutions of certain types of first-order algebraic differential equations

In this section, we shall provide a more precise estimation of the growth of entire solutions of algebraic differentional equations of the form

(3.1)
$$C(z,w)(w')^2 + B(z,w)w' + A(z,w) = 0,$$

where $C(z, w) \neq 0, B(z, w)$, and A(z, w) are polynomials in z and w. Here we refer the reader to Ishizaki's works [11], [12] for the cases where the cofficients of the powers of w in A(z, w), B(z, w) and C(z, w) are transcendental functions. Steinmetz [19] showed that if (3.1) has a transcendental meromorphic solution, then

$$\deg_w C(z,w) = 0, \qquad \deg_w B(z,w) \le 2, \qquad \deg_w A(z,w) \le 4.$$

Thus we can assume that $C(z, w) \equiv a(z)$ is a polynomial in z only and that (3.1) can be rewritten in the following form:

(3.2)
$$a(z)w'^{2} + (b_{2}(z)w^{2} + b_{1}(z)w + b_{0}(z))w' = d_{4}(z)w^{4} + d_{3}(z)w^{3} + d_{2}(z)w^{2} + d_{1}(z)w + d_{0}(z),$$

where a(z), $b_i(z)$ (i = 0, 1, 2) and $d_j(z)$ (j = 0, ..., 4) are polynomials. If (3.2) has a transcendental entire solution, one can derive $d_4(z) \equiv 0$ by comparing the characteristic functions on both sides of (3.2). Finally equation (3.2) can be reduced to the following form:

(3.3)
$$a(z)f'^{2} + (b_{2}(z)f^{2} + b_{1}(z)f + b_{0}(z))f' = d_{3}(z)f^{3} + d_{2}(z)f^{2} + d_{1}(z)f + d_{0}(z).$$

Theorem 1. If deg $d_2(z) \neq \text{deg } a(z) - 1$ in (3.3) and f(z) is a transcendental entire solution of equation (3.2), then $\rho(f) \geq 1$.

Proof. We assume that f has an order $\rho(f) < 1$ and satisfies equation (3.3). Now we can rewrite (3.3) as follows:

(3.4)
$$\begin{pmatrix} d_3(z) - b_2(z) \frac{f'(z)}{f(z)} \end{pmatrix} = \left[a(z) \frac{\left(f'(z)\right)^2}{\left(f(z)\right)^2} + b_1(z) \frac{f'(z)}{f(z)} + b_0(z) \frac{f'(z)}{\left(f(z)\right)^2} + d_2(z) + \frac{d_1(z)}{f(z)} + \frac{d_0(z)}{\left(f(z)\right)^2} \right] \frac{1}{f(z)}.$$

We choose $r_n \notin F$ and z_n such that $r_n \to \infty$, $n \to \infty$, $|z_n| = r_n$, $|f(z_n)| = M(r_n, f)$. From Lemmas 2 and 3 we have

(3.5)
$$\frac{f'(z_n)}{f(z_n)} = \frac{\nu(r_n, f)}{z_n} (1 + o(1)) \to 0$$

Thus

$$(3.6) \left| a(z) \frac{\left(f'(z)\right)^2}{\left(f(z)\right)^2} + b_1(z) \frac{f'(z)}{f(z)} + b_0(z) \frac{f'(z)}{\left(f(z)\right)^2} + d_2(z) + \frac{d_1(z)}{f(z)} + \frac{d_0(z)}{\left(f(z)\right)^2} \right| < cr^m,$$

where c is a constant and m is the degree of $d_2(z)$. Hence

(3.7)
$$\lim_{n \to \infty} \left[d_3(z_n) - b_2(z_n) \frac{\nu(r_n, f)}{r_n} (1 + o(1)) \right] = 0.$$

If $b_2(z) \not\equiv 0$, then

(3.8)
$$\lim_{n \to \infty} \frac{d_3(z_n) - b_2(z_n) \left(\nu(r_n, f) / r_n \right) \left(1 + o(1) \right)}{b_2(z_n)} = 0.$$

Equation (3.7) and Lemma 3 yield

(3.9)
$$\lim_{n \to \infty} \frac{d_3(z_n)}{b_2(z_n)} = 0.$$

It follows that $\deg d_3(z) < \deg b_2(z)$, and hence

(3.10)
$$\lim_{n \to \infty} \frac{z_n d_3(z_n)}{b_2(z_n)} = t,$$

where t is a finite constant. If $d_3(z) \neq 0$, then deg $b_2(z) \geq 1$. Then, again from (3.7), and noting that $|z/b_2(z)|$ is bounded for sufficiently large r = |z| and f is a transcendental function, we have

(3.11)
$$\lim_{n \to \infty} \frac{z_n d_3(z_n)}{b_2(z_n)} = \lim_{n \to \infty} \nu(r_n, f) \left(1 + o(1) \right) = \infty.$$

This contradicts (3.10). Hence $d_3(z) \equiv 0$. It follows that equation (3.3) becomes

(3.12)
$$a(z)f'^{2} + (b_{2}(z)f^{2} + b_{1}(z)f + b_{0}(z))f' = d_{2}(z)f^{2} + d_{1}(z)f + d_{0}(z).$$

Assume that $a(z) \neq 0$. If $b_2(z) \neq 0$, then

(3.13)
$$f'(z) = \frac{d_2(z)}{b_2(z)} + \frac{d_1(z)}{b_2(z)} \frac{1}{f(z)} + \frac{d_0(z)}{b_2(z)} \frac{1}{(f(z))^2} - \frac{b_1(z)}{b_2(z)} \frac{f'(z)}{f(z)} - \frac{b_0(z)}{b_2(z)} \frac{f'(z)}{(f(z))^2} - \frac{a(z)}{b_2(z)} \frac{(f'(z))^2}{(f(z))^2}.$$

Applying Lemmas 2 and 3 to the above equation, the following result holds for a sequence of $r_n \to \infty$:

(3.14)
$$(1+o(1))\nu(r_n,f)M(r_n,f) \le Ar_n^B,$$

where A and B are constants. This is impossible. Thus $b_2(z) \equiv 0$. Similarly, if $a(z) \equiv 0$, we can also conclude $b_2(z) \equiv 0$. Therefore (3.12) reduces to

(3.15)
$$a(z)f'^{2} + (b_{1}(z)f + b_{0}(z))f' = d_{2}(z)f^{2} + d_{1}(z)f + d_{0}(z).$$

Now if $a(z) \neq 0$, by (3.15) and Lemma 2 we have for a sequence of $r_n \to \infty$ (as in (3.5))

(3.16)
$$a(z_n) \left(\frac{\nu(r_n, f)}{r_n}\right)^2 (1 + o(1)) + b_1(z_n) \frac{\nu(r_n, f)}{r_n} (1 + o(1)) - d_2(z_n) \\ = \left[b_0(z_n) \frac{\nu(r_n, f)}{r_n} (1 + o(1)) + d_1(z_n) + \frac{d_0(z_n)}{f(z_n)}\right] \frac{1}{f(z_n)}.$$

By Lemma 3, (3.16) and noting $\lim_{r\to\infty} (r^k/M(r, f)) = 0$ for any k, we have

(3.17)
$$\lim_{n \to \infty} \left\{ a(z_n) \left(\frac{\nu(r_n, f)}{r_n} \right)^2 \left(1 + o(1) \right) + b_1(z_n) \frac{\nu(r_n, f)}{r_n} - d_2(z_n) \right\} = 0.$$

Now we will discuss three cases separately.

Case 1: deg $b_1(z) > deg a(z)$. From (3.17) we have

(3.18)
$$\lim_{n \to \infty} \frac{d_2(z_n)}{b_1(z_n)} = 0.$$

Thus $\deg d_2(z) < \deg b_1(z)$ and hence

(3.19)
$$\lim_{n \to \infty} \frac{z_n d_2(z_n)}{b_1(z_n)} = c_1$$

where c is a finite constant. But, on the other hand, from (3.17) we have

(3.20)
$$\lim_{n \to \infty} \left[\frac{b_1(z_n)}{a(z_n)} \frac{\nu(r_n, f)}{r_n} - \frac{d_2(z_n)}{a(z_n)} \right] = 0.$$

By (20), and noting that $|za(z)/b_1(z)|$ is bounded for sufficiently large r = |z| and f is a transcendental function, we can get a conclusion which contradicts (3.19) by using the same argument as in the derivation of (3.11).

Case 2: deg $b_1(z) = deg a(z)$. Then

(3.21)
$$\lim_{n \to \infty} \frac{d_2(z_n)}{a(z_n)} = c \neq 0.$$

From (3.17) and Lemma 3 we have

(3.22)
$$\lim_{n \to \infty} \frac{d_2(z_n)}{a(z_n)} = 0$$

It follows that from this, (3.16), and (3.21) we have

(3.23)
$$\left| \left(c + o(1) \right) \frac{\nu(r_n, f)}{r_n} \right| M(r_n, f) \le A r_n^k,$$

where A, k are constants. This is impossible.

Case 3: deg $b_1(z) < \text{deg } a(z)$. In this case, we also have (3.22). This means deg $a(z) > \text{deg } d_2(z)$. However, by the assumption of the theorem, we have deg $a(z) > \text{deg } d_2(z) + 1$. If $d_2(z) \neq 0$, then deg a(z) > 1. Thus

(3.24)
$$\lim_{n \to \infty} \frac{r_n b_1(z_n)}{a(z_n)} = c_1, \qquad \lim_{n \to \infty} \frac{r_n^2 d_2(z_n)}{a(z_n)} = c_2.$$

From (3.17) we get

(3.25)
$$\lim_{n \to \infty} \left\{ \left(\nu(r_n, f) \right)^2 + \frac{r_n b_1(z_n)}{a(z_n)} \nu(r_n, f) - \frac{r_n^2 d_2(z_n)}{a(z_n)} \right\} = 0.$$

This is also impossible. Now we assume that $d_2(z) \equiv 0$. Then by (3.16) and noting that $|zb_1(z)/a(z)|$ is bound for sufficiently large |z|, we have

(3.26)
$$|(1+o(1))a(z_n)(\nu(r_n,f))^2|M(r_n,f) < Ar_n^k,$$

where A, k are constants. This is again impossible. From the above discussions we can conclude that $a(z) \equiv 0$ if f satisfies (3.15), i.e., f must satisfy

(3.27)
$$(b_1(z)f + b_0(z))f' = d_2(z)f^2 + d_1(z)f + d_0(z).$$

By Lemmas 2 and 3, and noting $\lim_{r\to\infty} (r^k/M(r, f)) = 0$ for any k, we have

(3.28)
$$\lim_{n \to \infty} \left\{ b_1(z_n) \frac{\nu(r_n, f)}{r_n} (1 + o(1)) - d_2(z_n) \right\} = 0.$$

By the same argument as in the case of (3.7), we have $b_1(z) \equiv 0$ and $d_2(z) \equiv 0$. Thus (3.15) becomes

(3.29)
$$b_0(z)f'(z) = d_1(z)f(z) + d_0(z).$$

From this and Lemma 2, we have for a sequence of z_n , $(|z_n| = r_n \to \infty)$,

(3.30)
$$b_0(z_n)\frac{\nu(r_n,f)}{r_n}(1+o(1)) = d_1(z_n) + \frac{d_0(z_n)}{f(z_n)},$$

where $f(z_n) = M(r_n, f)$. From this it is easily seen that either $\lim_{n\to\infty} \nu(r_n, f) = c$, where c is a constant, or $\nu(r_n, f) \ge Ar_n^k + o(1)$, where A is a constant, and k is a positive integer. However, both cases are impossible. The proof is thus completed.

Remark 1. The condition $\deg d_2(z) \neq \deg a(z) - 1$ in Theorem 1 cannot be omitted. For example, $f(z) = \cos \sqrt{z}$, which has an order $\rho(f) = \frac{1}{2}$. However, it satisfies the following first-order algebraic differential equation:

$$4z(w')^2 + w^2 - 1 = 0.$$

Remark 2. The conclusion is sharp in Theorem 1. There exists the function $f(z) = z \sin z$, which is of order one and satisfies the following first-order algebraic differential equation:

$$z^{3}(1-z^{2})(w')^{2} - 2z^{2}ww' + (z^{2}+z)w^{2} - z^{5} = 0.$$

4. Factorization of the solutions of first-order algebraic differential equations

In general, a solution of a higher-order algebraic differential equation may not be pseudo-prime. For example $f_2(z) = e^{e^z}$ satisfies the homogeneous second-order algebraic differential equation

$$ww'' - {w'}^2 - ww' = 0.$$

Furthermore, according to Hayman [8], $f_n(z) = \exp_n(z)$ satisfies a homogeneous *n*th-order algebraic differential equation, where $\exp_n(z)$ is the *n*th iterate of exponential function. In this section, we consider the factorization of the entire solutions of the most general first-order algebraic differential equation,

(4.1)
$$\sum_{\lambda \in I} a_{\lambda}(z) f^{i_0}(f')^{i_1} = 0,$$

where $a_{\lambda}(z)$ denotes a rational function. First we prove

81

Theorem 2. All transcendental entire solutions of (4.1) are pseudo-prime.

Proof. If f is a transcendental entire solution of (4.1), then $\rho(f) < \infty$ by Theorem A. Now we assume that f is not pseudo-prime. i.e.,

$$(4.2) f = g(h),$$

where g is a transcendental meromorphic function and h is a transcendental entire function. First we assume that g is entire. From Lemma 4 we have $\rho(g) = 0$. By substituting (4.2) into (4.1), we have

(4.3)
$$\sum_{\lambda \in I} a_{\lambda}(z) \left[g(h(z)) \right]^{i_0} \left[g'(h(z)) \right]^{i_1} \left[h'(z) \right]^{i_1} = 0.$$

We denote $F_{\lambda}(w) = (g(w))^{i_0} (g'(w))^{i_1}$. Then we can rewrite (4.3) as

(4.4)
$$\sum_{\lambda \in I} a_{\lambda}(z) F_{\lambda}(h(z)) [h'(z)]^{i_1} = 0.$$

Noting that $T(r,h') = m(r,h') \leq m(r,h) + m(r,h'/h) = T(r,h) + S(r,h)$ and using Lemma 5, we see that there exist some polynomials Q_{λ} which are not all identically zero such that

$$\sum_{\lambda \in I} Q_{\lambda} F_{\lambda} \equiv 0,$$

i.e.

(4.5)
$$\sum_{\lambda \in I} Q_{\lambda}(z) \big(g(z)\big)^{i_0} \big(g'(z)\big)^{i_1} \equiv 0.$$

From this and Theorem D we have $\rho(g) > 0$. This contradicts the fact $\rho(g) = 0$. Now if g is not entire, it is easily shown that g has one and only one pole w_1 . Thus $g(w) = g_1(w)/(w - w_1)^n$, where $g_1(z)$ is a transcendental entire function. Then

(4.6)
$$f(z) = \frac{g_1(h(z))}{h(z) - w_1}.$$

By substituting (4.6) into (4.1), we get

(4.7)
$$\sum_{\lambda \in J} b_{\lambda}(z) Q_{\lambda}(h(z), h'(z)) \left[g_{1}(h(z)) \right]^{i_{0}} \left[g'_{1}(h(z)) \right]^{i_{1}} = 0,$$

where $b_{\lambda}(z)$ denotes a rational function, $Q_{\lambda}(\eta, \zeta)$ being a rational function of η and ζ . From this and (2.6) it follows that g_1 satisfies a first-order algebraic differential equation. This will lead to $\rho(g_1) > 0$, which contradicts the fact that $\rho(g_1) = \rho(g) = 0$. Thus f must be pseudo-prime, which also completes the proof of the theorem.

By using Lemmas 5 and 6, and the argument similar to that used in the proof of Theorem 2, we can prove

Theorem 3. Every finite-order transcendental entire solution of a secondorder algebraic differential equation with rational coefficients must be pseudoprime.

Remark 3. The proof of Theorem 2 cannot be used to show that every transcendental meromorphic solution of (4.1) must be pseudo-prime, since it is known that there exists a transcendental meromorphic (non-entire) function f which satisfies a first-order algebraic differential equation and is of zero order. For example, there exists a meromorphic function H (see [13]), which satisfies the differential equation

(4.8)
$$(z^2 - 4)H'(z)^2 = 4(H(z) - e_1)(H(z) - e_2)(H(z) - e_3)$$

with the growth condition

(4.9)
$$T(r,H) = O(\log r)^2, r \to \infty.$$

Question. Is every transcendental meromorphic solution of a first-order algebraic differential equation pseudo-prime?

The answer to the question is negative. As indicated by W. Bergweiler, the meromorphic function f(z) = H(g(z)) satisfies the differential equation

$$f'(z)^{2} = 4(f(z) - e_{1})(f(z) - e_{2})(f(z) - e_{3}),$$

where H satisfies (4.8) and g satisfies $(g^2 - 4) = {g'}^2$. Apparently f is not pseudo-prime.

Remark 4. For some higher-order algebraic differential equations with rational coefficients, periodic entire solutions of finite order have been presented which are not pseudo-prime (see e.g. [3, pp. 164, Theorem 4.13]). Also all known nonpseudo-prime entire solutions of some higher-order algebraic differential equations are periodic functions. However, by using the same method as in [3], one can easily construct non-periodic entire functions which are not pseudo-prime and satisfy some higher-order algebraic differential equations.

Acknowledgement. The authors want to express their thanks to the anonymous referee for his valuable comments and suggestions.

References

 BANK, S., and R. KAUFMAN: On meromorphic solutions of first-order differential equations. - Comment. Math. Helv. 51, 1976, 289–299.

84	Liang-Wen Liao and Chung-Chun Yang
[2]	BERGWEILER, W.: On a theorem of Gol'dberg concerning meromorphic solutions of alge- braic differential equations Complex Variables Theory Appl. (to appear).
[3]	CHUANG, C.T., C.C. YANG, Y. HE and G.C. WEN: Some Topics in Function Theory of One Complex Variable Basic Series of Modern Mathematics, Science Press, Beijing, China, 1995 (in Chinese).
[4]	GOL'DBERG, A.A.: On single-valued solutions of first-order differential equations Ukraïn. Mat. Zh. 8, 1956, 254–261.
[5]	GROSS, F.: On factorization of meromorphic functions Trans. Amer. Math. Soc. 131, 1968, 215–222.
[6]	GROSS, F.: On factorization of meromorphic functions Trans. Amer. Math. Soc. 131, 1968, 215–222.
[7]	GUNDERSEN, G., M. STEINBART and S. WANG: The possible orders of linear differential equations with polynomial coefficients Trans. Amer. Math. Soc. 350, 1998, 1225– 1247.
[8]	HAYMAN, W.K.: The growth of solutions of algebraic differential equations Rend. Mat. Accad. Lincei 7, 1996, 67–73.
[9]	HE, Y., and I. LAINE: Factorization of meromorphic solutions to the differential equation $(f')^n = R(z, f)$ Rev. Roumaine Math. Pures Appl. 39, 1994, 675–689.
[10]	HE, Y., and C.C. YANG: On pseudo-primality of the product of some pseudo-prime meromorphic functions In: Analysis of One Complex Variable, Proceedings of the American Mathematical Society's 821st Wyoming 1985 meeting, 113–124.
[11]	ISHIZAKI, I.: Meromorphic solutions of complex differential equations Ph.D. Dissertation, Chiba, 1993.
[12]	ISHIZAKI, I.: A result for a certain algebraic differential equation BHKMS, 1, 1997, 301–308.
[13]	LAINE, I.: Nevanlinna Theory and Complex Differential Equations Walter de Gruyter, Berlin–New York, 1993.
[14]	MUES, E.: Über faktorisierbare Lösungen von Riccatischen Differentialgleichungen Math. Z. 121, 1971, 145–156.
[15]	POLYA, G.: Zur Untersuchung der Grössenordnung ganzer Funktionen, die einer Differen- tialgleichung genügen Acta Math. 42, 1920, 309–316.
[16]	STEINMETZ, N.: Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen in Komplexen Karlsruhe Dissertations, 1978.
[17]	STEINMETZ, N.: Über die faktorisierbaren Lösungen gewöhnlicher Differentialgleichungen. - Math. Z. 170, 1980, 168–180.
[18]	STEINMETZ, N.: Über das Anwachsen der Lösungen homogener algebraischer Differential- gleichungen zweiter Ordnung Manuscripta Math. 32, 1980, 303–308.
[19]	STEINMETZ, N.: Ein Malmquistscher Satz für algebraische Differentialgleichungen erster Ordnung J. Reine Angew. Math. 316, 1980, 44–53.
[20]	STRELITZ, SH.: Three theorems on the growth of entire transcendental solutions of alge- braic differential equations Canad. J. Math. 35, 1983, 1110–1128.
[21]	ZIMOGLJAD, V.V.: On the growth of entire transcendental solutions of second-order alge- braic differential equations Mat. Sb. 85(127), 2(6), 1971, 283–382.

Received 23 March 1998