INVOLUTIONS AND SIMPLE CLOSED GEODESICS ON RIEMANN SURFACES

Paul Schmutz Schaller

Université de Genève, Section de mathématiques Case postale 240, CH-1211 Genève 24, Switzerland; paul.schmutz@math.unige.ch

Abstract. A new geometric characterization of Riemann surfaces with an orientation preserving involution is given. It is proved that a closed Riemann surface M of genus $g \ge 2$ has an involution with exactly k = 2g + 2 - 4j fixed points, $0 \le j \le \frac{1}{2}g$, if and only if M has a set F of 2g simple closed geodesics which all intersect in the same two points A and B (such that among the elements of F there are no further intersection points). Moreover, A and B are fixed points of the involution and F partitions M into 2g hyperbolic quadrilaterals such that exactly k-2 of them are symmetric (opposite sides of a symmetric quadrilateral are contained in the same element of F).

1. Introduction

Let M be a closed Riemann surface of genus $g \ge 2$ equipped with a metric of constant curvature -1. Assume that M has an orientation preserving isometric involution $\phi \ne id$. By the Riemann-Hurwitz relation ϕ has k = 2g + 2 - 4jdifferent fixed points for an integer j with $0 \le j \le \frac{1}{2}(g+1)$; we will always exclude the case that ϕ has no fixed points. Let A and B be two fixed points of ϕ , $A \ne B$. Let u be a simple geodesic segment from A to B. Then $u \cup \phi(u)$ is a simple closed geodesic of M. In this manner we can construct a maximal set F of simple closed geodesics of M such that (every) two elements of F intersect only in A and B; we shall see that the order of F is always 2g. Let M(F) be the surface obtained by cutting M along all elements of F. It will be showed that M(F) has exactly 2g connected components which all are (hyperbolic) quadrilaterals. The following questions are then natural.

(1) Let M be a closed Riemann surface of genus g and assume that M has a set F of 2g simple closed geodesics such that all elements of F intersect in the same two points A and B and such that there are no further intersection points among the elements of F. Does this imply that M has an orientation preserving involution ϕ such that A and B are among the fixed points of ϕ ?

(2) If the answer is yes, in which way the topological properties of F determine the number of fixed points of ϕ ?

(3) If the answer to the first question is yes, is the number 2g best possible or is a smaller set F already sufficient in order to determine an involution?

¹⁹⁹¹ Mathematics Subject Classification: Primary 30F20; Secondary 30F10.

Theorem A. The answer to the first question is yes.

Moreover (this concerns the second question), if k > 0 is the number of fixed points of ϕ and s the number of connected components of M(F) which are symmetric quadrilaterals, then k - 2 = s. (In a symmetric quadrilateral the opposite sides are parts of the same element of F.)

Theorem B. Concerning the third question, the number 2g is best possible. Namely, for every integer $g \ge 2$ there exists a closed surface M of genus g with a set F of 2g - 1 elements which does not induce an involution.

The proofs are given in Section 2.

One may ask whether the intersection points of the geodesics in Theorem A and Theorem B are Weierstrass points (for general references on Weierstrass points see [4], [2]). By Lewittes [6], the fixed points of an orientation preserving involution ϕ are ordinary (or 1-fold) Weierstrass points if ϕ has more than four fixed points. If ϕ has four fixed points, then, by Accola [1], the fixed points are at least 2fold Weierstrass points (but, in general, not ordinary Weierstrass points). Finally, if the involution ϕ has only two fixed points, then these fixed points may miss the dense set of q-fold Weierstrass points, $q = 1, 2, 3, \ldots$, as has been showed by Guerrero [5]. The latter may well be true also for the intersection points of the "counter-examples" in Theorem B.

In the hyperelliptic case we also have the following related result.

Theorem C (Schmutz Schaller). Let M be a closed surface of genus g. Then M is hyperelliptic if and only if M has a set G of at least 2g - 2 simple closed geodesics which all intersect in the same point such that among the elements of G there are no further intersection points.

This result has first been proved in [7] (see also the survey paper [8] and [9]). Note that by sets of simple closed geodesics which all intersect in a unique point (as in Theorem C), other involutions than the hyperelliptic one cannot be characterized.

For some results related to those of this paper see Birman and Series [3].

Acknowledgment. I thank the referee for helpful comments.

2. Geometric characterization of involutions

Definition (i) A *surface* is a Riemann surface equipped with a metric of constant curvature -1.

(ii) A (g, n)-surface is a surface of genus g with n boundary components which are simple closed geodesics. A *closed* surface is a compact surface without boundary.

(iii) A *simple* geodesic is one without selfintersections.

(iv) An *involution* is an isometry $\phi \neq id$ with $\phi^2 = id$ (id is the identity).

(v) Let M be a closed surface. A geodesic 2-set F of order k > 0 on M is a set of k different simple closed geodesics of M which all intersect in the same two points, the *intersection points of* F, such that among the elements of F, there are no further intersection points. Define by M(F) the surface obtained by cutting M along all elements of F.

(vi) Let M be a closed surface and F a geodesic 2-set. Let A and B be the intersection points of F. Let $u \in F$. Then u is separated by A and B into two parts, the *segments* of u.

Remark and Definition. Let N be (the closure of) a connected component of M(F) (F and M are defined as above). Then the boundary of N consists of a number of simple closed curves which are called *boundary components* of N; they are considered as disjoint, taking different copies of A and B on each boundary component. If N has genus zero and only one boundary component, then I call N a *polygon* and treat the vertices of this polygon as different copies of A and B, respectively. The same convention is used in related cases.

Lemma 1. Let M be a closed surface of genus g with an orientation preserving involution ϕ with exactly k fixed points. If g is even, then $k \equiv 2 \mod(4)$. If g is odd, then $k \equiv 0 \mod(4)$.

Proof. This is a consequence of the Riemann–Hurwitz relation.

Remark. Let M be a closed surface of genus g which has an orientation preserving involution ϕ with fixed points. It then follows by Lemma 1 that ϕ has at least two fixed points. This fact will be used throughout without comment.

Lemma 2. Let M be a closed surface of genus g. Let A and B be two different points on M. Let F be a set of 4g simple geodesic segments starting in A and ending in B which are all mutually disjoint in $M \setminus \{A, B\}$. Then the elements of F cut M into exactly 2g connected components which all are hyperbolic quadrilaterals.

Proof. Let $F' \supset F$ such that all elements of F' are simple geodesic segments starting in A and ending in B and such that all elements of F' are mutually disjoint in $M \setminus \{A, B\}$. Assume further that F' is maximal with respect to these conditions. Let M(F') be the surface obtained by cutting M along all elements of F'. Define M(F) analogously.

Let N be a connected component of M(F'). Then each boundary component of N contains an even number of geodesic segments. Assume that N has two different boundary components b_1 and b_2 . Let A_1 be a copy of A on b_1 and let B_2 be a copy of B on b_2 . Since N is convex, N contains a simple geodesic segment v_N from A_1 to B_2 . Since v(N) is not in F', this contradicts the maximality of F'.

Assume now that N has only one boundary component b and that N has genus g(N) > 0. Then N has a simple geodesic segment $w_N \not\subset b$ from a copy of A on b to a copy of B on b. This again contradicts the maximality of F'.

Assume finally that N has only one boundary component b and that g(N) = 0. It follows that N is a polygon. Assume that b has at least six vertices (recall that the number of vertices must be even). Then b contains a copy A_1 of A and a copy B_1 of B such that N has a simple geodesic segment t(N) from A_1 to B_1 , $t(N) \not\subset b$. This contradicts the maximality of F'.

We therefore have proved that each connected component of M(F') is a quadrilateral (note that a connected component of M(F') cannot be a polygon with two sides).

Assume that M(F') has q connected components Q_1, Q_2, \ldots, Q_q . Let S be the sum of all (inner) angles of the quadrilaterals Q_i , $i = 1, \ldots, q$. Then $S = 4\pi$ since all vertices of Q_i are copies of A and B. We obtain

$$\sum_{i=1}^{q} \operatorname{vol}(Q_i) = 2q\pi - 4\pi = \operatorname{vol}(M) = 4(g-1)\pi$$

where vol is the (hyperbolic) volume. This implies that q = 2g. Therefore, there are 8g segments as sides of the quadrilaterals Q_i , $i = 1, \ldots, 2g$. It follows that F' has order 4g. This proves F = F' and hence the lemma. \Box

Corollary 1. Let M be a closed surface of genus g. Let F be a geodesic 2-set of M of order 2g. Then M(F) has 2g connected components which all are hyperbolic quadrilaterals.

Proof. Clear by Lemma 2. \square

Corollary 2. Let M be a closed surface of genus g which has an orientation preserving involution ϕ with fixed points. Let A and B be fixed points of ϕ , $A \neq B$. Then M has a geodesic 2-set of order 2g with fixed points A and B.

Proof. Let F be a maximal geodesic 2-set on M with intersection points Aand B. It is clear that F is not empty since M has a simple geodesic segment u_1 from A to B which implies that $u = u_1 \cup \phi(u_1)$ is a simple closed geodesic passing through A and B. Let N be a connected component of M(F). Assume that N has a simple geodesic segment v starting in a copy of A (on a boundary component of N) and ending in a copy of B (on a boundary component of N) such that v is not a segment of an element of F. Then $v \cup \phi(v)$ is a simple closed geodesic, $v \notin F$, and $F \cup \{v\}$ is a geodesic 2-set. This contradicts the maximality of F. It therefore follows analogously as in the proof of Lemma 2 that N must be a quadrilateral, that the number of connected components of M(F) is 2g, and that the order of F is 2g. \square

Definition. Let F be a geodesic 2-set of order 2g in a closed surface M of genus g.

(i) A quadrilateral of F is a connected component of M(F).

(ii) Let Q be a quadrilateral of F. Then the sides s_i (in the natural order) of Q are segments of elements u_i of F, i = 1, 2, 3, 4. If $u_1 = u_3$ and $u_2 = u_4$, then Q is called *symmetric*.

Lemma 3. Let F be a geodesic 2-set of order 2g in a closed surface M of genus g. Let Q be a quadrilateral of F. Let u_1, \ldots, u_4 be the elements of F which form the boundary of Q. Then there is a quadrilateral Q' of F such that $u_i, i = 1, \ldots, 4$, form the boundary of Q' and $Q \neq Q'$ if and only if Q is not symmetric. Moreover, Q' has the same inner angles as Q.

Figure 1. The quadrilaterals Q and Q'.

Proof. (i) We may assume that the notation is such that the segments $s_i \subset u_i$ which form the boundary of Q, appear in the natural order, counter-clockwise say (compare Figure 1). Let α_i be the directed angle from s_i to s_{i+1} , $i = 1, \ldots, 4$ (taking the indices modulo 4), such that α_i is an inner angle of Q. Then all four angles α_i , $i = 1, \ldots, 4$, are measured clockwise. Let A and B be the intersection points of F where the notation is such that A is a vertex in Q between s_1 and s_2 as well as between s_3 and s_4 .

(ii) For each $i \in \{1, 2, 3, 4\}$ let $t_i \subset u_i$ be the segment of u_i which is different from s_i . Denote by β_i the directed angle from t_i to t_{i+1} , measured clockwise, $i = 1, \ldots, 4$. Then $\alpha_i = \beta_i$, $i = 1, \ldots, 4$. It follows that there is a quadrilateral Q' of F, containing t_1 and t_2 as sides, such that β_1 is an inner angle of Q'. Since the vertex between t_1 and t_2 in Q' is a copy of A, t_2 will end in a copy B_1 of B. In order to obtain the other side of Q' ending in B_1 , we have to turn clockwise around B from u_2 to the next element of F. But this must be u_3 (by the existence of Q), more precisely, this third side of Q' is t_3 . The same argument proves that t_4 is the fourth side of Q'. It also follows that β_1, \ldots, β_4 are the inner angles of Q', therefore, Q' and Q have the same inner angles.

(iii) By the existence of Q, u_2 is the next element of F when we turn clockwise around A from u_1 , and u_4 is the next element of F when we turn clockwise around A from u_3 . It follows that $u_1 = u_3$ if and only if $u_2 = u_4$. Assume that Q is symmetric. It follows by (ii) that t_i and s_{i+2} is the same segment of u_i , $i = 1, \ldots, 4$ (taking the indices modulo 4), which shows that Q = Q'. On the other hand, if Q = Q' then t_i must be a side of Q, i = 1, ..., 4. Since u_i is simple, it follows that t_i equals s_{i+2} , i = 1, ..., 4, and hence $u_1 = u_3$ and $u_2 = u_4$.

Corollary 3. Let F be a geodesic 2-set of order 2g in a closed surface M of genus g. Let Q be a quadrilateral of F, let u_1, \ldots, u_4 be the elements of F which form the boundary of Q. Then either all elements u_i , i = 1, 2, 3, 4, are different or Q is symmetric. In the latter case, M has an embedded (1, 1)-surface S(Q) which contains Q.

Proof. It was already shown during the proof of Lemma 3 that either all four elements u_i , i = 1, 2, 3, 4, are different or Q is symmetric. Assume that Q is symmetric. Let the notation be such that $u_1 = u_3$ and $u_2 = u_4$. Let s_2 and s_4 be the segments of u_2 . Cut M along u_1 yielding a (g-1,2)-surface M'; denote the boundary geodesics of M' by v_1 and w_1 . It then follows that M' contains a unique simple closed geodesic z and an embedded (0,3)-surface Y with boundary geodesics z, v_1, w_1 such that $s_2 \subset Y$ (in M, the subsurface Y is an embedded (1,1)-surface). Since s_4 is freely homotopic to s_2 , it follows that s_4 is contained in Y. \square

Corollary 4. Let M be a closed surface M of genus g which has an orientation preserving involution ϕ with k > 0 fixed points. Let A and B be fixed points of ϕ . Let F be a geodesic 2-set of order 2g with intersection points A and B. Then among the 2g quadrilaterals of F, there are exactly k - 2 which are symmetric.

Proof. Let s be the number of symmetric quadrilaterals of F.

If k > 2, then ϕ has a fixed point $C \notin \{A, B\}$. C lies in the interior of a quadrilateral Q_C of F (C cannot lie on an element of F since A and B already lie on each element of F). It follows that $\phi(Q_C) = Q_C$ which implies that Q_C is symmetric. This proves $k - 2 \leq s$.

On the other hand, let Q be a quadrilateral of F which is symmetric. By Corollary 3, M has an embedded (1,1)-surface S(Q) which contains Q. To Qcorrespond two elements u_1 and u_2 of F which lie in S(Q). Every (1,1)-surface S has a (hyperelliptic) involution ψ with three fixed points, and if v and w are two simple closed geodesics of S which intersect twice, then both intersection points are among the fixed points of ψ . It follows that the hyperelliptic involution ψ of S(Q) is the restriction of ϕ and therefore, ϕ has a third fixed point in S(Q)which lies in the interior of Q. This proves $s \leq k - 2$. \Box

Definition. Let F be a geodesic 2-set of order 2g in a closed surface M of genus g. Let $u \in F$. Then u is called *symmetric* if the two segments of u have equal length.

Corollary 5. Let F be a geodesic 2-set of order 2g in a closed surface M

of genus g. Let Q be a quadrilateral of F which is symmetric. Let $u \in F$ such that the segments of u are sides of Q. Then u is symmetric.

Proof. By Corollary 3, Q is contained in an embedded (1,1)-surface S(Q) of M. As already noted in the proof of Corollary 4, S(Q) has a hyperelliptic involution ψ and the intersection points of F are among the fixed points of ψ . This proves the corollary. \Box

Lemma 4. Let Q_1 and Q_2 be quadrilaterals with sides $a_i, b_i, c_i, d_i, i = 1, 2$ (in the natural order). Let Q_1 and Q_2 have the same inner angles (the angle between a_1 and b_1 equals the angle between a_2 and b_2 , and so on). Then

(i) $L(a_1) = L(a_2)$ if and only if Q_1 and Q_2 are isometric, and

(ii) $L(a_1) > L(a_2) \iff L(b_1) < L(b_2)$

(where L(x) is the length of x).

Proof. (i) is obvious by hyperbolic trigonometry so assume that $L(a_1) > L(a_2)$. It then follows by (i) that $L(b_1) \neq L(b_2)$. Assume that $L(b_1) > L(b_2)$. Let R_i be the vertex of Q_i between a_i and b_i , i = 1, 2. In the hyperbolic plane place Q_2 on Q_1 such that $R_1 = R_2$ and such that $a_2 \subset a_1$ and $b_2 \subset b_1$. Then c_1 and c_2 cannot intersect (since Q_1 and Q_2 have the same angles). By the same argument also d_1 and d_2 cannot intersect. It follows that $Q_2 \subset Q_1$. But since Q_1 and Q_2 have the same volume, this yields a contradiction. \Box

Corollary 6. Let F be a geodesic 2-set of order 2g in a closed surface M of genus g. Let Q be a quadrilateral of F which is not symmetric. Let u_1, \ldots, u_4 be the four elements of F which form the boundary of Q. Then either all u_i , $i = 1, \ldots, 4$, are symmetric or none.

Proof. Let Q' be defined as in Lemma 3. Assume that one of the u_i is symmetric. Since Q and Q' have different segments, it follows by Lemma 4(i) that Q and Q' are isometric and therefore, all u_i are symmetric. \Box

Theorem 1. Let M be a closed surface of genus g. Then M has a geodesic 2-set F of order 2g if and only if M has an orientation preserving involution with fixed points.

Proof. One direction has already been proved by Corollary 2. Assume now that M has a geodesic 2-set F of order 2g with intersection points A and B. Assume that F has a symmetric quadrilateral. It then follows by Corollary 5 and Corollary 6 (and by the fact that all elements of F intersect in A) that every element of F is symmetric.

Let ϕ be the π -rotation around A. It follows that, by ϕ , the quadrilaterals of F are mapped into quadrilaterals of F. More precisely, $\phi(Q) = Q$ if Q is symmetric (by the proof of Corollary 4) and $\phi(Q) = Q'$ if Q is not symmetric where Q' is defined as in Lemma 3. It follows that ϕ is an involution of M. We therefore can assume that none of the quadrilaterals of F is symmetric. Denote the elements of F by u_1, \ldots, u_{2g} such that the u_i lie in the natural order around A. Denote the segments of u_i by v_i and v_{i+2g} , $i = 1, \ldots, 2g$, such that the v_j lie in the natural order around A $(j = 1, \ldots, 4g)$. If an element of F is symmetric, then all elements of F are symmetric by Corollary 6. Assume that the elements of F are not symmetric and that $v_1 > v_{2g+1}$. It then follows by Lemma 4 that $v_2 < v_{2g+2}$. The same argument shows that $v_3 > v_{2g+3}$. By repeating this argument we obtain that $v_{2g} < v_{4g}$ and hence $v_{2g+1} > v_1$, a contradiction. We have therefore proved that all elements of F are symmetric. This implies that the π -rotation around A is an involution of M. \Box

Theorem 2. For every integer $g \ge 2$ there exists a closed surface M of genus g which has a geodesic 2-set F of order 2g-1 with intersection points A and B, but no involution such that A and B are among the fixed points of M.

Proof. Let $\varepsilon > 0$ be small. For $1 \le t < 2$, let T(t) be a (hyperbolic) triangle with (inner) angles

$$\alpha(t) = \frac{t\pi}{4(2g-1)} - \varepsilon, \qquad \beta(t) = \frac{t\pi}{4(2g-1)} + \varepsilon, \qquad \gamma = \frac{\pi}{2g-1}.$$

Denote by A, B, C the vertices of T(t) and by a, b, c the sides of T(t) (with the usual convention of notation: a is opposite to A and to $\alpha(t)$, and so on). Take 4g-2 copies of T(t) and glue them along a or along b such that the vertex C is the same for all 4g-2 copies. We obtain a 4g-2-gon P(t) where all sides have the length L(c) and where 2g-1 angles are $2\alpha(t)$ and 2g-1 angles are $2\beta(t)$. Denote the sides of P(t) by c_i , $i = 1, \ldots, 4g-2$, in the natural order.

(i) Assume now that g is odd. Let t = 1. Let S be a triangle of (hyperbolic) area $\frac{1}{2}\pi$ such that two sides x and y of S have the same length while the third side z of S has length L(c). It is clear that S exists and is unique up to isometry. Glue a copy S_1 (with sides x_1, y_1, z_1) of S along z_1 and along c_1 of P(t) such that the interior of P(t) is not intersected by S_1 . Glue a copy S_2 (with sides x_2, y_2, z_2) of S along z_2 and along c_{2g} of P(t) such that the interior of P(t) is not intersected by S_2 and such that x_2 is opposite to x_1 and y_2 is opposite to y_1 (the orientation of S_1 and S_2 is the same). Thereby P(t) has been enlarged to a 4g-gon R(t). By construction, the area of R(t) is $4\pi(g-1)$. R(t) is the fundamental domain of a closed surface M(t) of genus g and we obtain M(t) by the following identifications of the sides of R(t) (the identification is symbolized by a +).

 $x_{1} + x_{2}, y_{1} + y_{2},$ $c_{4m-2} + c_{4m} (m = 1, \dots, \frac{1}{2}(g-1)),$ $c_{4m} + c_{4m+2} (m = \frac{1}{2}(g+1), \dots, g-1),$ $c_{4m-1} + c_{4m+1} (m = 1, \dots, g-1).$ Let T be one of the copies of T(t) in R(t). By construction, there is a copy T' of T(t) in R(t) such that the side b_1 of T' is the prolongation of the side a_1 of T. Let $u_1 = a_1 \cup b_1$. It is then easy to verify that u_1 is a simple closed geodesic in M(t). Since we have 4g - 2 copies of T(t) we obtain 2g - 1 simple closed geodesics u_i , $i = 1, \ldots, 2g - 1$, in M(t) which all intersect in C and in V where V corresponds to the 4g vertices of R(t) (which all are identified in M(t)). Therefore, $\{u_1, \ldots, u_{2g-1}\}$ is a geodesic 2-set of order 2g - 1. Since L(a) < L(b), M(t) has not an involution with fixed points C and V.

(ii) Assume now that g is even. Let W be a triangle with three sides of equal length L(c). Denote by δ an (inner) angle of W. Glue a copy W_1 of W along c_1 and glue a copy W_2 of W along c_{2g} (such that the interior of P(t) is not intersected by W_i , i = 1, 2). Thereby, P(t) has been enlarged to a 4g-gon R(t). Denote the new sides of R(t) by x_1, y_1 (coming from W_1) and by x_2, y_2 (coming from W_2) such that x_1 is a neighbour of c_{4g-2} and x_2 is a neighbour of c_{2g-1} .

Let us now assume that t is chosen such that the area of R(t) is

(1)
$$(4g-2)\pi - 6\delta - (4g-2)(\alpha(t) + \beta(t)) = 4\pi(g-1).$$

R(t) is then the fundamental domain of a closed surface M(t) of genus g and we obtain M(t) by the following identifications of the sides of R(t).

 $x_1 + c_{4g-3}, y_1 + c_3, x_2 + c_{2g-2}, y_2 + c_{2g+2},$ and, if $g \neq 2$,

 $c_{4m-2} + c_{4m} \ (m = 1, \dots, \frac{1}{2}(g-2)),$ $c_{4m} + c_{4m+2} \ (m = \frac{1}{2}(g+2), \dots, g-1),$ $c_{4m+1} + c_{4m+3} \ (m = 1, \dots, g-2).$

It is now easy to see (as above in (i)) that M(t) has a geodesic 2-set of order 2g-1 with intersection points C and V, but C cannot be a fixed point of an involution since L(a) < L(b).

It remains to show that (1) is possible. Note first that when (1) holds, then

(2)
$$\delta = \frac{1}{6}\pi(2-t).$$

Let t = 1. It then follows (by a calculation) that $\cosh(L(c)) > 21$ (if ε is small enough) which yields $\cos \delta < 21/22$ and δ is too small (by (2) δ should equal $\pi/6$). Let now $t \longrightarrow 2$. Then L(c) is shorter than in the case t = 1 and therefore, δ becomes larger than in the case t = 1. But now δ is too large since, by (2), δ should tend to zero. This proves that (1) is possible. \Box

References

- ACCOLA, R.D.M.: On generalized Weierstrass points on Riemann surfaces. In: Modular Functions in Analysis and Number Theory, University Pittsburgh, 1983, 1–19.
- [2] ACCOLA, R.D.M.: Topics in the theory of Riemann surfaces. Lecture Notes in Math. 1595, Springer-Verlag, 1994.

[3]BIRMAN, J.S., and C. SERIES: Geodesics with multiple self-intersections and symmetries on Riemann surfaces. - In: Low-dimensional Topology and Kleinian Groups, edited by D.B.A. Epstein, Cambridge University Press, 1986, 3–11. [4]FARKAS, H.M., and I. KRA: Riemann Surfaces, 2nd ed. - Springer-Verlag, 1992. [5]GUERRERO, I.: Automorphisms of compact Riemann surfaces and Weierstrass points. -In: Riemann Surfaces and Related Topics, edited by I. Kra and B. Maskit, Princeton University Press, 1981, 215–224. [6]LEWITTES, J.: Automorphisms of compact Riemann surfaces. - Amer. J. Math. 85, 1963, 732 - 752.[7]SCHMUTZ SCHALLER, P.: Geometric characterization of hyperelliptic Riemann surfaces. -Ann. Acad. Sci. Fenn. Math. 25, 2000, 85–90.

- [8] SCHMUTZ SCHALLER, P.: Geometry of Riemann surfaces based on closed geodesics. - Bull. Amer. Math. Soc. 35, 1998, 193-214.
- SCHMUTZ SCHALLER, P.: Teichmüller space and fundamental domains of Fuchsian groups. [9]- Enseign. Math. (to appear)

Received 7 April 1998