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Abstract. We explore in this paper whether certain fundamental properties of the action
of Kleinian groups on the Riemann sphere extend to the action of discrete convergence groups on
R2 . A Jørgensen inequality for discrete K -quasiconformal groups is developed, and it is shown
that such an inequality depends naturally on the quasiconformal dilatation K . Furthermore, it
is established that no such inequality can hold for general discrete convergence groups. In the
discontinuous case a universal constraint on discreteness is formulated for both quasiconformal
and general convergence groups.

1. Basic definitions and notation

The group of all orientation-preserving Möbius transformations in R2 is de-
noted by Möb. All maps in this article are assumed to be orientation-preserving.

A group G of homeomorphisms of R2 is a K -quasiconformal group if each
of its elements is K -quasiconformal, and we call the group simply quasiconformal
if it is K -quasiconformal for some K . Recall that every Möbius transformation
is 1-quasiconformal, and that the converse also holds; i.e. every 1-quasiconformal
homeomorphism of R2 is a Möbius transformation (see [TV2] for a nice geometric
proof). One natural way to construct a quasiconformal group is to conjugate a
conformal group by a quasiconformal mapping. In R2 one obtains every quasi-
conformal group in this way ([Sul], [Tuk2]), whereas in higher dimensions there
exist quasiconformal groups which are not quasiconformally conjugate to Möbius
groups ([Tuk2], [Mar], [McK], [FrSk]).

A group G of homeomorphisms of R2 is discrete if no sequence {fn} ⊂ G of
distinct elements converges to the identity uniformly in R2 . A discrete subgroup
of Möb is called a Kleinian group.

A (not necessarily discrete) group G of homeomorphisms of R2 is said to be
a convergence group if each infinite subfamily of G contains a sequence {fn} , such
that one of the following is true:

(i) There exists a homeomorphism f of R2 such that

lim
n→∞

fn = f and lim
n→∞

f−1
n = f−1
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uniformly in R2 .
(ii) There exist points x0, y0 ∈ R2 such that

lim
n→∞

fn = x0 and lim
n→∞

f−1
n = y0

locally uniformly in R2r{y0} and R2r{x0} , respectively. Here we allow x0 = y0 .

In (ii) we call x0 and y0 the attracting and repelling limit point of the se-
quence {fn} , respectively, if these two points are distinct. Möbius groups and
quasiconformal groups are examples of convergence groups, see [GM1]. Homeo-
morphic conjugates of quasiconformal groups are also convergence groups, so that
the class of convergence groups of R2 is strictly larger than the class of quasicon-
formal groups.

Convergence groups in many essential ways resemble their conformal coun-
terparts. As with Möbius groups, we define the limit set L(G) of the convergence
group G to be the set of all limit points of those sequences {fn} converging in
the sense of (ii). Likewise, we define the regular set Ω(G) to be the set of points
where G acts discontinuously; i.e. the set of all x that have a neighborhood U
satisfying g(U) ∩ U = ∅ for all but finitely many g ∈ G . The regular set is an
open set, and the limit set is closed; both sets are G-invariant. If L(G) contains
more than two points then L(G) is an infinite perfect set. If Ω(G) 6= ∅ , then G
is necessarily discrete. For discrete G , the limit set L(G) is the complement of
the regular set Ω(G) . (See e.g. [GM1], [Tuk3] for proofs.)

There exists a classification of the elements of a convergence group that is
topologically analogous to the classification of Möbius maps. If G is a convergence
group and g ∈ G , then we say that g is elliptic if 〈g〉 , the group generated by
g , is pre-compact, i.e. if every sequence in 〈g〉 contains a subsequence converging
uniformly to a homeomorphism. If g is not elliptic, then g is loxodromic if it has
exactly two fixed points, or g is parabolic if g fixes exactly one point. It is not
hard to see that every element in a convergence group is either elliptic, parabolic
or loxodromic ([Tuk3]). In a discrete convergence group the elliptic elements are
those g ∈ G that satisfy gn = id for some n ∈ N . The sequence {gn} of iterates
of a loxodromic element of a discrete convergence group converges to a fixed point
a of g locally uniformly in the exterior of the other fixed point b ; we call a the
attracting and b the repelling fixed point of g . For parabolic g , the sequence of
iterates converges to the fixed point of g locally uniformly in the exterior of that
fixed point (see [GM1]).

As is customary, we define a discrete convergence group G to be non-elemen-
tary if L(G) contains more than two points. We can extend this definition to
non-discrete G but then in addition we must require that no x ∈ L(G) is fixed
by the entire group G . In both cases one can show that a convergence group G is
elementary if and only if either L(G) = ∅ or there is a one or two-point set which
is fixed setwise by G . Furthermore, G is non-elementary if and only if there are
two loxodromic g, h ∈ G without common fixed points (see [Tuk3]).
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2. Measuring discreteness

Let q(x, y) denote the chordal distance of the points x, y ∈ R2 ; it is the
Euclidean distance of their stereographic projections onto S2 ⊂ R3 and is given
by

q(x, y) =
2|x− y|√

1 + |x|2
√

1 + |y|2
.

For two homeomorphisms f , g of R2 , define their chordal distance to be

d(f, g) := sup
x∈R2

q
(
f(x), g(x)

)
.

Likewise, let d(f) denote the chordal distance of f to the identity:

(1) d(f) := d(f, id) = sup
x∈R2

q
(
f(x), x

)
.

Suppose that G is a fixed convergence group acting on R2 . If G is discrete, then
all f ∈ Gr{id} are uniformly bounded away from the identity in the metric given
by (1), i.e. there is a constant c > 0 (depending on G) such that

d(f) ≥ c
for all f ∈ Gr {id} .

The following theorems of Gehring and Martin [GM2, Theorems 4.19, 4.26,
6.14] make this observation more precise in the case of Kleinian groups; the authors
find a uniform estimate in the chordal metric, independent of the group G . The
first result is a consequence of Jørgensen’s inequality [Jør] and we shall refer to it
as chordal Jørgensen inequality.

Theorem 2.1 (Chordal Jørgensen inequality). There is a constant c1 > 0 so
that if f and g generate a discrete non-elementary subgroup of Möb then f and
g satisfy:

max{d(f), d(g)} ≥ c1 and d(f) + d(g) ≥ 2c1.

Furthermore,

2(
√

2 − 1) = 0.828 . . . ≤ c1 ≤ 0.911 . . . = 2

√
cos(2π/7) + cos(π/7)− 1

cos(2π/7) + cos(π/7) + 1
.

Recall that Jørgensen’s inequality [Jør] in its original form was stated as
follows:
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Theorem 2.2 (Jørgensen’s inequality). If the two Möbius transformations
f , g generate a discrete non-elementary group then

| tr2(f) − 4|+ | tr(f ◦ g ◦ f−1 ◦ g−1)− 2| ≥ 1,

where tr denotes the trace function.

The next result by Gehring and Martin says that we can conjugate any
Kleinian group, so that the resulting group has the property that its non-identity
elements are bounded away from zero in the chordal distance given in (1).

Theorem 2.3. If G is a discrete subgroup of Möb , then there exists an
h ∈ Möb such that

d(f) ≥ c1
for all f ∈ h ◦G ◦ h−1 r {id} . Here c1 is the same constant as in Theorem 2.1.

3. Statement of results

Our first results show that there are analogs to Theorem 2.1 and Theorem 2.3
for discrete quasiconformal groups. In particular, there is a chordal Jørgensen
inequality for discrete K -quasiconformal groups:

Theorem 3.1. For each K ≥ 1 , there is a constant cK > 0 so that if f
and g generate a discrete non-elementary K -quasiconformal group on R2 , then
f and g satisfy:

max{d(f), d(g)} ≥ cK and
(
d(f)

)1/K
+
(
d(g)

)1/K ≥ 2
(
cK
)1/K

.

One (non-sharp) choice for the constant cK is

cK =
1√
2

(√
2 c1

128

)K
,

where c1 is the constant from Theorem 2.1.
A relative version of Theorem 2.3 holds for discrete K -quasiconformal groups:

Theorem 3.2. If G is a discrete, torsion-free K -quasiconformal group on
R2 , then there exists an h ∈ Möb such that

d(f) ≥ cK

for all f ∈ h ◦G ◦ h−1 r {id} . Here cK is the same constant as in Theorem 3.1.

Our main result is that Theorem 3.1 does not hold for general discrete con-
vergence groups:



Jørgensen’s inequality for discrete convergence groups 135

Theorem 3.3 (Main theorem). There are sequences {fn} , {gn} of homeo-
morphisms on R2 so that the group generated by fn and gn is a free, discrete
non-elementary convergence group with non-empty regular set for each n ∈ N ,
but

max{d(fn), d(gn)} → 0 as n→∞.
We give a brief outline of the proof of Theorem 3.3. First we construct a

sequence {Gn} of topological Schottky groups, where Gn is freely generated by
fn and gn . We shall denote this by Gn = 〈fn, gn〉 . Suppressing the index n in
the notation, the idea of the construction of the groups G is as follows:

We shall find four mutually disjoint, simply connected regions S0 , S1 , S2 ,
S3 . The homeomorphism f will map the exterior of S2 onto the interior of S0

and S2 onto the exterior of S0 . The boundary of S2 will be mapped onto the
boundary of S0 . The homeomorphism g will be constructed in a similar way,
with S1 and S3 replacing S0 and S2 . By appropriately shrinking S0 , S1 and
S3 under the map f , shrinking S1 , S2 , S3 under f−1 , shrinking S0 , S1 , S2

under g and shrinking S0 , S2 , S3 under g−1 , the group G = 〈f, g〉 will have the
convergence property. Since G is the topological version of a Schottky group, it
is discontinuous by construction.

The main difficulty consists in making d(f) and d(g) as small as desired. To
this end it is necessary to have any point of the exterior of S0 be close to S2 and
any point of the exterior of S2 be close to S0 . The same must be true with S1

and S3 replacing S0 and S2 . One way to satisfy these assumptions is to give the
regions S0, . . . , S3 the shape of spirals, see Figure 1. The hardest part now is to
tune the action of f and g in such a way that d(f) and d(g) are small, while
ensuring on the other hand that 〈f, g〉 has the convergence property.

Once the main theorem has been proved, using the density of diffeomorphisms
in the homeomorphisms of R2 it is not hard to see the following:

Corollary 3.4. There are sequences {f̂n} , {ĝn} of quasiconformal mappings

such that f̂n and ĝn generate a discrete, non-elementary, Kn -quasiconformal
group where Kn →∞ and d(f̂n) → 0 and d(ĝn)→ 0 as n→∞ .

Note that by Theorem 3.1 Kn must necessarily become unbounded as n →
∞ .

Even though there is no chordal Jørgensen inequality on the full class of
discrete convergence groups, there is an analog of Theorem 3.2 for convergence
groups with non-empty regular set [Geh1]:

Theorem 3.5. If G is a convergence group with non-empty regular set, then
for each constant c with 0 < c < 2 there exists an h ∈ Möb such that

d(f) ≥ c
for all f ∈ h ◦G ◦ h−1 r {id} .
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4. Proofs

We first show that normalized K -quasiconformal maps satisfy a chordal Höl-
der inequality. The result is probably known, though for the reader’s convenience
we include a proof.

Lemma 4.1. Any K -quasiconformal homeomorphism ϕ of R2 fixing 0 , 1
and ∞ satisfies

q
(
ϕ(x), ϕ(y)

)
≤ 128 · 2(1−K)/(2K)q(x, y)1/K

for all x, y ∈ R2 .

Proof. The proof uses the following fact [Geh3, Theorem 4.1]: If ϕ: D →
D′ is a K -quasiconformal map of the domain D ⊂ R2 onto D′ ⊂ R2 where
R2 rD 6= ∅ , then

(2) q
(
ϕ(x), ϕ(y)

)
· q(R2 rD′) ≤ 128 ·

(
q(x, y)

q(x, ∂D)

)1/K

for all x, y ∈ R2 with x 6= y . Here for a set E the expression q(E) denotes the
chordal diameter of E and q(x, ∂E) is the chordal distance of x to the boundary
of E .

Note that q(0, 1) = q(1,∞) =
√

2 and q(0,∞) = 2. Let x, y ∈ R2 .

Case 1. x, y ∈ {0, 1,∞} . Then

q
(
ϕ(x), ϕ(y)

)
= q(x, y) ≤ 2 ≤ 128 · 2(1−K)/(2K) ·

√
2 1/K

≤ 128 · 2(1−K)/(2K) · q(x, y)1/K .

Case 2. y /∈ {0, 1,∞} . If we are not in case 1 then we can always assume we
are in case 2 by relabeling x and y .

(a) Assume first that q(x, 0) <
√

2 /2. In this case we have q(x, 1) ≥
√

2 /2
and q(x,∞) ≥

√
2 /2. Choosing D = D′ = R2 r {1,∞} we obtain q(R2 rD′) =

q(1,∞) =
√

2 and q(x, ∂D) ≥ 1/
√

2 . Hence by (2) we have

q
(
ϕ(x), ϕ(y)

)
·
√

2 ≤ 128 · q(x, y)1/K ·
√

2
1/K

,

and from this the claim follows.

(b) Assume next that q(x, 1) <
√

2 /2. Choosing D = D′ = R2r{0,∞} and
again applying (2) we obtain the desired result in this case.

(c) Assume finally that q(x, 0) ≥
√

2 /2 and q(x, 1) ≥
√

2 /2. Choose D =
D′ = R2 r {0, 1} and again use (2) to complete the proof of the lemma.
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We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let G be a K -quasiconformal, discrete, non-elementa-
ry convergence group, generated by the quasiconformal mappings f, g: R2 → R2 .
Then G is K -quasiconformally conjugate to a Möbius group [Sul], [Tuk1], i.e. there
is a K -quasiconformal map ϕ and a Möbius group Γ such that G = ϕ−1 ◦ Γ ◦ϕ .
By conjugating Γ with a Möbius map we may assume that ϕ fixes 0, 1, and ∞ .
Setting f̃ = ϕ ◦ f ◦ ϕ−1 and g̃ = ϕ ◦ g ◦ ϕ−1 we obtain that Γ is generated
by f̃ and g̃ , and furthermore Γ is a discrete, non-elementary group of Möbius
transformations. Hence, by the chordal Jørgensen inequality (Theorem 2.1) we
have

(3) max{d(f̃ ), d(g̃)} ≥ c1,

where c1 > 0 is as in Theorem 2.1. Note that ϕ satisfies the inequality of
Lemma 4.1. Let

cK :=
1√
2

(√
2 c1

128

)K
.

We argue by contradiction: Assume that max{d(f), d(g)} < cK . Observe
that

d(f̃ ) = d(ϕ ◦ f ◦ ϕ−1) = d(ϕ ◦ f, ϕ) = sup
x∈R2

q
(
ϕ
(
f(x)

)
, ϕ(x)

)
.

Since R2 is compact, the supremum is obtained at some point x0 ∈ R2 . For this
x0 we have

q
(
ϕ
(
f(x0)

)
, ϕ(x0)

)
≤ 128 · 2(1−K)/(2K)q

(
f(x0), x0

)1/K

≤ 128 · 2(1−K)/(2K)d(f)1/K < 128 · 2(1−K)/(2K)(cK )1/K = c1,

hence we have shown that d(f̃ ) < c1 . In the same way we obtain d(g̃) < c1 ,
contradicting (3).

For the proof of the second part of the theorem, we again argue by contradic-

tion and assume that
(
d(f)

)1/K
+
(
d(g)

)1/K
< 2(cK)1/K . As before, we obtain

d(f̃ ) + d(g̃) ≤ 128 · 2(1−K)/(2K) ·
(
d(f)

)1/K
+ 128 · 2(1−K)/(2K) ·

(
d(g)

)1/K

< 2 · 128 · 2(1−K)/(2K) · (cK)1/K = 2c1.

This contradicts Theorem 2.1.

We can now prove Theorem 3.2, following an argument given by Water-
man [Wat].
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Proof of Theorem 3.2. By conjugation with a Möbius transformation we may
assume that 0 and ∞ are not fixed by any g ∈ G r {id} . Define ht(x) := t · x
for 0 < t ≤ 1. Suppose that there is no t ∈ (0, 1] such that each element
f ∈ ht ◦G ◦ h−1

t r {id} satisfies d(f) ≥ cK . We seek a contradiction.
Observe that for g ∈ Gr {id} we have

(4) d(ht ◦ g ◦ h−1
t ) ≥ q

(
t · g(∞),∞

)
→ 2 as t→ 0.

Observe also that, for fixed g ∈ G , the distance of ht ◦ g ◦h−1
t to the identity

(i.e. d(ht ◦ g ◦ h−1
t )) varies continuously in t .

Let t̃0 ≤ 1. Then by assumption there exists g0 ∈ G r {id} so that d(ht̃0 ◦
g0 ◦ h−1

t̃0
) < cK . By continuity and using (4) we can find a largest t∗0 < t̃0 so

that d(ht ◦ g0 ◦ h−1
t ) ≥ cK for all t ≤ t∗0 . Hence, by assumption, we find another

element g1 ∈ Gr {id} , g1 6= g0 , so that d(ht∗0 ◦ g1 ◦ h−1
t∗0

) < cK .

By continuity we can now find t0 ∈ (t∗0, t̃0) , so that

d(ht0 ◦ g0 ◦ h−1
t0 ) < cK and d(ht0 ◦ g1 ◦ h−1

t0 ) < cK .

Defining t̃1 := t∗0 we have d(ht̃1 ◦ g1 ◦ h−1
t̃1

) < cK and can restart our construction

with t̃0 being replaced by t̃1 .
In general we find tn+1 < tn and mutually distinct elements gn ∈ G r {id}

so that

d(htn ◦ gn ◦ h−1
tn ) < cK and d(htn ◦ gn+1 ◦ h−1

tn ) < cK

for all n ∈ N . By Theorem 3.1 we conclude that the groups 〈gn, gn+1〉 are
elementary for each n ∈ N . The discrete elementary torsion-free convergence
groups have been studied in [GM1, Theorems 5.7, 5.10, 5.11]. We conclude that
either all gn are loxodromic and have common fixed points a , b ; or all gn are
parabolic and fix a common point a . By choosing a subsequence (and relabeling
a , b if necessary) and using the convergence property, we may assume that

gn → a locally uniformly in R2 r {b} as n→∞ and

g−1
n → b locally uniformly in R2 r {a} as n→∞;

where a = b in the parabolic case. Note that {a, b} ∩ {0,∞} = ∅ by assumption.
Since each ht fixes 0 and ∞ , we obtain

(htn ◦ gn ◦ h−1
tn )(∞) = tn · gn(∞) and (htn ◦ gn ◦ h−1

tn )(0) = tn · gn(0),

where
gn(0) → a and gn(∞)→ a as n→∞.
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Note that the decreasing sequence {tn} converges to some t∗ ≥ 0 as n → ∞ ,
hence

(htn ◦ gn ◦ h−1
tn )(∞) → t∗a and (htn ◦ gn ◦ h−1

tn )(0) → t∗a as n→∞.

But q(0, t∗a) + q(∞, t∗a) ≥ q(0,∞) = 2, so that we conclude

lim inf
n→∞

d(htn ◦ gn ◦ h−1
tn

) ≥ 1,

contradicting the fact that d(htn ◦ gn ◦ h−1
tn ) < cK ≤ c1 < 1 for all n .

In the proof of the fact that there is no chordal Jørgensen inequality for general
discrete convergence groups we construct a sequence of free two generator discrete
convergence groups, where both generators are arbitrarily close to the identity in
the chordal distance.

Proof of Theorem 3.3. We construct a sequence of discrete non-elementary
convergence groups 〈fn, gn〉 , where fn , gn are homeomorphisms of R2 , and
max{d(fn), d(gn)} → 0 as n→ ∞ . In the following we will suppress the index n
in the notation; we write f , g instead of fn , gn .

Part I: A topological analog of Schottky groups. The group generated by f
and g that we construct is a topological analog of a two generator Schottky group.
That is, there are four disjoint regions S0 , S1 , S2 , S3 ; the homeomorphism f will
map the exterior of S2 onto the interior of S0 , its inverse will map the exterior
of S0 onto the interior of S2 , boundary will be mapped onto boundary. The
homeomorphism g shall be constructed in the same way, using S1 and S3 instead
of S0 and S2 .

The special shape of these regions will make it possible for d(f) and d(g) to
be small and at the same time ensure the group generated by f and g has the
convergence property. As already mentioned in the outline of the proof, in order
to make d(f) as small as desired, it is necessary to have any point of the exterior
of S0 be close to S2 and any point of the exterior of S2 be close to S0 . The same
must hold for the regions S1 and S3 in order to make d(g) as small as desired.
We can satisfy these assumptions by giving the regions S0, . . . , S3 the shapes of
spirals: Define

γk(t) := e2πitet/n+k/(8n), k = 0, . . . , 7, −n2 ≤ t ≤ n2.

Let S0 be the region bounded by γ0 , γ1 , the line segment

{e−2πin2

e−n+s/(8n) | 0 ≤ s ≤ 1}

(which connects γ0(−n2) and γ1(−n2)) and the line segment

{e2πin2

en+s/(8n) | 0 ≤ s ≤ 1}



140 Petra Bonfert-Taylor

(which connects γ0(n2) and γ1(n2)). Define S1 to be the region bounded by γ2 ,
γ3 and similar radial line pieces. Define S2 and S3 analogously (see Figure 1),
that is

Sj =
{
e2πitet/n+(2j+s)/(8n)

∣∣ −n2 ≤ t ≤ n2, 0 ≤ s ≤ 1
}
, j = 0, 1, 2, 3.

-2 2 4

-4

-2

2

4

6

S0

S1

S2

S3

Figure 1. The spiral regions

A point z ∈ Sj , j = 0, 1, 2, 3, can be described by its argument parameter t
and its radius parameter s :

(5) z = z(j, s, t) = e2πitet/n+(2j+s)/(8n), −n2 ≤ t ≤ n2, 0 ≤ s ≤ 1.

Note that for example on the boundary of S0 we have

γ0(t) = z(0, 0, t), γ1(t) = z(0, 1, t).

Part II: The construction of the maps f and g . The following seven steps
describe the construction of f . In steps 1–3 the map f is constructed on S0∪S1∪
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S3 as a composition h3 ◦ h2 ◦ h1 of shrinking (via h1 , h2 ) and shifting (via h3 )
processes. In step 4, f is defined on ∂S2 , step 5 extends f to all of the exterior
of S2 , so that f becomes a homeomorphism between the exterior of S2 and the
interior of S0 ; boundary gets mapped onto boundary. In step 6 we define f−1 as
a homeomorphism between the exterior of S0 and the interior of S2 in the same
way as f has been defined before. Finally, step 7 combines both definitions and
we obtain a homeomorphism f : R2 → R2 .

Step 1. The map h1 shrinks in t-direction. The map h1 shrinks the spirals
S0 , S1 , and S3 by a factor (1 − 2/n2) in “length” (t-direction), keeping points
with t = 0 fixed, i.e. for

z = z(j, s, t) = e2πitet/n+(2j+s)/(8n) ∈ Sj , j = 0, 1, 3, 0 ≤ s ≤ 1, −n2 ≤ t ≤ n2,

define

h1(z) := z

(
j, s, t

(
1− 2

n2

))
= e2πit(1−2/n2)e(t/n)(1−2/n2)+(2j+s)/(8n).

Then for j = 0, 1, 3 h1(Sj) is a subspiral of Sj , which is as “thick” as Sj , but
“shorter”:

h1(Sj) =
{
e2πitet/n+(2j+s)/(8n)

∣∣ −n2 + 2 ≤ t ≤ n2 − 2, 0 ≤ s ≤ 1
}
⊂ Sj.

Note that for t 6= 0 the point z(j, s, t) travels towards the point e(2j+s)/(8n) on
the median of Sj , but chordally no points get moved far as we shall show in the
following:

Let z = z(j, s, t) ∈ Sj as in (5) for j ∈ {0, 1, 3} . We consider three cases:

(i) −n√n ≤ t ≤ n√n . In this case

q
(
z, h1(z)

)
= q
(
e2πit|z|, e2πit(1−2/n2)|h1(z)|

)

≤ q
(
e2πit|z|, e2πit(1−2/n2)|z|

)
+ q
(
|z|, |h1(z)|

)

≤ q
(
e2πit, e2πit(1−2/n2)

)
+

2|1− |h1(z)|/|z||√
|z|−2 + 1

√
1 + |h1(z)|2

≤ q
(
1, e−4πit/n2)

+ 2

∣∣∣∣1−
|h1(z)|
|z|

∣∣∣∣ ≤ q(1, e4πi/
√
n ) + 2|1− e−2t/n3 |

≤ q
(
1, e4πi/

√
n ) + 2|1− e2/(n

√
n)|.

Hence q
(
z, h1(z)

)
is arbitrarily small for large n , uniformly in −n√n ≤ t ≤ n√n .

(ii) t > n
√
n . In this case

|z| = et/n+(2j+s)/(8n) ≥ et/n ≥ e
√
n and

|h1(z)| = e(t/n)(1−2/n2)+(2j+s)/(8n) ≥ e(t/n)(1−2/n2) ≥ e
√
n−2/(n

√
n ).
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Hence q(z,∞) and q(h1(z),∞) are arbitrarily small for large n , and the same
holds for q

(
z, h1(z)

)
by the triangle inequality.

(iii) t < −n√n . In this case

|z| ≤ e−
√
n+7/(8n) and |h1(z)| ≤ e−

√
n+2/(n

√
n )+7/(8n),

so that q(z, 0), q
(
h1(z), 0

)
and hence q

(
z, h1(z)

)
are arbitrarily small for large n .

Summing up, we have shown that for given ε > 0 we can find a large enough
n ∈ N such that any z ∈ S0 ∪ S1 ∪ S3 satisfies q

(
z, h1(z)

)
< ε .

Step 2. The map h2 shrinks in s-direction. On the new shorter spirals
h1(S0 ∪ S1 ∪ S3) we define a map h2 which shrinks in “width” (s-direction) by a
factor 8, keeping each of the longitudinal center spiral lines given by s = 1

2 fixed.
That is for −n2 + 2 ≤ t ≤ n2 − 2, 0 ≤ s ≤ 1, and

w = w(j, s, t) = e2πitet/n+(2j+s)/(8n) ∈ h1(Sj), j = 0, 1, 3

define

h2(w) := w

(
j,
s

8
+

7

16
, t

)
= e2πitet/n+2j/(8n)+(1/8n)(s/8+7/16).

Thus for j = 0, 1, 3

(h2 ◦h1)(Sj) =

{
e2πitet/n+(2j+s)/(8n)

∣∣∣∣ −n2 +2 ≤ t ≤ n2−2,
7

16
≤ s ≤ 9

16

}
⊂ Sj .

As before we see that q
(
w,h2(w)

)
is arbitrarily and uniformly small for all w ∈

h1(S0 ∪ S1 ∪ S3) given large enough n :

q
(
w,h2(w)

)
= q
(
|w|, |h2(w)|

)
≤ q
(
et/n+2j/(8n), et/n+(2j+1)/(8n)

)

= 2
|1− e1/(8n)|√

e−2t/n−4j/(8n) + 1
√

1 + e2t/n+(4j+2)/(8n)

≤ 2|1− e1/(8n)| → 0 as n→∞.

Step 3. Shifting (h2 ◦ h1)(S0 ∪ S1 ∪ S3) into S0 . Next with a map h3 we
move v ∈ (h2 ◦ h1)(S0 ∪ S1 ∪ S3) along a radial line into S0 without meeting S2 ,
i.e. we keep v ’s argument e2πit fixed. The map keeps points in (h2◦h1)(S0) fixed,
decreases the radius of points in (h2◦h1)(S1) , and increases the radius of points in
(h2 ◦ h1)(S3) so that these three shrunk spirals come to be placed equally spaced
in S0 . To be precise: For −n2 + 2 ≤ t ≤ n2 − 2, 7

16 ≤ s ≤ 9
16 , and j = 0, 1, 3 the

point
v = v(j, s, t) = e2πitet/n+(2j+s)/(8n)
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gets mapped to

h3(v) :=





v, for j = 0,
v
(
0, s + 9

32 , t
)

= e2πitet/n+(s+(9/32))/(8n), for j = 1,

v
(
0, s − 9

32 , t+ 1
)

= e2πite(t+1)/n+(s−(9/32))/(8n), for j = 3.

Again, it is easy to verify that h3 moves points arbitrarily little, uniformly for all
v ∈ (h2 ◦ h1)(S0 ∪ S1 ∪ S3) .

Together, the maps constructed above define f := h3 ◦h2 ◦h1 on S0∪S1∪S3 .
Note that the only fixed point of f on these three spirals is the point

z = z
(
0, 1

2
, 0
)

= e2πi·0e(1/n)·0+(1/2)/(8n) = e1/(16n)

which lies in S0 .

Step 4. The map f on ∂S2 . The map f maps ∂S2 onto ∂S0 as follows:

f
(
γ4(t)

)
:= γ1(t), for − n2 ≤ t ≤ n2,

f
(
γ5(t)

)
:= γ0(t+ 1), for − n2 ≤ t ≤ n2 − 1.

Furthermore, define f so that it maps the radial segment

{e−2πin2

e−n+(4+s)/(8n) | 0 ≤ s ≤ 1} ⊂ ∂S2

homeomorphically onto the set

{γ0(t) | −n2 ≤ t ≤ −n2 + 1} ∪ {e−2πin2

e−n+s/(8n) | 0 ≤ s ≤ 1} ⊂ ∂S0.

Finally, let f map the set

{γ5(t) | n2 − 1 ≤ t ≤ n2} ∪ {e2πin2

en+(4+s)/(8n) | 0 ≤ s ≤ 1} ⊂ ∂S2

homeomorphically onto the radial segment

{e2πin2

en+s/(8n) | 0 ≤ s ≤ 1} ⊂ ∂S0.

As before, no point gets moved far, given large enough n .

Step 5. Extending f to all of the exterior of S2 . With steps 1–4, f is defined
on S0 ∪ S1 ∪ S3 ⊂ ext(S2) and on the boundary of S2 . We now extend f to
the remaining part of the exterior of S2 to become a homeomorphism mapping
the exterior of S2 onto the interior of S0 , so that no point gets moved far. This
can be done as follows: We first extend f to the four regions between the spirals,
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and then extend f to the two simply connected domains that are left around the
origin and around the point infinity, respectively.

In order to extend f to the regions between the spirals, note that points in
these regions can be described as in (5), but with j = 0.5, 1.5, 2.5, 3.5, i.e.

z(j, s, t) = e2πitet/n+(2j+s)/(8n), 0 < s < 1,

and −n2 ≤ t ≤ n2 for j = 0.5, 1.5, 2.5 and −n2 ≤ t ≤ (n2 − 1) for j = 3.5.
For the region between the spirals S0 and S1 , i.e. points of the form z(0.5, s, t) ,

we define f by “interpolating” between the images of the points γ1(t) and γ2(t) .
Note that γ1(t) and γ2(t) are points on the adjacent boundaries of S0 and S1 , re-
spectively, that have the same argument t as the point z . Since f

(
γ1(t)

)
∈ S0 and

f
(
γ2(t)

)
∈ S0 , there are unique parameters s1, s2 ∈ [0, 1] and t1, t2 ∈ [−n2, n2]

such that

f
(
γ1(t)

)
= z(0, s1, t1) and f

(
γ2(t)

)
= z(0, s2, t2).

We now set

f
(
z(0.5, s, t)

)
:= z

(
0, (1 − s) · s1 + s · s2, (1− s) · t1 + s · t2

)
,

i.e. we interpolate linearly between the “width” and “length” parameters of the
images of γ1(t) and γ2(t) . Since z(0.5, s, t) is arbitrarily close to both γ1(t)
and γ2(t) for large enough n , and since f moves the points γ1(t) and γ2(t)
an arbitrarily small distance, we conclude that the extension of f to the region
between S0 and S1 moves points an arbitrarily small distance, as well.

For points z(1.5, s, t) between the spirals S1 and S2 we define f in exactly the
same way as above by using the boundary curves γ3 and γ4 instead of γ1 and γ2 .
For points z(2.5, s, t) between the spirals S2 and S3 we use the boundary curves
γ5 and γ6 instead. As before, we see that f moves points as little as desired,
given large enough n .

For points z(3.5, s, t) (−n2 ≤ t ≤ (n2 − 1)) we define f by “interpolating”
between the images of the points γ7(t) and γ0(t + 1), which are on the adjacent
boundaries of S3 and S0 , respectively. Again, f does not move points far.

The only parts in the exterior of S2 , where f has not been defined yet are
two simply connected domains. One of these domains, denoted V0 , is bounded by

{γ0(t) | −n2 ≤ t ≤ −n2 + 1} ∪ {e−2πin2

e−n+s/(8n) | 0 ≤ s ≤ 8},

i.e. the first spiral part of γ0 and the line segment joining γ0(−n2) and γ0(−n2+1).
The other domain, denoted V1 , is bounded by

{γ7(t) | n2 − 1 ≤ t ≤ n2} ∪ {e2πin2

en+s/(8n) | −1 ≤ s ≤ 7},
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i.e. the last spiral part of γ7 and the line segment joining γ7(n2 − 1) and γ7(n2) .
Note that f has already been defined on the boundaries of the domains V0 and V1 .
Note furthermore, that any two points in V0 are chordally close to each other for
large enough n , and the same holds for any two points in V1 . Hence we can
extend f to all of V0 and V1 using the topological Schoenflies theorem, so that
f becomes a homeomorphism between V0 and its image, and between V1 and its
image, where no point gets moved far.

With the above definitions, f becomes a homeomorphism of the exterior of
S2 onto the interior of S0 .

Step 6. Defining f−1 on the exterior of S0 . In the same way as f was defined
on S0∪S1∪S3 in steps 1–3, we now define its inverse f−1 on S1∪S2∪S3 . I.e. f−1

shrinks S1 , S2 , and S3 in length and width, then moves these spirals into S2 .
On ∂S0 , we define f−1: ∂S0 → ∂S2 as the inverse of the already defined map
f : ∂S2 → ∂S0 (compare step 4). Note that f−1 fixes z

(
2, 1

2 , 0
)

= e9/(16n) ∈ S2

and no other point on S1∪S2∪S3 . In the same way as it was done for f in step 5,
we now extend f−1 to all of the exterior of S0 , so that f−1 maps the exterior of
S0 homeomorphically onto the interior of S2 .

Step 7. The map f . Combining the definitions of f and f−1 , we obtain a
homeomorphism f : R2 → R2 , which has exactly two fixed points, and which is
as close to the identity as desired.

With these steps the construction of the map f is complete. In the same way
as above, we now construct the map g . That is: g maps the exterior of S3 onto
the interior of S1 and g−1 maps the exterior of S1 onto the interior of S3 , where
boundary gets mapped onto boundary.

Next we show that the free group generated by f and g is a convergence
group.

Part III: 〈f, g〉 is a convergence group. By construction, 〈f, g〉 is a free group,
i.e. every element h ∈ 〈f, g〉 has a unique (shortest) representation as a word

h = h(k) ◦ h(k−1) ◦ · · · ◦ h(1), where h(l) ∈ {f, f−1, g, g−1}.

In the following we shall call the letter h(1) the “first letter” or “beginning” and
the letter h(k) the “last letter” or “end” of the word h . Denote by `l(h) the l th
letter of the unique representation of h , i.e.

`l(h) = h(l), l = 1, . . . , k.

We shall call the regions S0 , S1 , S2 , and S3 “spirals of generation 0”, whereas
images of a spiral Sj under a k -letter word h which does not start with the letter
that maps the exterior of Sj onto some other spiral will be called “k th generation
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spirals”. For example, f(S0) , f(S1) and f(S3) are spirals of generation 1 (they
are all small subspirals of S0 ), but f(S2) is not a spiral anymore. Note that the
chordal diameter of all k th generation spirals tends uniformly to 0 as k tends
to ∞ .

Let {hm} be an infinite sequence of distinct elements in 〈f, g〉 . Then the
word length of hm is unbounded as m → ∞ . Choose a subsequence of {hm} so
that the word length of the mth element of the new sequence is ≥ 2m . Denote
this new sequence by {hm} . We can choose a subsequence {h1

m} of {hm} so that
`1(h1

m) is constant for all m , and also `1
(
(h1
m)−1

)
is constant for all m . That is,

all words in this subsequence start with the same letter w1 ∈ {f, f−1, g, g−1} and
end with the same letter v1 . From this sequence {h1

m} we can choose another
subsequence {h2

m} so that `2(h2
m) is equal to some w2 ∈ {f, f−1, g, g−1} for all

m and `2
(
(h2
m)−1

)
= v−1

2 for all m . Proceed like this, and denote the diagonal
sequence {hmm} by {Hm} . Then

Hm = v1 ◦ v2 ◦ · · · ◦ vm ◦ rm ◦wm ◦ wm−1 ◦ · · · ◦ w1,

where rm is some word of unknown length, which does not start with w−1
m and

does not end with v−1
m .

We now show that there are a, b ∈ S0∪S1∪S2∪S3 , so that Hm → a uniformly
on U = R2 r (S0 ∪ S1 ∪ S2 ∪ S3) , and H−1

m → b uniformly on U .
By definition, the map vm (which is one of the maps f, f−1, g, g−1 ) maps

the exterior of some 0th generation spiral onto the interior of some other 0th
generation spiral, and v−1

m reverses this process. Denote by SE(m) the spiral
whose exterior is mapped by vm onto another spiral, called SI(m) . Since the last
letter of rm is not v−1

m , we know that (rm ◦wm◦wm−1◦· · ·◦w1)(U) is contained in
a 0th generation spiral different from SE(m) and hence is in the exterior of SE(m) .
Thus (vm ◦ rm ◦ wm ◦ wm−1 ◦ · · · ◦ w1)(U) is contained in SI(m) . Furthermore,
(v1 ◦ v2 ◦ · · · ◦ vm−1)(SI(m)) is an (m− 1)st generation spiral, whose “length” has
been shrunk by a factor (1 − 2/n2)m−1 , where n is the variable but now fixed
parameter of the construction of f and g . Hence, Hm(U) is contained in this
(m− 1)st generation spiral. Observe now that Hm+1(U) is contained in an mth
generation spiral, being a subspiral of the previous (m − 1)st generation spiral.
By construction, the chordal diameter of all mth generation spirals converges
uniformly to 0 as m→∞ . Hence there exists a unique point a so that Hm(x) → a
uniformly in x ∈ U .

A similar argument shows H−1
m → b uniformly in U for some b ∈ S0 ∪ S1 ∪

S2 ∪S3 . Both points a and b are limit points of descending “Cantor-type” spiral
sequences.

Finally, we show that

Hm → a locally uniformly in R2 r {b},
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and
H−1
m → b locally uniformly in R2 r {a}.

Let K be a compact connected set in R2 r {b} . Then there is an open neigh-
borhood of b , which does not intersect K . Thus K intersects only finitely many
elements of the Cantor spiral sequence converging to b , say only spirals of gener-
ation ≤ k . Then (wk+2 ◦ wk+1 ◦ · · · ◦ w1)(K) is entirely contained in one of the
spirals S0 , S1 , S2 or S3 : Otherwise there would be x ∈ U , so that

(w−1
1 ◦w−1

2 ◦ · · · ◦ w−1
k+2)(x) ∈ K.

But this contradicts the fact that (w−1
1 ◦ w−1

2 ◦ · · · ◦ w−1
k+2)(U) is contained in a

(k + 1)st generation spiral, which is part of the sequence converging to b .
Again, since there are no cancellations between the letters of Hm , we see

that (vm ◦ rm ◦ wm ◦ · · · ◦ w1)(K) is contained in SI(m) for m ≥ k + 2, so that
Hm(K) is contained in a (m− 1)st generation spiral for m ≥ k + 2. This shows
that Hm → a uniformly in K . Similarly we obtain H−1

m → b locally uniformly in
R2 r {a} .

Hence we have shown that 〈f, g〉 is a convergence group. Furthermore it is
obvious that 〈f, g〉 acts discontinuously on U , so that 〈f, g〉 is discrete. Finally
〈f, g〉 is non-elementary, since both f and g are loxodromic and have disjoint
fixed point sets. This completes the proof.

Remark 1. Note that the limit set L(〈f, g〉) of 〈f, g〉 is a Cantor set with

L(〈f, g〉) ⊂ {es/(8n) | 0 ≤ s ≤ 7}.

Hence the chordal diameter of the limit sets converges to 0 as n→∞ .

Remark 2. We can modify step 1 of the above construction, so that for
each ε > 0 there exists n ∈ N such that L(〈f, g〉) is ε-dense in R2 , i.e. for each
x ∈ R2 the chordal ball Bε(x) meets L(〈f, g〉) . We can do this by only modifying
one of the maps, say f . In step 1, instead of giving f an attracting fixed point at
z
(
0, 1

2 , 0
)

in S0 and a repelling fixed point at z
(
2, 1

2 , 0
)

in S2 , we let the attracting

fixed point be z
(
0, 1

2 ,−n
√
n
)

in S0 , and the repelling fixed point z
(
2, 1

2 , n
√
n
)

in S2 . This can be done by redefining h1 on S0 ∪ S1 ∪ S3 : Let h1 map the point

z = z(j, s, t) = e2πitet/n+(2j+s)/(8n) ∈ Sj

onto the point

h1(z) = z

(
j, s, t

(
1− 2

n2

)
− 2√

n

)

= e2πi[t(1−2/n2)−2/
√
n ]e(1/n)[t(1−(2/n2))−(2/

√
n )]+(2j+s)/(8n).
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With the same modification for the definition of f−1 on S1 ∪ S2 ∪ S3 the map f
fixes

e−2πin
√
n e−

√
n+(1/2)/(8n) ∈ S0

and
e2πin

√
n e
√
n+(4+1/2)/(8n) ∈ S2.

Let g be unchanged. If ε > 0 is given then we can find n ∈ N such that d(f) < 1
2ε ,

d(g) < 1
2ε , and the attracting fixed point of f is in an 1

2ε-neighborhood of 0, the
repelling fixed point of f is in an 1

2
ε-neighborhood of ∞ , and the distance from

z = z(j, s, t) = e2πitet/n+(2j+s)/(8n)

to
z′ = z′(j, s, t + 1) = e2πi(t+1)e(t+1)/n+(2j+s)/(8n)

is less than 1
2
ε for all j, s, t .

Note that the images of all fixed points of f and g under maps in 〈f, g〉 are
contained in the limit set L(〈f, g〉) . Observe now that g moves the fixed points of
f in steps of length ≤ 1

2ε towards its attracting fixed point, i.e. these images will
be 1

2ε-dense in g ’s attracting spiral S3 . Similar for g−1 . The map f maps this
picture into S0 , whereas f−1 maps it into S2 . Since by construction the spirals
Sj and S(j+1)mod4 are within distance 1

2ε of each other, the limit set L(〈f, g〉) is

ε-dense in R2 .

Proof of Corollary 3.4. Let Gn = 〈fn, gn〉 be the discrete, non-elementary
convergence groups constructed in Theorem 3.3. Then by construction Gn does
not contain parabolics and its limit set L(Gn) is a Cantor set. Thus by [MS]
the group Gn is topologically conjugate to a Möbius group, i.e. there exists a
homeomorphism Φn: R2 → R2 and a Möbius group Γn = 〈f̃n, g̃n〉 such that
fn = Φn ◦ f̃n ◦ Φ−1

n , gn = Φn ◦ g̃n ◦ Φ−1
n , and hence

Gn = Φn ◦ Γn ◦ Φ−1
n .

Because of the topological conjugacy, Γn is a discrete, non-elementary Möbius
group. Since the diffeomorphisms of R2 are dense in the homeomorphisms or
R2 , we can choose a quasiconformal map Ψn: R2 → R2 with d(Ψn,Φn) < 1/n .

Define f̂n = Ψn ◦ f̃n ◦Ψ−1
n and ĝn = Ψn ◦ g̃n ◦Ψ−1

n . Then

d(f̂n) = d(Ψn ◦ f̃n,Ψn)

≤ d(Ψn ◦ f̃n,Φn ◦ f̃n) + d(Φn ◦ f̃n,Φn) + d(Φn,Ψn)

= 2d(Φn,Ψn) + d(fn)→ 0 as n→∞,
and similarly

d(ĝn) → 0 as n→∞.
For the proof of Theorem 3.5 we first show a lemma:
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Lemma 4.2. Suppose that G is a convergence group with non-empty regular
set. Then there exists an open ball U such that f(U)∩U = ∅ for all f ∈ Gr{id} .

Proof. Since by hypothesis the regular set of G is non-empty, there exists a
point y0 ∈ Ω(G) and an open neighborhood V of y0 such that f(V ) ∩ V = ∅
for all but a finite number of elements f ∈ G , let f1, . . . , fk ∈ G r {id} be
these elements. If Ej denotes the set of fixed points of fj , then Ej is closed by
continuity of fj . Furthermore, Ej contains no interior points: If Ej is finite then
this is clear, otherwise fj is elliptic and Ej has no interior points by a theorem
of Newman’s [New] on periodic homeomorphisms of spaces. Thus we find x0 ∈ V
which is not fixed by any fj , and hence

s := min
j=1,...,k

q
(
fj (x0), x0

)
> 0.

Let U be a chordal ball about x0 with radius r > 0, where r is chosen so that
r < 1

2s , U ⊂ V , and so that x ∈ U implies q
(
fj (x), fj (x0)

)
< 1

2s for j = 1, . . . , k .
Then for x ∈ U we have

q
(
fj (x), x0

)
≥ q
(
fj(x0), x0

)
− q
(
fj(x), fj (x0)

)
> s − 1

2s > r,

hence fj (x) /∈ U . Thus U satisfies

f(U) ∩ U = ∅ for all f ∈ G r {id}.

This lemma enables us to prove our final theorem.

Proof of Theorem 3.5. Let 0 < c < 2. Choose U as in Lemma 4.2 and let h
be a Möbius transformation which maps U onto the chordal ball V with center
∞ and radius c . Then if

f̃ = h ◦ f ◦ h−1, f ∈ Gr {id},

we have
f̃(V ) ∩ V = h

(
f(U) ∩ U

)
= ∅,

and hence
d(f̃ , id) ≥ q

(
f̃ (∞),∞

)
≥ c.

References

[Bea] Beardon, A.F.: The Geometry of Discrete Groups. - Springer-Verlag, New York, 1983.

[FrSk] Freedman, M.H., and R. Skora: Strange actions of groups on spheres. - J. Differential
Geom. 25, 1987, 75–98.

[Gab] Gabai, D.: Convergence groups are Fuchsian groups. - Ann. of Math. (2) 136:3, 1992,
447–510.



150 Petra Bonfert-Taylor
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