
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 25, 2000, 179–186

BESICOVITCH’S CIRCLE PAIRS, ANALYTIC
CAPACITY, AND CAUCHY INTEGRALS

FOR A CLASS OF UNRECTIFIABLE 1-SETS

Hany M. Farag

Rice University, Department of Mathematics

Houston, TX 77005, U.S.A.; farag@math.rice.edu

Abstract. We give an elementary proof of a theorem, which is originally due to Mattila
on the vanishing of the analytic capacity of a certain natural subclass of the totally unrectifiable
1-sets in the plane, which includes self-similar sets (which are not line segments). We also give a
version in Rn , in relation to the Cauchy kernel. Our main tool is the circle pair idea which goes
back to Besicovitch who used it in his study of the density properties of rectifiable, and totally
unrectifiable 1-sets in the plane. Our method is also self-contained to some extent.

1. Introduction

In this paper we provide a different method of proof of a nice theorem of
Mattila on the analytic capacity of a class of totally unrectifiable 1-sets in the
plane. We also give an extension in the setting of Rn . Our method is elementary,
and exhibits a connection to some ideas that go back to Besicovitch. I would like
to thank Pertti Mattila for very helpful remarks on this paper. The theorem under
consideration is:

Theorem 1.1 [Ma2]. Let E be a compact subset of C with H 1(E) <∞ . If
for H 1 almost every a ∈ E we have that the support of every ν ∈ Tan(H 1bE, a)
is not contained in a line, then γ(E) = 0 .

We recall a few facts and notations:

(1) E is a 1-set whenever 0 < H 1(E) <∞ .
(2) The lower circular density of E at a , denoted by Θ1

∗(E, a) , is defined by

Θ1
∗(E, a) ≡ lim inf

r→0+

(
(2r)−1H 1

(
E ∩B(a, r)

))
,

whereas the upper circular density of E at a , denoted by Θ∗1(E, a) , is defined by

Θ∗1(E, a) ≡ lim sup
r→0+

(
(2r)−1H 1

(
E ∩ B(a, r)

))
,

where B(a, r) is the closed ball centered at a , and having radius r .
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(3) If ν , µ are complex Radon measures, then ν ∈ Tan(µ, a) whenever there
exist sequences ci , ri , of positive numbers, such that ri → 0, and Ta,ri#µ → ν
weakly, as i→∞ . Here Ta,r#µ is the push forward of µ under the map Ta,r(x) =
(x − a)/r .

(4) γ(E) > 0 (positive analytic capacity) whenever there exists a bounded
analytic function f(z) on C\E , which is not a constant, and γ(E) = 0 otherwise.

(5) E is called totally unrectifiable if H 1(E ∩ K) = 0 for every rectifiable
curve K .

As of now, one has a complete characterization of the rectifiability properties
of compact 1-sets in terms of their analytic capacity. Namely, γ(E) = 0 if and
only if E is totally unrectifiable. The proof of this spanned decades of outstanding
works. Recently, the last piece was completed by Guy David [D]. The reader is
referred to the (short) list of references provided. However, for the class of sets
under consideration, one has much simpler proofs. In [Ma1], a somewhat stronger
version of Theorem 1.1 was given using a theorem of Besicovitch that is valid
for subsets of R2 . On the other hand the methods in [Ma2], and below, can be
used to show corresponding results for 1-sets in Rn of the appropriate class (see
Section 5).

2. A reformulation

In the spirit of providing an elementary treatment we will now state an equiv-
alent version of the theorem which will be more suitable.

Recall that θ ∈ [0, π) is a weak tangent direction for E at a , if Θ1
∗(E, a) > 0,

and for all δ > 0, lim infr→0

(
r−1H 1({z ∈ E ∩ B(a, r) : | Im e−iθ(z − a)| ≥

δ|z − a|}
)

= 0. See [Ma1], [Fal]. We now state the following basic fact:

Lemma 2.1. θ ∈ [0, π) is a weak tangent direction for E at a , if and only if
there exists a positive Radon measure ν ∈ Tan(H 1bE, a) , with supp(ν) contained
in a line through the origin with direction θ .

For a proof one merely compares the definitions using some basic theorems
on the existence of tangent measures. See [Ma2], [P]. We omit the details here.
Theorem 1.1 can now be reformulated as:

Theorem 2.2. Let E be a compact subset of C with H 1(E) < ∞ . If for
almost all a ∈ E , Θ1

∗(E, a) > 0 , and no direction θ ∈ [0, π) is a weak tangent
direction for E at a , then γ(E) = 0 .

We will give a proof of this theorem in Section 4 after we record some basic
estimates which will be needed.

Remark 1. If in the definition of a weak tangent direction we replace the
lim inf by lim sup we get the definition of a tangent direction. The class of sets in
the above theorems is thus known a priori to be totally unrectifiable since the latter
is characterized by the nonexistence of tangent almost everywhere (see e.g. [Fal]).
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3. Basic estimates

In this section we recall some basic estimates that follow from our hypothesis,
and basic results in geometric measure theory and analytic capacity:

(1) If E is a compact 1-set, γ(E) > 0, then there exist φ ∈ L∞(E), A > 0,
such that

∫
E

(
φ(ζ)/(ζ − z)

)
dH 1ζ is a nonconstant analytic function on C\E ,

and the following estimate holds:

(3.1) sup
r>0
z∈C

∣∣∣∣
∫

E\B(z,r)

φ(ζ)

ζ − z
dH 1ζ

∣∣∣∣ < A.

See [Ma2] for an elegant treatment.

(2) By Lusin’s theorem, and since φ cannot be identically zero, we can find
α > 0, a compact 1-set E1 ⊂ E , such that, on E1 , |φ(ζ)| > α , and φ(ζ) is
continuous. Thus, given ε > 0, we can find r1 > 0, such that

(3.2) |φ(ζ)− φ(ζ ′)| < ε,

if |ζ−ζ ′| < r1 , and ζ, ζ ′ ∈ E1 . We can also require that |φ
(
ζ
)
| ≤ ‖φ‖∞ , whenever

ζ ∈ E1 .

(3) Given D > 1, we can find a compact 1-set E2 ⊂ E1 , and r2 > 0, such
that

(3.3) H 1
(
E ∩ B(a, r)

)
≤ 2rD,

for a ∈ E2 , r ≤ r2 .

(4) Since at almost every a ∈ E , we have no weak tangent direction, and
Θ1
∗(E, a) > 0, then (by compactness of the unit circle) we can find δ > 0, β > 0,

r3 > 0, and a compact 1-set E3 ⊂ E2 , such that

(3.4) H 1
(
{z ∈ E ∩B(a, r) : | Im e−iθ(z − a)| ≥ δ|z − a|}

)
≥ βr

whenever a ∈ E3 , r ≤ r3 , θ ∈ [0, π) .

(5) If F is a 1-set, then

(3.5) Θ∗1(F, a) ≥ 1
2

for almost every a ∈ F,

and

(3.6) Θ∗1(F, a) = 0 for almost every a ∈ F c.

The above facts are rather standard reductions based on the definitions of
H 1 , and its densities. See e.g. [Fal] or [Ma2].
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4. Proof of Theorem 2.2

Let F = E3 be as in Section 3, and let r0 = 1
2 min{r1, r2, r3} . F is a totally

unrectifiable 1-set, and is thus totally disconnected. We therefore have that F can
be written as F1 ∪F2 with F1 , F2 non-empty, compact, and disjoint, in infinitely
many ways. Let F1 , F2 be any choice of such sets, and let w1 ∈ F1 , w2 ∈ F2 ,
be such that |w1 − w2| = s ≡ dist(F1, F2) . By focusing on a small piece of F ,
we may also assume that s < r0 . By a translation and a rotation, we can assume
that w1 is at the origin, and w2 is positive . We can now prove:

Lemma 4.1. If C is sufficiently large, ε (in (3.2)) sufficiently small, and
F ′ ≡ F ∩

(
B(w1, s)\B(w1, s/C)

)
, then (with A as in (3.1)),

∣∣∣∣
∫

F ′

φ(ζ)

ζ − w1
dH 1ζ

∣∣∣∣ > 4A.

Proof. Choose D ≤ 2 in (3.3), θ = 1
2π in (3.4), and B ≥ 8/β . Let F ′k

=F ′ ∩
(
B(w1, B

−ks)\B(w1, B
−k−1s)

)
, observe that (using (3.2)),

(4.1)

∣∣∣∣Re
φ̄(w1)

|φ(w1)|

∫

F ′

φ(ζ)

ζ − w1
dH 1ζ

∣∣∣∣ ≥ |φ(w1)|
∣∣∣∣
∫

F ′
Re

1

ζ − w1
dH 1ζ

∣∣∣∣

− ε

∣∣∣∣
∫

F ′

1

ζ −w1
dH 1ζ

∣∣∣∣.

Now observe that the Besicovitch circle pair R(w1, w2) ≡ int
(
B(w1, s) ∩

B(w2, s)
)

is disjoint from F , and by an elementary computation (using (3.3)),
we find that

(4.2)

∣∣∣∣
∫

F ′,Re ζ≥0

Re
1

ζ −w1
dH 1ζ

∣∣∣∣ < M,

for some M > 0, which is independent of C . Thus we have that (for n =
[lnC/lnB] )

(4.3)

∣∣∣∣
∫

F ′
Re

1

ζ − w1
dH 1ζ

∣∣∣∣ ≥
∣∣∣∣
n∑

k=0

∫

F ′
k
,Re ζ<0

Re
1

ζ − w1
dH 1ζ

∣∣∣∣−M.

By (3.3), (3.4), and our choice of B , we find that

(4.4) H 1
(
{ζ ∈ F ′k : |Re(ζ−w1)| ≥ δ|ζ−w1|}

)
≥ βB−ks− 4B−k−1s ≥ 1

2βB−ks,

so that the right hand side of (4.1) is at least 1
2
(αδβn) − 4ε(n + 1)−M . We can

therefore satisfy the statement of the lemma by a proper choice of C , and ε .
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Once C , and ε , have been chosen, they remain fixed. Lemma 4.1, and (3.1),
together imply that

(4.5)

∣∣∣∣
∫

E′\F ′

φ(ζ)

ζ −w1
dH 1ζ

∣∣∣∣ > A,

where E′ = E ∩
(
B(w1, s)\B(w1, s/C)

)
. Since φ is bounded, there must exist

η > 0, depending on C,B, ‖φ‖∞ , but not on the pair w1 , w2 , so that

(4.6) H 1
(
(E\F ) ∩B(w1, s)

)
≥ ηs.

At this point we can show that F , and hence E , cannot be totally unrectifi-
able. We will use a variation of the treatment in [Fal], closer in spirit to those in
[Far1], [Far2].

Proposition 4.2. Let E be a 1-set, and F ⊂ E , compact and H 1(F ) > 0 .
Suppose there exists η > 0 , so that whenever F is represented as F = F1 ∪ F2 ,
with F1 , F2 compact non empty and disjoint, and w1 ∈ F1 , w2 ∈ F2 are such
that |w1 − w2| = s ≡ dist(F1, F2) , we have that H 1

(
(E\F ) ∩ B(w1, s)

)
≥ ηs .

Then there exists a continuum K such that 0 < H 1(K ∩E) ≤H 1(K) <∞ .

Proof. By (3.6), we can, for a given γ > 0, find x0 ∈ F , ρ > 0 such that

(4.7) H 1
(
(E\F ) ∩B(x0, r)

)
≤ γr for 0 < r ≤ 2ρ.

By taking an appropriate subset of F , we can also require (by (3.3)) that

(4.8) H 1
(
E ∩B(x, r)

)
≤ 4r for 0 < r ≤ 2ρ, x ∈ F,

and by (3.5),

(4.9) H 1
(
F ∩B(x0, ρ)

)
≥ 1

2ρ.

We can also assume that there is a point y ∈ F ∩ ∂B(x0, ρ). Let C be the
family of closed balls:

(4.10)
C =

{
B(x, r) : x ∈ F ∩B(x0, ρ), 0 < r < 2ρ,

and H 1
((

E\F
)
∩B(x, r)

)
≥ ηr

}
.

We now recall:

Lemma 4.3. Let C be a collection of balls contained in a bounded subset of
Rn . Then we may find a finite or countably infinite disjoint collection {Bi} such
that

(4.11)
⋃
B∈C

B ⊂ ⋃
i

B′i,

where B′i is the ball concentric with Bi , and of five times the radius. Further, we
may take the collection {Bi} to be semidisjoint (i.e. B′i 6⊂ B′j if i 6= j ).
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See for example [Fal] for a proof. Now let

(4.12) G =
(
F ∩B(x0, ρ)

)
∪ ∂B(x0, ρ) ∪

(⋃
i

B′i
)
,

and

(4.13) K =
(
G\⋃

i

B′i
)
∪⋃

i

∂B′i.

We need to show that K satisfies the conclusion of the proposition. First we check
that G is a continuum (i.e. compact and connected).

(i) G is closed: Since F is closed, it is sufficient to observe that diam(B′i)→ 0
(by counting volume for instance). Hence a limit point of

⋃
iB
′
i is either in some

B′j , or is a limit point of a sequence of centers of a subcollection of {B′i} , and
hence in F . In particular any limit point lies in G .

(ii) G is connected: Suppose G = G1 ∪ G2 , where G1 , G2 are nonempty,
disjoint, and compact. Without loss of generality we may assume ∂B(x0, ρ) ⊂ G1 .
We must then have G2 ⊂ int

(
B(x0, ρ)

)
(or else some B′i ⊂ G1, with center in

B(x0, ρ) meets ∂B(x0, ρ) , and hence connects G1 , G2 ). Let

(4.14) G′1 =
(
R2\ int

(
B(x0, ρ)

))
∪G1.

Both G′1 , G2 contain points from F (G′1 contains y , and G2 must contain
either a point in F , or the center of any ball contained in it, which is also in F ).
Now F1 ≡ G′1 ∩ F , F2 ≡ G2 ∩ F are compact, disjoint, and nonempty. Let
w1 ∈ F1 , w2 ∈ F2 , be such that |w1 − w2| = s ≡ dist(F1, F2) , and observe that
s < ρ . By construction, the ball B(w1, s) ∈ C and contains w1 , w2 , and is thus
disconnected, which is absurd. Thus G is a continuum, and we can invoke:

Lemma 4.4. Let G be a continuum in R2 . Suppose {Bi} is a count-
able semidisjoint collection of closed balls each contained in G and such that
diam(Bi) ≥ d for only finitely many i for any d > 0 . Then if Γi is the boundary
of Bi,

(4.15) K =
(
G\⋃

i

Bi

)
∪⋃

i

Γi

is a continuum.

For a proof see e.g. p. 42 in [Fal].

By applying this lemma to our collection {B′i} , we conclude that K is a
continuum. Now

(4.16)

∑

i

diam(B′i) ≤
20

η

∑

i

H 1
(
(E\F ) ∩Bi

)

≤ 20

η
H 1

(
(E\F ) ∩ B(x0, 2ρ)

)
≤ 40γρ

η
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where we used (4.6). We also have

(4.17) H 1(K) ≤H 1(E) + 2πρ + π
∑

i

diam(B′i) <∞.

Thus K is a continuum of finite measure, and is hence rectifiable (in fact it is a
rectifiable curve). See e.g. [Fal] for a proof of this fact, or p. 6 in [DS]. On the
other hand

(4.18)

H 1(K ∩E) ≥H 1
(
F ∩B(x0, ρ)

)
−
∑

i

H 1(E ∩B′i)

≥H 1
(
F ∩B(x0, ρ)

)
− 2

∑

i

diam(B′i) ≥
ρ

2
− 80γρ

η

using (4.8), (4.9), and (4.16). If we then choose γ � η , we see that H 1(K ∩E) >
0. This contradiction completes the proof of Theorem 2.2.

5. Remarks and extensions

The circle pairs idea (of using (4.6) to construct a rectifiable set that has
nontrivial intersection with E) is originally due to Besicovitch [B], who used it
to show that if E is a totally unrectifiable 1-set in R2 , then Θ1

∗(E,x) ≤ 3
4 , for

a.e. x ∈ E . In the above form (in the plane) it appears in [MR]. In Rn one can
replace the collection C (see Section 4) by line segments connecting points like
w1 , w2 . This was done in [Mo]. See also [PT] for a treatment in metric spaces.

One main application of Theorem 2.2 is for self-similar 1-sets in the sense of
Hutchinson (see e.g. [Fal], [Ma1], [Ma2], [H]). The same method (with minimal
changes) can also be used to prove the following:

Suppose e ∈ Sn−1 , x ∈ Rn , ψ ∈
[
0, 1

2π
)
, denote by Γ(x, e, ψ) the double

sided cone with vertex at x , axis in the direction of e , and opening angle ψ .

Theorem 5.1. Let E ⊂ Rn be a 1-set such that for almost every x ∈ E ,
we have that for every e ∈ Sn−1 there exists δ > 0 so that

lim inf
r→0

H 1
(
E ∩B(x, r) ∩ Γ

(
x, e, 1

2π − δ
))

> 0.

Suppose φ ∈ L∞(E) , and let F = {x ∈ E : φ(x) 6= 0} , then for almost every
x0 ∈ F ,

lim sup
r→∞

∣∣∣∣
∫

E\B(x0,r)

(x − x0)

|x− x0|2
φ(x) dH 1x

∣∣∣∣ =∞.

Once again self similar 1-sets in Rn which are not line segments are imme-
diate candidates for this theorem. While for n > 2, such a set does not a priori
satisfy the hypothesis if it happens to lie completely in some m-plane, we can
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reduce the problem to Rm0 where m0 is the smallest dimension of such a plane
and then we can use the theorem.

The analogue of the condition in Theorem 5.1 in the case of compact (n−1)-
sets (in Rn ) was considered in [MP] to show that such sets are removable for
Lipschitz harmonic functions. The general case of that question for compact totally
unrectifiable 1-sets in the plane was settled in [DM]. Our theorem also gives an
elementary proof of that theorem in the case of self similar 1-sets in the plane
(more generally, for sets satisfying the hypothesis of Theorem 5.1).
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