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Abstract. We compute the period matrices of the Riemann surfaces given by the equations
w2 = z2g+2 − 1 (Accola–Maclachlan surfaces) and w2g+2 = z(z − 1)g−1(z + 1)g+2 (Kulkarni
surfaces). Furthermore, we obtain the triples of matrices associated to the real forms for these
Riemann surfaces.

1. Introduction

A classical result of Torelli says that an isomorphism between the Jacobians of
two compact Riemann surfaces comes from a conformal map, so that essentially the
period matrix determines the surface. However, for g ≥ 2 it is difficult to compute
explicitly the period matrix, and results have been obtained for some famous
surfaces of Klein, Fermat, Bring or Lefschetz. As a short historical background
we may quote the papers by [B], [BT], [KN], [RL], [RR], [Sc1], [Sc2], [Sch], [W].
In [BT], the period matrix of Macbeath’s curve of even genus is computed, whilst
in [B] and [KN] the case of genus 2 surfaces is analyzed. The surfaces of genus 3
are studied in [RL] and some of the hyperelliptic ones are treated in [Sc1], [Sc2]
and [Sch]. All of them use the method introduced by Rauch which involves the
solution of a system of quadratic equations. The difficulty of this method increases
when the genus becomes bigger. This is the reason why we need to use a different
approach, which originally comes from Siegel [S] and Weyl [W] and was already
used in [RR].

1991 Mathematics Subject Classification: Primary 14H, 30F.

The first two authors were partially supported by DGICYT PB 95-0017 and CEE CHRX-

CT93-0408, the third by DGICYT PB 950354 and CEE CHRX-CT93-0408 and the fourth by

Fondecyt 8970007.



162 E. Bujalance, A.F. Costa, J.M. Gamboa, and G. Riera

We obtain here the period matrices and represent their automorphism groups
for a large and remarkable family of surfaces. Namely, let Xg be the Riemann
surface given by the algebraic equation w2 = z2g+2−1; Accola [A] and Maclachlan
[M] proved that its automorphismgroup has order 8g+8 and that this is the largest
possible order that can be constructed uniformly for every g ≥ 2. Much later,
Kulkarni [K] proved that if g 6= 3 mod4, such surface is unique, whereas for g = 3
mod4 there exists exactly one other surface Yg of the equation w2g+2 = z(z −
1)g−1(z + 1)g+2 with an automorphism group of the same order. A problem still
to be solved is to explain those results in terms of linear algebra data, namely, to
find all principally polarized Abelian varieties with such groups of automorphisms.

Furthermore, those surfaces admit anti-conformal symmetries, and we proved
in [BBCGG] that there are exactly three non-conjugated symmetries admitting
fixed points. In other words, there are exactly three dianalytically non-equivalent
bordered Klein surfaces whose double coverings are Xg or Yg . We here compute
its (real) Jacobians, and, to our knowledge, this is the first time such results have
been obtained for Klein surfaces. To do so, in Section 2 we show that the period
matrix of a Riemann surface is given by a pair of real matrices (C, R) and that
the real Jacobian of a Klein surface is given by a triple (C,R,S) , where S is
the matrix of the anti-conformal involution. For real algebraic curves, the reader
may consult Comesatti [C] from the beginning of this century, [GH], [Si], [SS] in
modern language, and [R] for Klein’s triples. As an example, we finally show the
equivalence of the different points of view writing the matrices for the three real
curves in g = 3.

2. Preliminaries

Let M be a compact Riemann surface of genus g and B = [e1, . . . , e2g ] be
an arbitrary basis of H1(M,Z) . We define the intersection matrix C of the above
basis with entries

(1) cij = −ei.ej ,

where the dot denotes the number of intersections, counting +1 at each intersec-
tion point where ei crosses ej as the x-axis crosses the y -axis, and −1 otherwise.

A basis B∗ = {dw1, . . . , dw2g} of the real vector space H1,0(M,C) is said to
be dual of B if

(2) Re

∫

ei

dwj = cij .

From Riemann bilinear relations it follows that the matrix S with entries

(3) Im

∫

ei

dwj = sij
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is symmetric and positive definite.
The complex structure in H1,0(M,C) is given by a matrix R with respect to

the basis B∗ and satisfies R2 = −I . By equalities (2) and (3) we have the relation

(4) CR = S.

After H. Weyl [W] and C.L. Siegel [S], the matrix R is called the period
matrix of M with respect to the basis B .

Let a be a holomorphic automorphism of M , and [a] denotes the matrix of
its action on the homology and cohomology with respect to the above basis. Then,

(5) [a]−1R[a] = R, [a]′C[a] = C,

where the symbol [a]′ denotes the transpose of the matrix [a] .
On the other hand, if s is an antiholomorphic involution (a symmetry), then

(6) [s]−1R[s] = −R and [s]′C[s] = −C;

(see [R]).

If C̃ is the intersection matrix of a canonical basis B̃ = {a1, . . . , ag , b1, . . . , bg}
of H1(M,Z) , i.e.,

(7) C̃ =

(
0 −Ig
Ig 0

)
,

we can obtain the ordinary Riemann (g × g)-period matrix Z by the formula

(8) Z = R̃−1
21 R̃22 − iR̃−1

21 ,

where

R̃ =

(
R̃11 R̃12

R̃21 R̃22

)

is our period matrix with respect to the dual basis in H1,0(M,C) of B̃ .
Notice that if a is a holomorphic automorphism of M whose matrix with

respect to B̃ is (
P Q
R S

)
,

then

(5 ′ ) PZ − ZS + ZRZ = Q.

In our computations it will be essential to deal with the relation between
automorphisms and period matrices. For these purposes, the formulae (5) are
much better than the analogous (5 ′ ).

Recall that the pair (R,C) determines the analytic structure of a given Rie-
mann surface in the following sense. Two such pairs, (R1, C1) and (R2, C2) ,
determine the same structure if and only if there exists an integral matrix N
whose determinant is 1 such that

N−1R1N = R2; N ′C1N = C2.
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3. Period matrices

Accola and Maclachlan independently found for every genus g ≥ 2 a surface
Xg whose holomorphic automorphism group has order 8g + 8; precisely,

(3.1) Aut+(Xg) = 〈a, d; a2(g+1), d4, (ad)2, ad2a−1d2〉.
The quotient of Xg under the action of the automorphism a has genus zero.

This fact provides the following equation for Xg :

(3.2) y2 = x2g+2 − 1.

Later, Kulkarni proved that for large values of g , g 6≡ 3 mod4, Xg is the only
compact Riemann surface of genus g whose group of holomorphic automorphisms
has order 8g + 8, whilst for g ≡ 3 mod4 there exists exactly one other surface
Yg whose holomorphic automorphism group has order 8g + 8. In fact, this group
has the presentation

(3.3) Aut+(Yg) = 〈a, d; a2(g+1), d4, (ad)2, d2ad2ag〉.
Also in this case, the quotient of Yg under the action of the automorphism a

is the sphere, and from [BBCGG] its equation is

(3.4) y2g+2 = x(x − 1)g−1(x+ 1)g+2.

In order to compute the period matrices of Xg and Yg , we uniformize both
surfaces by Fuchsian surface groups.

To simplify the notations in what follows, let t = g + 1.
The coverings Xg → Xg/〈a〉 and Yg → Yg/〈a〉 have three branched points of

orders 2t , 2t and t . Therefore, we consider the triangular group

(3.5) Nt = 〈a, b, c; a2t, b2t, ct, abc〉,
whose fundamental region is the union of two hyperbolic isosceles triangles of
angles π/2t , π/2t , π/t and vertices O , A , B , C (see Figure 1).

Figure 1.
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We denote by a the rotation at O with angle π/t , by b the rotation at A
with angle π/t , and by c the rotation at C with angle 2π/t . The monodromy
epimorphisms of the coverings Xg → Xg/〈a〉 and Yg → Yg/〈a〉 are θt: Nt →
C2t = 〈α;α2t = 1〉 and ηt: Nt → C2t , respectively, and defined by θt(a) = α =
θt(b) , θt(c) = α−2 and ηt(a) = α , ηt(b) = αt+1 , ηt(c) = αt−2 . The kernels of
θt and ηt are Fuchsian groups uniformizing Xg and Yg , respectively, and have
as the fundamental region a hyperbolic polygon of 4t sides constructed with 2t
quadrilaterals centered at O .

Let us now obtain the identification rules of the sides of the above polygon.
The sides are labelled by 1, 2, . . . , 4t counter-clockwise. To obtain the identifica-
tion of the sides, observe that a2c ∈ ker θt and at+2c ∈ ker ηt . Hence for Xg we
have:

(3.6) if k is odd: k
c−→ k − 1

a2

−→ k + 3mod(4t),

and for Yg we obtain:

(3.7) if k is odd: k
c−→ k − 1

at+2

−→ 2t+ k + 3mod(4t).

After the identifications of sides, three types of vertices appear: A , B and C .
We illustrate the case t = 4 (the first in which both Xg and Yg occur).

In Figure 2 we have a regular 16-gon whose sides have been labelled with integer
numbers 1 to 16 = 4t and the vertices with the letters A , B and C . The pairwise
identifications of sides for Xg and Yg appear in two columns in Figure 2.

Let us define the following elements in H1(M,Z) , where M denotes either
Xg or Yg :

e1 = (4t) + (1)

and rotate via a to build

(3.8)

e2 = a(e1) = (2) + (3),

e3 = a2(e1) = (4) + (5),

...

e2t−2 = a2t−3(e1) = (4t− 6) + (4t− 5),

where (k) denotes the side with label k .
Using the identification rules (3.6) and (3.7), we obtain in both cases:

(3.9)
e2t−1 = a2t−2(e1) = −e1 − e3 − · · · − e2t−3,

e2t = a2t−1(e1) = −e2 − e4 − · · · − e2t−2.
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Figure 2. Xg : 1–4, 3–6, 5–8, 7–10, 9–12, 11–14, 13–16, 15–2; Yg : 1–12, 3–14, 5–16, 7–2, 9–4,

11–6, 13–8, 15–10

Lemma 3.1. With the same notation as above, B = [e1, . . . , e2t−2] is a basis
of H1(M,Z) for M equal to Xg or Yg . The matrix of the automorphism a with
respect to B is

[a] = (aij ) aij =

{−1 if i is odd and j = 2t− 2,
1 if i = j + 1, 1 ≤ j ≤ 2t− 3,
0 otherwise.

Proof. Let Γt be the kernel of θt or ηt . The group Γt is generated by the
hyperbolic elements that provide the side identifications. In the case M = Xg ,
the axis of each of these hyperbolic elements is homotopically equivalent to one of
the ei , i = 1, . . . , 2t . By (3.9), this shows that {e1, . . . , e2t−2} generate Γt , and
since rkH1(M,Z) = 2g = 2t − 2, then B is a basis. In the case M = Yg , we
repeat the argument using the fact that the axis of each hyperbolic generator is
homotopically equivalent to a sum of some of the ei , i = 1, . . . , 2t .

Applying (3.8) and (3.9), we easily obtain the matrix [a] .

In the next lemma we shall compute the intersection matrices for the basis
above.

Lemma 3.2. Let CX = (xij ) and CY = (yij ) be the intersection matrices
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of Xg and Yg , respectively, with respect to the basis given in Lemma 3.1. Then,

xii+1 = −1, i = 1, . . . , 2t− 3,

xij = 0, if i < j and j 6= i+ 1,

xij = −xji, for all i, j,

and

y11 = y12 = y1t+1 = 0,

y1k =

{
(−1)k if 3 ≤ k < t+ 1,
(−1)k+1 if t+ 1 < k ≤ 2t− 2,

yij = y1j+1−i if i < j,

yij = −yji for all i, j.

Proof. By their very definition, both CX and CY are antisymmetric; so we
compute only xij and yij with i < j .

Notice that the matrix [a] of a with respect to the basis B is the same for
both surfaces Xg and Yg .

Since [a]′CX[a] = CX and [a]′CY [a] = CY , then

xi+1,j+1 = xi,j , yi+1,j+1 = yi,j

for i < j < 2t− 2 and so

xij = x1,j−i+1, yij = y1,j−i+1

for all i < j . Hence we need only to compute the first row of the matrices CX
and CY . Let j be an integer such that 1 < j ≤ 2t − 2. The cycle ej intersects
e1 just at the point A , so we need to analyze the situation in this vertex.

Figure 3.
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Figure 4.

Figure 5.

We begin with the surface Xg . In Figure 3 we represent the images of the
polygon of Figure 2 under the action of the group ker θt uniformizing Xg in a
neighborhood of A .

The reader is referred to Figures 4 and 5, where we represent the cycles e1

and ej .

It follows that e1 intersects ej non-trivially only in the case j = 2. Then
xij = 0 if j ≥ 3 and x12 = −(e1.e2) = −1 (see Figure 6).

Now we deal with the surfaces Yg . As before, e1 intersects ej just at the
point A , and we look at a full neighborhood of A (see Figure 7).

Notice that we have labelled l0, l2, · · · , l2t the pairs of identified sides arriving
at A . In fact, lk consists of the sides labelled as (k−1)2t+2k−1 and k(2t+2)+2.
Let us draw the cycle e1 in Figure 8.

Observe that e1 = 1 + 4t and the label lt−1 corresponds to the side 4t . This
explains the figure.

Since a is a conformal automorphism and ej = aj−1(e1) , see 3.8, we can
represent the cycle ej as in Figure 9, where k ≡ 1+(j−1)(t+1) mod2t , because
a(lk) = lk+(t+1)mod 2t .
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Figure 6.

Figure 7 and Figure 8.

Figure 9 and Figure 10.

In Figure 10 we have represented with distinct drawings the different ej ’s
having intersection number +1 with e1 .
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Using the automorphism a , it is easy to compute the values of j such that
ej is one of the above, i.e., k ≡ 1 + (j − 1)(t + 1)mod2t , where k = 2, . . . , t− 1.
The solutions are the odd integers j with 3 ≤ j ≤ t− 1, and the even integers j
with t + 2 ≤ j ≤ 2t− 2.

Figure 11.

In Figure 11 we have represented the drawings of the ej ’s having intersec-
tion 0. This implies that y11, y12 and y1t+1 are the only zeros in the first row of
CY , and using the formula (1) we obtain the matrices CX and CY as stated in
Lemma 3.2.

Our next step is to compute the period matrix R . First we impose the con-
dition [a]−1R[a] = R , and we remark that this almost determines the matrix R .
More precisely:

Lemma 3.3. Let ∆ = (∆ij) be the (2t− 2) x (2t− 2) matrix with entries

∆ij =

{
sin
(
k(j − 1)π/t

)
if i = 2k,

cos
(
k(j − 1)π/t

)
if i = 2k − 1.

Let [â] and R̂ be the following matrices:

[â] =
t⊕

k=1

(
cos(kπ/t) − sin(kπ/t)
sin(kπ/t) cos(kπ/t)

)
, R̂ =

t⊕

k=1

εk

(
0 −1
1 0

)
,

where εk ∈ {−1, 1} . Then

[a] = ∆−1[â]∆(3.10)

and

R = ∆−1R̂∆.(3.11)

Proof. It is straightforward linear algebra.
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Now we must decide among the 2t possible choices of the εk ’s, which makes
CR positive definite, or, equivalently, ĈR̂ positive definite, where

(3.12) C = ∆′Ĉ∆.

This is the content of the next lemma, which is also elementary:

Lemma 3.4. The matrix R̂ has the form

t−1⊕

k=1

εk

(
0 −1
1 0

)
,

with εk = −1 for all k for the surface Xg and

εk =

{
−1 if k is odd and k > 1

2 t,
1 otherwise,

for the surface Yg .

Remark 3.5. In order to compute R̂ , we have only used the monodromy
epimorphisms θt and ηt on the cyclic groups. Since the resulting period matrix R̂
is unique, then we can conclude that the monodromy completely determines these
surfaces. This result has been previously obtained using combinatorial methods
by Conder and the first author in [BC].

From a direct change of basis we get the following description of R .

Theorem 3.6. The period matrix R of the Accola–Maclachlan surface Xg

and the Kulkarni surface Yg with respect to the basis [e1, . . . , e2t−2] is

R = ∆−1R̂∆,

where ∆ and R̂ are described in 3.3 and 3.4, respectively.

To finish this section, we shall illustrate the claim announced at the begin-
ning of the paper: we compute from R the Riemann matrix Z for the Accola–
Maclachlan surface of genus 2.

Example 3.7. It is easily seen that the basis B̃ = [a1 = e1, a2 = e4, b1 =
e2, b2 = −e1 − e3] is canonical. Let

P =




1 0 0 −1
0 0 1 0
0 0 0 −1
0 1 0 0



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be the matrix of the change of basis. Following Theorem 3.6, we obtain the matrix

R =




0 1
3

√
3 0 1

3

√
3

− 2
3

√
3 0 1

3

√
3 0

0 − 1
3

√
3 0 2

3

√
3

− 1
3

√
3 0 − 1

3

√
3 0


 .

With respect to B̃ , the period matrix is

R̃ = P−1RP =




0 − 1
3

√
3 2

3

√
3 0

− 1
3

√
3 0 0 2

3

√
3

− 2
3

√
3 0 0 1

3

√
3

0 − 2
3

√
3 1

3

√
3 0


 .

This provides us with the matrices

R̃21 =

(− 2
3

√
3 0

0 − 2
3

√
3

)
and R̃22 =

(
0 1

3

√
3

1
3

√
3 0

)

and by the formula (8):

Z =

( 1
2 i
√

3 − 1
2

− 1
2

1
2
i
√

3

)
.

This matrix coincides with the matrix obtained by Kuusalo and Näätänen in [KN,
Case F, p. 411]).

4. Klein surfaces

Klein surfaces are the quotients of Riemann surfaces under the action of
antiholomorphic involutions (symmetries). The Accola–Maclachlan and Kulkar-
ni surfaces admit exactly three anticonformal involutions with fixed points pro-
ducing dianalytically non-equivalent bordered Klein surfaces (i.e., three nonbira-
tionally equivalent real curves whose complexification is the given Riemann surface;
see [BBCGG]).

Let M/s be a Klein surface defined as the quotient of the Riemann surface
M under the action of the symmetry s . In [R], the fourth author associated to
M/s a triple (R,C, [s]) , where (R,C) has the meaning of the preceding sections
and [s] is the matrix in homology of the symmetry s , and he proved that two such
triples (R1, C1, [s1]) and (R2, C2, [s2]) are associated to dianalytically equivalent
Klein surfaces if and only if there exists an integer matrix N of determinant ±1
such that

N−1R1N = R2; N ′C1N = C2; N−1[s1]N = [s2].
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In this section we shall compute the matrices of the three symmetries, s1, s2

and s3 , with respect to the basis [e1, . . . , e2t−2] introduced in (3.8).
Let M denote either the Accola–Maclachlan or the Kulkarni surface. Let

Aut±(M) be the group of automorphisms of M including the anticonformal ones.
In [BBCGG], we proved that the quotient M/Aut±(M) can be uniformized by a
hyperbolic Coxeter group (2, 4, 2t) , i.e., generated by three reflections whose axes
form a hyperbolic triangle with angles 1

2π,
1
4π, π/2t .

The reflections with axes on the lines OA and OC in Figure 1 are symmetries
of the polygon in Figure 2. Even more, they preserve the pairwise identifications
(3.6) and (3.7) corresponding to the two types of surfaces.

Figure 12.

Let us construct a hyperbolic triangle ODE (see Figure 12) with angles
1
2π,

1
4π, π/2t , with the vertex E on the line OA and D on OC .
The reflections with axes on DE and OE generate a dihedral group D4 . The

action of D4 on the triangle ODE produces a triangulation of the quadrilateral
OCAB of Figure 1. The action of the rotation of order 2t with center O provides
us with a triangulation with hyperbolic triangles of type 1

2π,
1
4π, π/2t . The above

triangulation corresponds to the lifting of the triangle uniformizing M/Aut±(M)
by the covering M →M/Aut±(M) (see Figure 13 in the case g = 3).

Let us choose as s1 the lifting of the reflection with axis OA such that s1

has as the fixed point set the line joining in the polygon of Figure 1 the center O
with the vertex A where the sides labelled 2t− 1 and 2t intersect.

It follows directly from Figure 2 that [s1] acts on the basis given in (3.8) by
the following formulae:

[s1](e1) =

t−1∑

k=1

e2k, [s1](e2) =

t−1∑

k=1

e2k−1, [s1](ek) = −e2t−k+1, 3 ≤ k ≤ 2t− 2.

Analogously, let us choose as s2 the symmetry whose fixed point set is the line
joining O with the vertex B , where the sides 2t and 1 intersect. From Figure 2
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Figure 13.

we have:

[s2](e1) = −e1, [s2](e2) =
t−1∑

k=1

e2k, [s2](e3) =
t−1∑

k=1

e2k−1,

[s2](ek) = −e2t−k+2, 4 ≤ k ≤ 2t− 2.

To analyze the third symmetry we must separately lift the reflection with axis DE
to the Accola–Maclachlan and the Kulkarni surfaces. Let us begin with the first
case. Since the fixed point set of s3 is the union of the orthogonal lines joining k
with k + 3mod(4t) for all k ≡ 3mod4, it follows that

[s3](ei) = (−1)i+1ei for all i.

To finish with, we study the action of [s3] for the surface Yg . In this case, the
fixed point set of s3 consists of the orthogonal lines joining k with k + 3mod(4t)
for all k ≡ 7mod8.

Let us compute [s3](e2l) , for odd l . By 3.8, e2l = 2(2l − 1) + (4l − 1),
and 4l − 2 is identified with 2t + 4l − 5; see 3.7. Since, again by 3.8, et+2l−2 =
(2t+ 4l − 6) + (2t+ 4l − 5), we conclude that

[s3](e2l) = et+2l−2.

On the other hand, if l is even, let k = 1
2 (2l + 2− t) , which is odd. Hence

[s3](e2k) = et+2k−2 = e2l , and since s3 is an involution,

[s3](e2l) = e2l+2−t.
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Now we compute [s3](ek) for odd k , and we begin with the case k = 4l+1. Note
that e4l+1 = (8l) + (8l + 1), and so

[s3](e4l+1) = (8l − 1) + e4l+1 + (8l + 2).

But using the identifications in (3.1), we get

(8l − 1) + (8l + 2) =

(t/4)−1∑

j=0

(e2+4l+4j + e4l−4j),

and so

[s3](e4l+1) = e4l+1 +

(t/4)−1∑

j=0

(e2+4l+4j + e4l−4j).

In a similar way we obtain

[s3](e4l+3) = e4l+3+2t +

(t/4)−1∑

j=0

[e2+4l+4j+2t + e4l−4j+2t].

In all computations above, whenever either e2t−1 or e2t appears, the reader should
change them by their values given in (3.9). For example,

[s3](e(t/2)+1) = e2t = −(e2 + e4 + · · ·+ e2t−2).

This finishes the computation of the matrices of the actions in homology of the
symmetries s1, s2 and s3 in both surfaces Xg and Yg .

This way, the triples (R,C, [si]) , i = 1, 2, 3, where R is given in (3.11), C
was calculated in Lemma 3.2 and the matrices [si] are the ones just obtained, are
the representants of the three non-dianalytically equivalent Klein surfaces having
Xg and Yg as double covers.

Comessatti [C], Gross–Harris [GH] and Shimura [S] proved that for every
compact Riemann surface M of genus g ≥ 2, and every symmetry τ on M ,
there exists a symplectic basis [a1, . . . , ag , b1, . . . , bg ] of H1(M,Z) such that the
Riemann period matrix Z of M with respect to this basis has the form

Z = 1
2H + iY

with H ∈Mg(Z) , Y ∈Mg(R) , and the matrix [τ ] with respect to this basis is

[τ ] =

(
Ig H
0 −Ig

)
.

It is proved in [GH] that the Klein surfaces corresponding to (Z1, τ1) and (Z2, τ2)
are dianalytically distinct if and only if the matrices Z1 and Z2 are linearly
different. This classification agrees with the one given at the beginning of this
section; see [R]. We now illustrate how to obtain the period Riemann matrices Zi ,
once we know the triples (R,C, [si]) for Xg and Yg in the case g = 3. For g = 3,
the surface Y3 , as it was proved by Watson [Wa], has only two non-conjugated
symmetries with fixed points, s1 and s2 .
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Example. We begin with the surface X3 and its symmetry s1 . The matrix
of the change of basis, whose columns express the vectors [a1, a2, a3, b1, b2, b3] in
terms of our previous basis [e1, e2, e3, e4, e5, e6] , is

P1 =




−1 0 0 1 0 0
−1 0 0 0 1 0
−1 −1 0 1 0 1
−1 0 −1 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 0



.

With respect to this new basis,

[s1] =

(
I3 H1

0 −I3

)
and H1 =



−1 −1 0
−1 0 −1
0 −1 0


 .

Following the same procedure as in Example 3.7, one gets

Z1 =



− 1

2 + 1
4 (1 +

√
2 )i − 1

2 − 1
4 i − 1

4i

− 1
2 − 1

4 i
1
4 (1 +

√
2 )i − 1

2 + 1
4 (1−

√
2 )i

− 1
4i − 1

2 + 1
4 (1−

√
2 )i 1

4(1 +
√

2 )i


 .

Note that 2ReZ1 = H1 .
For the other symmetries on X3 with similar changes of basis, we have:

Z2 =




1
2
(1 +

√
2 )i −1 − 1

2
i

−1 1
4

√
2 i − 1

2
− 1

2
i − 1

2
1
2
i


 ,

Z3 =




1
2
(1 +

√
2 )i − 1

2

√
2 i 1

2
(1−

√
2 )i

− 1
2

√
2 i

√
2 i 1

2

√
2 i

1
2 (1−

√
2 )i 1

2

√
2 i 1

2 (1 +
√

2 )i


 .

There are only two non-conjugated symmetries, s1 and s2 , with fixed points (see
[Wa]), and the matrices are:

Z1 =



− 1

2 + 3
2 i − 1

2
1
2 − i

− 1
2 − 3

2 + i 1− 1
2 i

1
2
− i 1− 1

2
i − 1

2
+ i


 ,

Z2 =



−2 + 3

2 i −1 + 1
2 i −1− 1

2 i
−1 + 1

2 i − 3
2 + 1

2 i − 1
2

−1− 1
2 i − 1

2
1
2 i


 .
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