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Abstract. In this paper we discuss the growth and factorization of entire solutions of some
classes of first-order algebraic differential equations and prove that any entire solution of a first-
order algebraic differential equation must be pseudo-prime.

1. Introduction

In the study of the solutions of complex differential equations, the growth of a
solution is a very important property. For linear differential equations of the form

(1.1) F Fan—1(2)f" 7 4 ao(2)f = alz),

where a(z), ao(2),...,a(n—1)(2) are polynomials, it is known that any entire so-
lution must be of finite and positive order; see Laine [13, pp. 52-73, pp. 144-164],
Gundersen, et al. [6]. This can be proved by mainly using the Wiman—Valiron the-
ory. However, there are only a few results concerning the growth of the solutions
of a nonlinear algebraic differential equation

(1.2) Pz £ f ..., f™) =0,

where P is a polynomial in all its arguments. Equation (1.2) can be rewritten in
the form

(1.3) S ax@) e (f)" =0,

Ael

where [ is a finite set of multi-indices (ig,...,in) = A. We define a differential
monomial in f as

MIf] = ax(z)f - (F™)".
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The degree vjs and the weight 'y, of M are defined by
M =0+ i1+ Ain, Ty =io+ 201+ -+ (n+ 1)in.

Then the left-hand side of equation (1.3) can be expressed as a finite sum of
differential monomials. From now on we shall call this a differential poynomial
in f,i.e.

Plfl =Pz, f,f's. ") = > M[f].

Ael

The degree vp and the weight I'p of P are defined by vp = maxyervam,, I'p
= maxyer ['ar, . Some results have been obtained on the growth estimates for
solutions of algebraic differential equations; see e.g. [13]. However, in general, a
complete growth estimate for nonlinear algebraic differential equations remains
to be resolved. The first important result on the growth estimate was due to
A. Gol'dberg [4] (or see e.g. [13]). Some variations of Gol’dberg’s result were
obtained by Bank-Kaufman [1], W. Bergweiler [2], and others.

Theorem A (Gold’berg). Let P(ui,u2,us) be a polynomial in all of its ar-
guments uy, us and us and consider the first-order algebraic differential equation

(1.4) Pz, f, f")=0.

Then all meromorphic solutions of (1.4) are of finite order of growth.

Note that the order can be zero (see e.g. [13]).
For nonlinear differential equations of second-order Steinmetz [18] proved the
following theorem (see also e.g. [13]):

Theorem B. Suppose that in equation (1.2) P is homogeneous in f, f' and
f". Then all meromorphic solutions of (1.2) satisfy

T(r, f) = O(expr?)

as r — oo for some b > 1 depending only on the degrees of the polynomial
coefficients of (1.3).

Recently W.K. Hayman [8] studied the growth of solutions of (1.2) and posed
the following

Conjecture. If f(z) is an entire solution of (1.2), then
T(r, f) < aexp,,_,(br°), 0<r<oo

where a, b and c¢ are positive constants and exp,(z) is the exponential iterated 1
times.
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Hayman also showed that the conjecture is true for some special class of
equations.
Set
A= {)\ = (’io,il, e ,in) | YMs = VP, FM)\ = FP}.
Theorem C (Hayman [8]). Suppose that equation (1.3) holds with A defined
as above. Let d be the maximum degree among all the polynomials ax(z) in (1.3)
and suppose that

(1.5) Z ax(z) # 0.

AEA
Then any entire solution of (1.3) has finite order p, with p < max{2d,1+ d}.
On the other hand, Sh. Strelitz [20] proved

Theorem D. Every entire transcendental solution of a first-order algebraic

differential equation with rational coefficients has an order no less than % .

Definition (Gross [5]). A meromorphic function f is called pseudo-prime if
whenever f = g(h) with g, h entire or meromorphic, implies that either ¢ is a
rational function or A is a polynomial.

As regards the factorization of the solutions of differential equations, the fol-
lowing two results are well known.

Theorem E (Steinmetz [17]). Any meromorphic solution of (1.1) is pseudo-
prime.

Theorem F (Mues [14]). Let f be a meromorphic solution of the Riccati
differential equation
w' = a(z) + b(z)w + c(2)w?,
where a(z), b(z), ¢(z) are polynomials. Then f is pseudo-prime.

For some other related results on the factorization of solutions of some first-
order algebraic differential equations, see e.g. He-Laine [9] and He-Yang [10]. In
this paper we shall mainly discuss the growth and factorization of the transcen-
dental entire solutions of the first-order algebraic differential equation in its most
general form. Subsequently, we always assume that f denotes an entire function
and write

f(z) = Z anz".
n=0

We denote the maximum term of f by u(r, f), the central index by v(r, f), and
the maximum modulus by M(r, f), i.e.

p(r. f) = max la"|, v(r, ) = sup{n | laalr" = u(r, )}, M(r.f) = max|f(2)]

|| z|=r

As usual, we use T'(r, f) to denote the Nevanlinna characteristic function of f and
p(f) to denote the order of f.
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2. Lemmas

In order to obtain our theorems, we need some basic results of the Wiman—
Valiron theory .

Lemma 1 (Laine [13]). If f is an entire function of order p, then

log™ log loo™

(2.1) p= hmsupw — Jim sup —28-%8 pr, f)
r—oeo lOg?" r—00 lOg?"

Lemma 2 (Laine [13]). Let f be a transcendental entire function, and let

0<d< %. Suppose that at the point z with |z| = r the inequality

- s
(2:2) £ > M, P, £)~HD*
holds. Then there exists a set F' C R* of finite logarithmic measure, i.e., [dt/t <
400 such that

2.3 1) = (M) o)

holds for all m >0 and all r ¢ F'.

By Lemma 1, we can easily derive

Lemma 3. Let f be a transcendental entire function of order p < 1. Then

(2.4) lim 20
r— 00 r
The following lemma due to Polya [15] plays a very important role in our

discussions.

Lemma 4. If f and g are entire functions, the composite function f o g is
of infinite order unless (a) f is of finite order and g is a polynomial or (b) f is
of zero order and ¢ is of finite order.

Lemma 5 (Steinmetz [16]). Let f1,..., f, and g be entire functions and let
h1,...,h, be meromorphic functions such that the inequality

ZT(T, hj) < KT(r,g)

j=1
holds, with K a constant. Suppose that f; and h; (j =1,2,...,n) satisfy

Then there exist two sets of polynomials {P;} and {Q;} (j =1,2,...,n) not all
identically zero in either of the two sets such that

(2.5) Pi(g(2))hi(z) + -+ Pa(9(2)) hn(z) =0
and
(2.6) f1(2)Q1(2) + -+ + fn(2)Q@n(2) = 0.

Lemma 6 (Zimogljad [21]). Every entire transcendental solution of a second-
order algebraic differential equation with rational coefficients has a positive order.
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3. Growth of solutions of certain types
of first-order algebraic differential equations

In this section, we shall provide a more precise estimation of the growth of
entire solutions of algebraic differentional equations of the form

(3.1) C(z,w)(w')? + B(z,w)w' + A(z,w) =0,

where C(z,w) # 0, B(z,w), and A(z,w) are polynomials in z and w. Here we
refer the reader to Ishizaki’s works [11], [12] for the cases where the cofficients of
the powers of w in A(z,w), B(z,w) and C(z,w) are transcendental functions.
Steinmetz [19] showed that if (3.1) has a transcendental meromorphic solution,
then

deg,, C(z,w) =0, deg,, B(z,w) < 2, deg,, A(z,w) < 4.

Thus we can assume that C'(z,w) = a(z) is a polynomial in z only and that (3.1)
can be rewritten in the following form:
a(2)w'® + (ba(2)w? + by (2)w + bo(2))w' = da(2)w? + d3(2)w®

(3.2)
+ do(2)w? + dy(2)w + do(2),

where a(z), bi(z) (i = 0,1,2) and d;(z) (j = 0,...,4) are polynomials. If
(3.2) has a transcendental entire solution, one can derive d4(z) = 0 by comparing
the characteristic functions on both sides of (3.2). Finally equation (3.2) can be
reduced to the following form:

(3:3) a(2)f"+ (b2(2) £ +b1(2)f +bo(2)) f = ds(2) f* +da(2) f* +da(2) f + o (2).
Theorem 1. If degdy(z) # dega(z)—1 in (3.3) and f(z) is a transcendental
entire solution of equation (3.2), then p(f) > 1.

Proof. We assume that f has an order p(f) < 1 and satisfies equation (3.3).
Now we can rewrite (3.3) as follows:

2

(w5~ 002D = [age O Y IE BN A ©

(3.4) /) (/(2)) 1) (f(2)
dl(Z) do(Z) 1
+@@y+f@)+(ﬂ@f ek
We choose 7, ¢ F' and z, such that r, — 0o, n — oo, |z,| = rn, |f(zn)| =

M(ry, f). From Lemmas 2 and 3 we have

55) Fn) _ vlrnsd)

f(zn) “n

1+0(1)) — 0.
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Thus

(f'(2))” f(2)
(f(=)” (f(2))°

where ¢ is a constant and m is the degree of d2(z). Hence

v(rn, f)

Tn

f'(z)
f(2)

+d2(z)+d1(z)+ do(2)

3.6) |a(z 0 B
(3.6) |a(2) ERTE

+b1 (Z)

+bo(2)

(3.7) lim |ds(zn) — ba(2n)

n—oo

(1+ 0(1))] =0.

If by(z) #£0, then

(3.8) lim d3(zn) = ba2(20) (V(ra, f) /1) (1 + 0(1))

=0.
n— oo bQ(Zn)

Equation (3.7) and Lemma 3 yield

(3.9) i 3(20)

=0.
n— oo b2 (Zn)

It follows that degds(z) < degba(z), and hence

. anS(Zn)
3.10 lim
(3.10) Y P

=1,

where t is a finite constant. If ds(z) # 0, then degby(z) > 1. Then, again from
(3.7), and noting that |z/ba(2)| is bounded for sufficiently large r = |z| and f is
a transcendental function, we have

(3.11) lim 298Gn) g f) (14 0(1)) = oo

n— oo bQ(Zn) n— oo

This contradicts (3.10). Hence d3(z) = 0. It follows that equation (3.3) becomes

(312)  a(2)f” + (ba(2)f2 + br(2)f +bo(2)) f = da(2)f? + da(2)f + do(2).

Assume that a(z) £ 0. If ba(z) # 0, then

/ . dQ(Z) dl(Z) 1 do(Z) 1
T =00 " hm 70 T B (0)
3.13 2
1) W) () k() () a) (F(2)
ba(z) f(z)  ba(2) (f(z))2 ba(2) (f(z))Q
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Applying Lemmas 2 and 3 to the above equation, the following result holds for a
sequence of 1, — 00:

(3.14) (1+o0(1)v(ry, )M(rn, f) < Ar,”,

where A and B are constants. This is impossible. Thus b3(z) = 0. Similarly, if
a(z) =0, we can also conclude by(z) = 0. Therefore (3.12) reduces to

(3.15) a(z) "+ (01(2)f +b0(2)) £ = da(2) > + da(2) f + do(2).

Now if a(z) # 0, by (3.15) and Lemma 2 we have for a sequence of r,, — oo (as
in (3.5))

a(z) (”(T”’ f)) (1+0(1)) + b1 (2n) ”(7;7’ /) (14 0(1)) — da(zn)

V(Tnvf) dO(Zn) 1
o (1+0(1)) +di(zn) + o) } en)

By Lemma 3, (3.16) and noting lim,_, o (rk/M(r, f)) = 0 for any k, we have

(3.16)

- |t

v(rn, f)

Tn

v(rn, f)

Tn

(3.17) lim {a(zn)( )2(1 +0(1)) + b1(zn)

n—oo

— dQ(Zn)} =0.
Now we will discuss three cases separately.
Case 1: degbi(z) > dega(z). From (3.17) we have

(3.18) lim %2(%)

= 0.
n— 00 b1 (Zn)

Thus degdsz(z) < degbi(z) and hence

. anQ(Zn)
3.19 lim —————= =
(3.19) S P

where c is a finite constant. But, on the other hand, from (3.17) we have

(3.20) lim |2 2, f) _ da(zn)]

n—oo| a(zn) T a(zp)

By (20), and noting that |za(z)/b1(2)| is bounded for sufficiently large r = |z| and
f is a transcendental function, we can get a conclusion which contradicts (3.19)
by using the same argument as in the derivation of (3.11).
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Case 2: degbi(z) = dega(z). Then

dQ(Zn)

3.21 li = 0.
(3.21) nooo alzn) 7
From (3.17) and Lemma 3 we have
(3.22) lim %20n) _ g

oo alz,)

It follows that from this, (3.16), and (3.21) we have

) v(rn, f)

Tn

(3.23) (c+o(1) M(ry, f) < Ark,

where A, k are constants. This is impossible.

Case 3: degbi(z) < dega(z). In this case, we also have (3.22). This means
dega(z) > degda(z). However, by the assumption of the theorem, we have
dega(z) > degda(z) + 1. If do(z) # 0, then dega(z) > 1. Thus

2
o i TS e, g SR e
From (3.17) we get
i nb1(Zn 2da(zn
(3.25) nlgﬂgo{(v(rmf))2 - %V(rn,f) _ %} o

This is also impossible. Now we assume that ds(z) = 0. Then by (3.16) and
noting that |zb1(z)/a(z)| is bound for sufficiently large |z|, we have

(3.26) (14 0(1))alzn) (V(rns £))*| M (1, £) < AP,

where A, k are constants. This is again impossible. From the above discussions
we can conclude that a(z) =0 if f satisfies (3.15), i.e., f must satisfy

(3.27) (b1(2)f +bo(2)) ' = da(2) f* + di(2) f + do(2).

By Lemmas 2 and 3, and noting lim,_, (r'“/M(r, f)) = 0 for any k, we have

v(rn, f) (

Tn

(3.28) lim {b1 (2n)

n—oo

14 0(1)) — dQ(Zn)} =0.
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By the same argument as in the case of (3.7), we have b;(z) =0 and dz(z) = 0.
Thus (3.15) becomes

(3.29) bo(2)f'(2) = d1(2)f(2) + do(2)-

From this and Lemma 2, we have for a sequence of z,, (|z,| =, — o0),

V(Tnvf) - 2 dO(Zn)
T(1+o(1)) =di(zn) + )

where f(z,) = M(ry, f). From this it is easily seen that either lim,, o v (7, f) =
c, where c is a constant, or v(r,, f) > Ar* 4 o(1), where A is a constant, and
k is a positive integer. However, both cases are impossible. The proof is thus
completed.

(3.30) bo(2n)

Remark 1. The condition degds(z) # dega(z) — 1 in Theorem 1 cannot be
omitted. For example, f(z) = cos+/z , which has an order p(f) = % However, it
satisfies the following first-order algebraic differential equation:

dz(w')? +w? —1=0.

Remark 2. The conclusion is sharp in Theorem 1. There exists the function
f(2) = zsin z, which is of order one and satisfies the following first-order algebraic
differential equation:

21— 22 (w')? - 222ww’ + (2% + 2)w? — 2° = 0.
4. Factorization of the solutions of first-order

algebraic differential equations

In general, a solution of a higher-order algebraic differential equation may not
be pseudo-prime. For example fo(z) = e satisfies the homogeneous second-order
algebraic differential equation

2
ww” —w'" —ww = 0.

Furthermore, according to Hayman [8], f,(z) = exp,,(2) satisfies a homogeneous
nth-order algebraic differential equation, where exp,,(z) is the nth iterate of ex-
ponential function. In this section, we consider the factorization of the entire
solutions of the most general first-order algebraic differential equation,

(4.1) S a2 ()" =0,

Ael

where ay(z) denotes a rational function. First we prove
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Theorem 2. All transcendental entire solutions of (4.1) are pseudo-prime.

Proof. If f is a transcendental entire solution of (4.1), then p(f) < oo by
Theorem A. Now we assume that f is not pseudo-prime. i.e.,

(4.2) f=g(h),

where ¢ is a transcendental meromorphic function and h is a transcendental entire
function. First we assume that g is entire. From Lemma 4 we have p(g) = 0. By
substituting (4.2) into (4.1), we have

(4.3) > ax(2)[9(h(=))]° [¢ (h(2))] " W' (2)]" = 0.

Ael

We denote Fy(w) = (g(w))io (g’(w))il. Then we can rewrite (4.3) as

(4.4) > ax(z)Fa(h(2)) [ (2)]" =0.

Ael
Noting that T'(r,h’) = m(r,h") < m(r,h) + m(r,h'/h) = T(r,h) + S(r,h) and
using Lemma 5, we see that there exist some polynomials ), which are not all
identically zero such that

i.e.

(4.5) S a(2)(9())(9'(2)" = 0.

From this and Theorem D we have p(g) > 0. This contradicts the fact p(g) = 0.
Now if g is not entire, it is easily shown that ¢ has one and only one pole ws .
Thus g(w) = g1(w)/(w —wy)™, where g1(z) is a transcendental entire function.
Then

g91(h(2))

(4.6) f(z) = h(z) —

By substituting (4.6) into (4.1), we get

(4.7) ST b (2)Qx (h(2), B () [91 (h(2))] [¢'1 (h(2))] ™ = 0,

red

where by (z) denotes a rational function, Qx(n,() being a rational function of
n and ¢. From this and (2.6) it follows that g¢; satisfies a first-order algebraic
differential equation. This will lead to p(g1) > 0, which contradicts the fact that
p(g1) = p(g) = 0. Thus f must be pseudo-prime, which also completes the proof
of the theorem.
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By using Lemmas 5 and 6, and the argument similar to that used in the proof
of Theorem 2, we can prove

Theorem 3. Every finite-order transcendental entire solution of a second-
order algebraic differential equation with rational coefficients must be pseudo-
prime.

Remark 3. The proof of Theorem 2 cannot be used to show that every
transcendental meromorphic solution of (4.1) must be pseudo-prime, since it is
known that there exists a transcendental meromorphic (non-entire) function f
which satisfies a first-order algebraic differential equation and is of zero order. For
example, there exists a meromorphic function H (see [13]), which satisfies the
differential equation

(4.8) (2> —4)H'(2)? = 4(H(2) —e1) (H(2) — e2) (H(2) — e3)
with the growth condition
(4.9) T(r,H) = O(logr)*,r — oo0.

Question. Is every transcendental meromorphic solution of a first-order al-
gebraic differential equation pseudo-prime?

The answer to the question is negative. As indicated by W. Bergweiler, the
meromorphic function f(z) = H(g(z)) satisfies the differential equation

f'(2)? = A(f(2) —e1) (f(2) — e2) (f(2) — e3),
where H satisfies (4.8) and ¢ satisfies (g2 — 4) = g'*. Apparently f is not
pseudo-prime.

Remark 4. For some higher-order algebraic differential equations with ratio-
nal coeflicients, periodic entire solutions of finite order have been presented which
are not pseudo-prime (see e.g. [3, pp. 164, Theorem 4.13]). Also all known non-
pseudo-prime entire solutions of some higher-order algebraic differential equations
are periodic functions. However, by using the same method as in [3], one can eas-
ily construct non-periodic entire functions which are not pseudo-prime and satisfy
some higher-order algebraic differential equations.

Acknowledgement. The authors want to express their thanks to the anony-
mous referee for his valuable comments and suggestions.
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