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Abstract. A new geometric characterization of Riemann surfaces with an orientation pre-
serving involution is given. It is proved that a closed Riemann surface M of genus g > 2 has an
involution with exactly k = 2g + 2 — 45 fixed points, 0 < j < % g, if and only if M has a set
F of 2¢g simple closed geodesics which all intersect in the same two points A and B (such that
among the elements of F' there are no further intersection points). Moreover, A and B are fixed
points of the involution and F' partitions M into 2g hyperbolic quadrilaterals such that exactly
k —2 of them are symmetric (opposite sides of a symmetric quadrilateral are contained in the same
element of F).

1. Introduction

Let M be a closed Riemann surface of genus g > 2 equipped with a metric of
constant curvature —1. Assume that M has an orientation preserving isometric
involution ¢ # id. By the Riemann—Hurwitz relation ¢ has k = 2g + 2 — 4j
different fixed points for an integer j with 0 < j < %(g + 1); we will always
exclude the case that ¢ has no fixed points. Let A and B be two fixed points of
¢, A# B. Let u be a simple geodesic segment from A to B. Then uU¢(u) is a
simple closed geodesic of M . In this manner we can construct a maximal set F' of
simple closed geodesics of M such that (every) two elements of F' intersect only in
A and B; we shall see that the order of F is always 2g. Let M (F) be the surface
obtained by cutting M along all elements of F'. It will be showed that M (F') has
exactly 2¢g connected components which all are (hyperbolic) quadrilaterals. The
following questions are then natural.

(1) Let M be a closed Riemann surface of genus g and assume that M has
a set I' of 2g simple closed geodesics such that all elements of F' intersect in the
same two points A and B and such that there are no further intersection points
among the elements of F'. Does this imply that M has an orientation preserving
involution ¢ such that A and B are among the fixed points of ¢?

(2) If the answer is yes, in which way the topological properties of F' determine
the number of fixed points of ¢7

(3) If the answer to the first question is yes, is the number 2¢g best possible
or is a smaller set F' already sufficient in order to determine an involution?
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Theorem A. The answer to the first question is yes.

Moreover (this concerns the second question), if k > 0 is the number of
fixed points of ¢ and s the number of connected components of M(F') which
are symmetric quadrilaterals, then k — 2 = s. (In a symmetric quadrilateral the
opposite sides are parts of the same element of F'.)

Theorem B. Concerning the third question, the number 2g is best possible.
Namely, for every integer g > 2 there exists a closed surface M of genus g with
a set I' of 2g — 1 elements which does not induce an involution.

The proofs are given in Section 2.

One may ask whether the intersection points of the geodesics in Theorem A
and Theorem B are Weierstrass points (for general references on Weierstrass points
see [4], [2]). By Lewittes [6], the fixed points of an orientation preserving involution
¢ are ordinary (or 1-fold) Weierstrass points if ¢ has more than four fixed points.
If ¢ has four fixed points, then, by Accola [1], the fixed points are at least 2-
fold Weierstrass points (but, in general, not ordinary Weierstrass points). Finally,
if the involution ¢ has only two fixed points, then these fixed points may miss
the dense set of g-fold Weierstrass points, ¢ = 1,2,3, ..., as has been showed by
Guerrero [5]. The latter may well be true also for the intersection points of the
“counter-examples” in Theorem B.

In the hyperelliptic case we also have the following related result.

Theorem C (Schmutz Schaller). Let M be a closed surface of genus g. Then
M is hyperelliptic if and only if M has a set G of at least 2g — 2 simple closed
geodesics which all intersect in the same point such that among the elements of
G there are no further intersection points.

This result has first been proved in [7] (see also the survey paper [8] and [9]).
Note that by sets of simple closed geodesics which all intersect in a unique point
(as in Theorem C), other involutions than the hyperelliptic one cannot be charac-
terized.

For some results related to those of this paper see Birman and Series [3].

Acknowledgment. 1 thank the referee for helpful comments.

2. Geometric characterization of involutions

Definition (i) A surface is a Riemann surface equipped with a metric of
constant curvature —1.

(ii)) A (g,n)-surface is a surface of genus g with n boundary components
which are simple closed geodesics. A closed surface is a compact surface without
boundary.

(iii) A simple geodesic is one without selfintersections.

(iv) An involution is an isometry ¢ # id with ¢? = id (id is the identity).
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(v) Let M be a closed surface. A geodesic 2-set F of order k>0 on M is a
set of k different simple closed geodesics of M which all intersect in the same two
points, the intersection points of F', such that among the elements of F', there are
no further intersection points. Define by M (F') the surface obtained by cutting
M along all elements of F'.

(vi) Let M be a closed surface and F' a geodesic 2-set. Let A and B be the
intersection points of F'. Let u € F'. Then u is separated by A and B into two
parts, the segments of w.

Remark and Definition. Let N be (the closure of) a connected component
of M(F) (F and M are defined as above). Then the boundary of N consists of a
number of simple closed curves which are called boundary components of N ; they
are considered as disjoint, taking different copies of A and B on each boundary
component. If N has genus zero and only one boundary component, then I call
N a polygon and treat the vertices of this polygon as different copies of A and B,
respectively. The same convention is used in related cases.

Lemma 1. Let M be a closed surface of genus g with an orientation pre-
serving involution ¢ with exactly k fixed points. If g is even, then k = 2mod(4).
If g is odd, then k = 0mod(4).

Proof. This is a consequence of the Riemann—Hurwitz relation. o

Remark. Let M be a closed surface of genus g which has an orientation
preserving involution ¢ with fixed points. It then follows by Lemma 1 that ¢ has
at least two fixed points. This fact will be used throughout without comment.

Lemma 2. Let M be a closed surface of genus g. Let A and B be two
different points on M. Let F be a set of 4g simple geodesic segments starting
in A and ending in B which are all mutually disjoint in M \ {A,B}. Then
the elements of F' cut M into exactly 2g connected components which all are
hyperbolic quadrilaterals.

Proof. Let F’ D F such that all elements of F’ are simple geodesic segments
starting in A and ending in B and such that all elements of F’ are mutually
disjoint in M \ {A, B}. Assume further that F’ is maximal with respect to these
conditions. Let M (F”) be the surface obtained by cutting M along all elements
of F'. Define M(F) analogously.

Let N be a connected component of M (F"). Then each boundary component
of N contains an even number of geodesic segments. Assume that N has two
different boundary components b; and by. Let A; be a copy of A on b; and let
By be a copy of B on by. Since N is convex, N contains a simple geodesic segment
vy from A; to Bs. Since v(N) isnot in F' | this contradicts the maximality of F”.

Assume now that N has only one boundary component b and that N has
genus g(N) > 0. Then N has a simple geodesic segment wy ¢ b from a copy of
A on b to a copy of B on b. This again contradicts the maximality of F"’.
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Assume finally that N has only one boundary component b and that g(N) =
0. It follows that N is a polygon. Assume that b has at least six vertices (recall
that the number of vertices must be even). Then b contains a copy A; of A and
a copy By of B such that N has a simple geodesic segment ¢(N) from A; to By,
t(N) ¢ b. This contradicts the maximality of F’.

We therefore have proved that each connected component of M(F') is a
quadrilateral (note that a connected component of M(F’) cannot be a polygon
with two sides).

Assume that M (F') has ¢ connected components Q1,Q2,...,Q,. Let S be
the sum of all (inner) angles of the quadrilaterals @;, i =1,...,q. Then S =4x
since all vertices of Q; are copies of A and B. We obtain

ZVOI(Qi) =2qm —4n =vol(M) =4(g — )7
i=1

where vol is the (hyperbolic) volume. This implies that g = 2g. Therefore, there
are 8g segments as sides of the quadrilaterals Q;, i = 1,...,2g. It follows that
F’ has order 4g. This proves F' = F’ and hence the lemma. o

Corollary 1. Let M be a closed surface of genus g. Let F be a geodesic
2-set of M of order 2g. Then M(F') has 2g connected components which all are
hyperbolic quadrilaterals.

Proof. Clear by Lemma 2. o

Corollary 2. Let M be a closed surface of genus g which has an orientation
preserving involution ¢ with fixed points. Let A and B be fixed points of ¢,
A # B. Then M has a geodesic 2-set of order 2g with fixed points A and B.

Proof. Let F' be a maximal geodesic 2-set on M with intersection points A
and B. It is clear that F' is not empty since M has a simple geodesic segment
up from A to B which implies that © = u; U ¢(uq) is a simple closed geodesic
passing through A and B. Let N be a connected component of M(F'). Assume
that N has a simple geodesic segment v starting in a copy of A (on a boundary
component of V) and ending in a copy of B (on a boundary component of N)
such that v is not a segment of an element of F'. Then v U ¢(v) is a simple closed
geodesic, v ¢ F', and FU{v} is a geodesic 2-set. This contradicts the maximality
of F'. It therefore follows analogously as in the proof of Lemma 2 that N must
be a quadrilateral, that the number of connected components of M (F') is 2g, and
that the order of F' is 2¢g. o

Definition. Let F' be a geodesic 2-set of order 2¢g in a closed surface M of
genus g.
(i) A quadrilateral of F' is a connected component of M (F').
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(ii) Let @ be a quadrilateral of F'. Then the sides s; (in the natural order)
of ) are segments of elements u; of F', 1 = 1,2,3,4. If uy = uz and us = uy,
then @ is called symmetric.

Lemma 3. Let F' be a geodesic 2-set of order 2¢g in a closed surface M of
genus g. Let () be a quadrilateral of F'. Let uy,...,us be the elements of F
which form the boundary of ). Then there is a quadrilateral Q" of F such that
ui, 1 = 1,...,4, form the boundary of Q' and Q # Q' if and only if @) is not
symmetric. Moreover, ()’ has the same inner angles as Q.

A 53 B
S4 Q 52
A t1
B S1
ta Q'
B

Figure 1. The quadrilaterals @ and Q.

Proof. (i) We may assume that the notation is such that the segments s; C u;
which form the boundary of @), appear in the natural order, counter-clockwise say
(compare Figure 1). Let «; be the directed angle from s; to sjy1, i =1,...,4
(taking the indices modulo 4), such that «; is an inner angle of . Then all four
angles «;, i = 1,...,4, are measured clockwise. Let A and B be the intersection
points of F' where the notation is such that A is a vertex in ) between s; and
s9 as well as between s3 and sy4.

(ii) For each i € {1,2,3,4} let t; C u; be the segment of u; which is different
from s;. Denote by (; the directed angle from ¢; to t;11, measured clockwise,
i1=1,...,4. Then o; = 3;, i = 1,...,4. It follows that there is a quadrilateral
Q' of F, containing t; and to as sides, such that (3; is an inner angle of Q’.
Since the vertex between t; and ¢y in Q' is a copy of A, to will end in a copy
By of B. In order to obtain the other side of @’ ending in B;, we have to turn
clockwise around B from wus to the next element of F'. But this must be ug (by
the existence of @), more precisely, this third side of @)’ is t3. The same argument
proves that t4 is the fourth side of Q. It also follows that [1,..., 34 are the inner
angles of )’ therefore, ' and @) have the same inner angles.

(iii) By the existence of @), us is the next element of I when we turn clockwise
around A from w;, and w4 is the next element of F' when we turn clockwise
around A from wusz. It follows that u; = us if and only if us = us. Assume that
Q@ is symmetric. It follows by (ii) that ¢; and s;42 is the same segment of w;,
i=1,...,4 (taking the indices modulo 4), which shows that Q@ = Q’.
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On the other hand, if Q@ = Q" then ¢; must be a side of Q, i = 1,...,4.
Since u; is simple, it follows that ¢; equals s;42, ¢ =1,...,4, and hence u; = ug
and uo = uy. 0

Corollary 3. Let F' be a geodesic 2-set of order 2¢g in a closed surface M
of genus g. Let () be a quadrilateral of F', let uy,...,us be the elements of F
which form the boundary of (). Then either all elements u;, 1 = 1,2,3,4, are
different or ) is symmetric. In the latter case, M has an embedded (1,1)-surface
S(Q) which contains Q.

Proof. It was already shown during the proof of Lemma 3 that either all four
elements u;, i = 1,2,3,4, are different or ) is symmetric. Assume that @ is
symmetric. Let the notation be such that u; = ug and us = uy. Let so and sy4
be the segments of us. Cut M along u; yielding a (g — 1,2)-surface M’; denote
the boundary geodesics of M’ by v; and wy. It then follows that M’ contains a
unique simple closed geodesic z and an embedded (0, 3)-surface Y with boundary
geodesics z,v1,w; such that s C Y (in M, the subsurface Y is an embedded
(1,1)-surface). Since s4 is freely homotopic to sq, it follows that s4 is contained
inY.o

Corollary 4. Let M be a closed surface M of genus g which has an orien-
tation preserving involution ¢ with k > 0 fixed points. Let A and B be fixed
points of ¢. Let F be a geodesic 2-set of order 2g with intersection points A
and B. Then among the 2g quadrilaterals of F', there are exactly k — 2 which
are symmetric.

Proof. Let s be the number of symmetric quadrilaterals of F'.

If £ > 2, then ¢ has a fixed point C ¢ {A,B}. C lies in the interior of a
quadrilateral Q¢ of F' (C cannot lie on an element of F' since A and B already
lie on each element of F'). It follows that ¢(Qc) = Q¢ which implies that Q¢ is
symmetric. This proves k —2 < s.

On the other hand, let ) be a quadrilateral of F' which is symmetric. By
Corollary 3, M has an embedded (1, 1)-surface S(Q) which contains Q. To @
correspond two elements u; and uy of F' which lie in S(Q). Every (1,1)-surface
S has a (hyperelliptic) involution v with three fixed points, and if v and w are
two simple closed geodesics of S which intersect twice, then both intersection
points are among the fixed points of 1. It follows that the hyperelliptic involution
¥ of S(Q) is the restriction of ¢ and therefore, ¢ has a third fixed point in S(Q)
which lies in the interior of ). This proves s <k —2. o

Definition. Let F' be a geodesic 2-set of order 2¢g in a closed surface M of
genus g. Let u € F'. Then u is called symmetric if the two segments of u have
equal length.

Corollary 5. Let F' be a geodesic 2-set of order 2g in a closed surface M
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of genus ¢g. Let () be a quadrilateral of F' which is symmetric. Let u € F' such
that the segments of u are sides of (). Then u is symmetric.

Proof. By Corollary 3, @ is contained in an embedded (1,1)-surface S(Q)
of M. As already noted in the proof of Corollary 4, S(Q) has a hyperelliptic
involution v and the intersection points of F' are among the fixed points of .
This proves the corollary. o

Lemma 4. Let Q1 and Q)2 be quadrilaterals with sides a;, b;, c;,d;, 1 = 1,2
(in the natural order). Let ()1 and (2 have the same inner angles (the angle
between a1 and by equals the angle between ay and by, and so on). Then

(i) L(a1) = L(az) if and only if Q1 and Q2 are isometric, and

(ii) L(al) > L(CLQ) < L(bl) < L(bg)
(where L(x) is the length of x).

Proof. (i) is obvious by hyperbolic trigonometry so assume that L(a;) >
L(ag). It then follows by (i) that L(b;) # L(b2). Assume that L(by) > L(b2).
Let R; be the vertex of ); between a; and b;, ¢+ = 1,2. In the hyperbolic plane
place (2 on ()1 such that R; = R2 and such that as C a; and by C by. Then ¢
and co cannot intersect (since ()1 and )2 have the same angles). By the same
argument also dy and ds cannot intersect. It follows that ()2 C 1. But since
()1 and ()2 have the same volume, this yields a contradiction. o

Corollary 6. Let F' be a geodesic 2-set of order 2g in a closed surface M
of genus g. Let () be a quadrilateral of F' which is not symmetric. Let uy,...,uy
be the four elements of F' which form the boundary of (). Then either all u;,
1=1,...,4, are symmetric or none.

Proof. Let @' be defined as in Lemma 3. Assume that one of the wu; is
symmetric. Since @ and )’ have different segments, it follows by Lemma 4(i)
that Q and @’ are isometric and therefore, all u; are symmetric. o

Theorem 1. Let M be a closed surface of genus g. Then M has a geodesic
2-set F' of order 2g if and only if M has an orientation preserving involution with
fixed points.

Proof. One direction has already been proved by Corollary 2. Assume now
that M has a geodesic 2-set F' of order 2¢g with intersection points A and B.
Assume that F' has a symmetric quadrilateral. It then follows by Corollary 5 and
Corollary 6 (and by the fact that all elements of F' intersect in A) that every
element of F' is symmetric.

Let ¢ be the m-rotation around A. It follows that, by ¢, the quadrilaterals
of F' are mapped into quadrilaterals of F'. More precisely, ¢(Q) = @ if @ is
symmetric (by the proof of Corollary 4) and ¢(Q) = Q' if @ is not symmetric
where )’ is defined as in Lemma 3. It follows that ¢ is an involution of M .
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We therefore can assume that none of the quadrilaterals of F' is symmetric.

Denote the elements of F' by u1,...,uss such that the u; lie in the natural order
around A. Denote the segments of u; by v; and v;424, @ = 1,...,2g, such that
the v; lie in the natural order around A (j = 1,...,4g). If an element of F' is

symmetric, then all elements of F' are symmetric by Corollary 6. Assume that the
elements of F' are not symmetric and that vy > vog41. It then follows by Lemma 4
that vo < v2442. The same argument shows that vz > vo443. By repeating this
argument we obtain that vo, < v4y and hence vog41 > v1, a contradiction. We
have therefore proved that all elements of F' are symmetric. This implies that the
m-rotation around A is an involution of M. o

Theorem 2. For every integer g > 2 there exists a closed surface M of
genus g which has a geodesic 2-set F' of order 2g — 1 with intersection points A
and B, but no involution such that A and B are among the fixed points of M .

Proof. Let ¢ > 0 be small. For 1 <t <2, let T(t) be a (hyperbolic) triangle
with (inner) angles

tm tm s

Wiyt M n Y Ty

Denote by A, B,C the vertices of T'(t) and by a,b,c the sides of T'(t) (with the
usual convention of notation: a is opposite to A and to «(t), and so on). Take
4g — 2 copies of T'(t) and glue them along a or along b such that the vertex C is
the same for all 4g — 2 copies. We obtain a 4g — 2-gon P(t) where all sides have
the length L(c) and where 2g — 1 angles are 2a(t) and 2¢g — 1 angles are 2(3(t).
Denote the sides of P(t) by ¢;, i =1,...,4g — 2, in the natural order.

(i) Assume now that ¢ is odd. Let ¢t = 1. Let S be a triangle of (hyperbolic)
area %7? such that two sides x and y of S have the same length while the third
side z of S has length L(c). It is clear that S exists and is unique up to isometry.
Glue a copy S1 (with sides z1,y1,21) of S along z; and along ¢ of P(t) such
that the interior of P(t) is not intersected by S;. Glue a copy Sz (with sides
Z2,Y2,%22) of S along zo and along cp, of P(t) such that the interior of P(t) is
not intersected by S and such that x5 is opposite to x1 and yo is opposite to
y1 (the orientation of S; and Ss is the same). Thereby P(t) has been enlarged
to a 4g-gon R(t). By construction, the area of R(t) is 4w(g — 1). R(t) is the
fundamental domain of a closed surface M (t) of genus g and we obtain M(t) by
the following identifications of the sides of R(t) (the identification is symbolized
by a +).

1+ T2, Y1 + Y2,

Cam—2 +C4m (m = 17 ) %(g_ 1))7

Cam + Cam42 (M = 5(9 +1

Cam—1+ Cams1 (m=1,...,9g—1).
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Let T be one of the copies of T'(t) in R(t). By construction, there is a copy
T of T(t) in R(t) such that the side b; of 71" is the prolongation of the side
a; of T'. Let uy = ay Uby. It is then easy to verify that u; is a simple closed
geodesic in M(t). Since we have 4g — 2 copies of T'(t) we obtain 2¢g — 1 simple
closed geodesics u;, i =1,...,2g — 1, in M (t) which all intersect in C' and in V
where V' corresponds to the 4g vertices of R(t) (which all are identified in M (t)).
Therefore, {u1,...,u2s—1} is a geodesic 2-set of order 29 — 1. Since L(a) < L(b),
M (t) has not an involution with fixed points C' and V.

(ii) Assume now that g is even. Let W be a triangle with three sides of equal
length L(c). Denote by ¢ an (inner) angle of W. Glue a copy W7 of W along
c1 and glue a copy Wy of W along ¢, (such that the interior of P(t) is not
intersected by W;, i = 1,2). Thereby, P(t) has been enlarged to a 4g-gon R(t).
Denote the new sides of R(t) by 1,y (coming from W7 ) and by z2,y2 (coming
from Ws) such that z; is a neighbour of c44_2 and z2 is a neighbour of cg4_1.

Let us now assume that ¢ is chosen such that the area of R(t) is

(1) (49 — 2)m — 60 — (49 — 2)(a(t) + B(t)) = 4 (g — 1).

R(t) is then the fundamental domain of a closed surface M(t) of genus g and we
obtain M(t) by the following identifications of the sides of R(t).

T1 + C49-3, Y1 +C3, T2 + C29—2, Y2 + C2942,
and, if g # 2,

Cam—2 +C4m (m = 17' e %(g - 2))7

Cam + Cam+2 (m = %(g+2)7 -9 — 1)7

Cam+1 t Cam+3 (m =1,...,9— 2).

It is now easy to see (as above in (i)) that M (t) has a geodesic 2-set of order
2g — 1 with intersection points C' and V', but C cannot be a fixed point of an
involution since L(a) < L(b).

It remains to show that (1) is possible. Note first that when (1) holds, then

(2) §=zm(2—1t).

Let ¢t = 1. It then follows (by a calculation) that cosh(L(c)) > 21 (if ¢ is small
enough) which yields cos § < 21/22 and § is too small (by (2) ¢ should equal 7/6).
Let now ¢ — 2. Then L(c) is shorter than in the case t = 1 and therefore, ¢
becomes larger than in the case ¢ = 1. But now J is too large since, by (2), §
should tend to zero. This proves that (1) is possible. o
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