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EXISTENCE OF QUASI-ISOMETRIC MAPPINGS
AND ROYDEN COMPACTIFICATIONS
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Abstract. It is shown that Royden p -compactifications for 1 < p < d of two orientable and
countable Riemannian manifolds of the same dimension d ≥ 2 are homeomorphic if and only if
there exists a homeomorphism between these two Riemannian manifolds which is quasi-isometric
outside some of their compact subsets.

1. Introduction

Given a d-dimensional (d ≥ 2) Riemannian manifold D of class C∞ which
is orientable and countable but not necessarily connected and an exponent 1 <
p < ∞ , the Royden p-algebra Mp(D) of D is defined by Mp(D) := L1,p(D) ∩
L∞(D)∩C(D) . It is a commutative Banach algebra, i.e. the so-called normed ring,
under pointwise addition and multiplication with ‖u;Mp(D)‖ := ‖u;L∞(D)‖ +
‖∇u;Lp(D)‖ as norm, where L1,p(D) is the Dirichlet space, i.e. the space of
locally integrable real valued functions u on D whose distributional gradients
∇u of u belong to Lp(D) considered with respect to the metric structure on D .
The maximal ideal space D∗p (cf. e.g. p. 298 in [20]) of Mp(D) is referred to as
the Royden p-compactification of D , which is also characterized as the compact
Hausdorff space containing D as its open and dense subspace such that every
function in Mp(D) is continuously extended to D∗p and Mp(D) is uniformly dense
in C(D∗p) (cf. e.g. [17], [18], [11] and also p. 154 in [14]).

Suppose that D and D′ are d-dimensional (d ≥ 2) Riemannian manifolds
of class C∞ which are orientable and countable but not necessarily connected.
Moreover, in this paper we assume that none of the components of D and D′ is
compact, which is, however, not an essential restriction, and postulated only for
the sake of simplicity. In 1982, the present author and H. Tanaka [13] (see also [10])
jointly showed that two conformal Royden compactifications D∗d and (D′)∗d are
homeomorphic if and only if there exists an almost quasiconformal mapping of
D onto D′ . Here we say that a homeomorphism f of D onto D′ is an almost
quasiconformal mapping of D onto D′ if there exists a compact subset E ⊂ D
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such that f = f | D\E is a quasiconformal mapping of D\E onto D′\f(E) . There
are many ways of defining quasiconformality but the following metric definition
is convenient for applying to Riemannian manifolds (cf. e.g. p. 113 in [19]): the
homeomorphism f of D \E onto D′ \ f(E) is quasiconformal, by definition, if

(2) sup
x∈D\E

(
lim sup
r↓0

max%(x,y)=r %
′(f(x), f(y)

)

min%(x,y)=r %′
(
f(x), f(y)

)
)
<∞,

where % and %′ are geodesic distances on D \ E and D′ \ f(E) . It has been an
open question for a long period, since the above result was obtained, as for what
can be said about the counterpart of the above result for nonconformal case, i.e. if
the exponent d in the result is replaced by 1 < p < d . The purpose of this paper
is to settle this question (the main theorem ).

To state our result we need to introduce a class of a special kind of almost
quasiconformal mappings. A homeomorphism f of D onto D′ is said to be an
almost quasi-isometric mapping of D onto D′ if there exists a compact set E ⊂ D
such that f = f | D\E is a quasi-isometric mapping of D\E onto D′\f(E) . Here
the homeomorphism f of D \E onto D′ \ f(E) is quasi-isometric, by definition,
if there exists a constant K ∈ [1,∞) such that

(3)
1

K
%(x, y) ≤ %′

(
f(x), f(y)

)
≤ K%(x, y)

for every pair of points x and y in D \ E , where we always set %(x, y) =
%′
(
f(x), f(y)

)
= ∞ if the component of D \E containing x and that containing

y are different. From (3) it follows that

1

K
r ≤ min

%(x,y)=r
%′
(
f(x), f(y)

)
≤ max

%(x,y)=r
%′
(
f(x), f(y)

)
≤ Kr

for any fixed x ∈ D and for any sufficiently small positive number r > 0, which
implies that the left-hand side term of (2) is dominated by K2 . Thus a quasi-
isometric mapping is automatically a quasiconformal mapping but obviously there
exists a quasiconformal mapping which is not a quasi-isometric mapping. Then
the main result of this paper is stated as follows.

4. Main theorem. When 1 < p < d , Royden compactifications D∗p and
(D′)∗p are homeomorphic if and only if there exists an almost quasi-isometric map-
ping of D onto D′ . More precisely, any almost quasi-isometric mapping of D
onto D′ is uniquely extended to a homeomorphism of D∗p onto (D′)∗p ; conversely,
the restriction to D of any homeomorphism of D∗p onto (D′)∗p is an almost quasi-
isometric mapping of D onto D′ .
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It may be interesting to compare the above topological result with the former
relevant algebraic results obtained by the present author [8] and [9], Lewis [6], and
Lelong-Ferrand [5] (cf. also Soderborg [15]): Royden algebas Md(D) and Md(D

′)
are algebraically isomorphic if and only if there exists a quasiconformal mapping of
D onto D′ ; when 1 < p < d , Mp(D) and Mp(D′) are algebraically isomorphic if
and only if there exists a quasi-isometric mapping of D onto D′ . All these results,
including our present main theorem, are shown to be invalid when d < p <∞ by
giving a counterexample, which will be discussed elsewhere. Another important
problem related to the main result is the following: does the existence of an almost
quasi-isometric (almost quasiconformal, respectively) mapping of D onto D′ imply
that of a quasi-isometric (quasiconformal, respectively) mapping of D onto D′ ? It
is affirmative for the quasiconformal case if D is the unit ball in the d-dimensional
Euclidean space Rd (Gehring [2], see also Soderborg [16]); it is also affirmative for
the quasiconformal case if the dimensions of D and D′ are 2. Except for these
partial results the problem is widely open.

This paper consists of six sections including this first section titled Intro-
duction. In this paper, sections, formulas, theorems, lemmas, etc. are altogether
consequtively numbered, which may not yet be one of the standard customs but
anyone would admit it to be extremely convenient to refer to, beyond his stylistic
preference, especially in short papers such as this one. In the second section, num-
ber 5 titled Royden compactifications of Riemannian manifolds, basic notion and
notation on objects in the title are fixed. A useful separation lemma on the topol-
ogy of Royden compactifications in terms of capacities of rings is given in the third
section (8) titled Capacities of rings. Quasi-isometric mappings are considered in
the fourth section (19) titled Analytic properties of quasi-isometric mappings from
the view point of differentiability. In the fifth section (33) Distortion of rings and
their capacities, an important characterization of quasi-isometries in terms of dis-
tortions of capacities of rings originally due to Gehring [3] is discussed, which plays
one of the key roles in this paper. The main theorem of this paper will be proven
in the final section (43) titled Proof of the main theorem.

5. Royden compactifications of Riemannian manifolds. By a Rieman-
nian manifold D of dimension d ≥ 2 we mean an orientable and countable but
not necessarily connected C∞ manifold D of dimension d with a metric tensor
(gij) of class C∞ . For the sake of simplicity we also assume that any component
of D is not compact.

We say that U or more precisely (U, x) is a parametric domain on D if the
following two conditions are satisfied: first, U is a domain, i.e. a connected open
set, in D ; secondly x is a C∞ diffeomorphism of U onto a domain x(U) in the
Euclidean space Rd of dimension d ≥ 2. The map x = (x1, . . . , xd) is referred to
as a parameter on U . We often identify a generic point P of U with its parameter
x(P ) and denote it by the same letter x , for example. In other words, we view
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U to be embedded in Rd by identifying U with x(U) so that U itself may be
considered as a Riemannian manifold (U, gij ) with a metric tensor (gij) restricted
on U and at the same time as an Euclidean subdomain (U, δij ) with the natural
metric tensor (δij ) , δij being the Kronecker delta.

Take a parametric domain (U, x) on D . The metric tensor (gij) on D gives
rise to a d× d matrix (gij(x)) of functions gij(x) on U . We say that (U, x) is a
λ-domain with λ ∈ [1,∞) if the following matrix inequalities hold:

(6)
1

λ
(δi,j ) ≤ (gij (x)) ≤ λ(δij)

for every x ∈ U . It is important that any point of D has a λ-domain as its
neighborhood for any λ ∈ (1,∞) . This comes from the fact that there exists a
parametric ball (U, x) at any point P ∈ D (i.e. a parametric domain (U, x) such
that x(P ) = 0 and x(U) is a ball in Rd centered at the origin) such that

(
gij(x)

)

with respect to (U, x) satisfies gij(0) = δij .
The metric tensor (gij) on D defines the line element ds on D by ds2 =

gij(x) dxi dxj in each parametric domain (U, x = (x1, . . . , xd)) . Here and hereafter
we follow the Einstein convention: whenever an index i appears both in the upper
and lower positions, it is understood that summation for i = 1, . . . , d is carried
out. The length of a rectifiable curve γ on D is given by

∫
γ
ds . The geodesic

distance %(x, y) between two points x and y in D is given by

%(x, y) = %D(x, y) = inf
γ

∫

γ

ds,

where the infimum is taken with respect to rectifiable curves γ connecting x
and y . Needless to say, if there is no such curve γ , i.e. if x and y are in dif-
ferent components of D , then, as the infimum of the empty set, we understand
that %(x, y) = ∞ . When (U, x) is a parametric domain and considered as the
Riemannian manifold (U, δij) , then %U (x, y) can also be given by

%(x, y) = %U (x, y) = inf
n∑

i=1

|xi − xi−1|,

where the infimum is taken with respect to every polygonal line

x = x0, x1, . . . , xn−1, xn = y

such that every line segment [xi−1, xi] = {(1 − t)xi−1 + txi : 0 ≤ t ≤ 1} ⊂ U for
each i = 1, . . . , n .

We write (gij) := (gij)
−1 and g := det(gij ) . We denote by dV the volume

element on D so that

dV (x) =
√
g(x) dx1 ∧ · · · ∧ dxd



Quasi-isometric mappings 243

in each parametric domain (U, x = (x1, . . . , xd)) . On (U, δij ) we also have the vol-
ume element (Lebesgue measure) dx = dx1 · · · dxd . Sometimes we use dx to mean
(dx1, . . . , dxd) but there will be no confusion by context. The Riemannian volume
element dV (x) and the Euclidean (Lebesgue) volume element dx are mutually
absolutely continuous and the Radon–Nikodym densities dV (x)/dx =

√
g(x) and

dx/dV (x) = 1/
√
g(x) are locally bounded on U . Thus a.e. dV and a.e. dx are

identical and we can loosely use a.e. without referring to dV or dx .
For each x ∈ D , the tangent space to D at x will be denoted by TxD . We

denote by 〈h, k〉 the inner product of two tangent vectors h and k in TxD and
by |h| the length of h ∈ TxD so that if (h1, . . . , hd) and (k1, . . . , kd) are covariant
components of h and k , then

〈h, k〉 = gijhikj and |h| = 〈h, h〉1/2 = (gijhihj)
1/2.

Since we may consider two metric tensors (gij ) and (δi,j) on a parametric domain
(U, x) , we occasionally write 〈h, k〉gij or 〈h, k〉δij and similarly |h|gij or |h|δij to
make clear whether they are considered on (U, gij) or on (U, δij ) .

Let G be an open subset of D . In this paper we use the notation Lp(G)
(1 ≤ p ≤ ∞) in two ways. The first is the standard use: Lp(G) = Lp(G; gij) is
the Banach space of measurable functions u on G with the finite norm ‖u;Lp(G)‖
given by

‖u;Lp(G)‖ :=

(∫

G

|u|p dV
)1/p

(1 ≤ p <∞)

and ‖u;L∞(G)‖ is the essential supremum of |u| on G . The second use: for
a measurable vector field X on G we write X ∈ Lp(G) = Lp(G; gij ) if |X| =
|X|gij ∈ Lp(G) in the first sense and we set

‖X;Lp(G)‖ := ‖ |X|;Lp(G)‖.

The Dirichlet space L1,p(G) = L1,p(G; gij) (1 ≤ p ≤ ∞) is the class of func-
tions u ∈ L1

loc(G) with the distributional gradients ∇u ∈ Lp(G) , where ∇u is
determined by the relation

∫

G

〈∇u,Ψ〉 dV = −
∫

G

udivΨ dV

for every C∞ vector field Ψ on G with compact support in G . In the parametric
domain (U, x) in G we have ∇u = (∂u/∂x1, . . . , ∂u/∂xd) . If Ψ = (ψ1, . . . , ψd) in
U , then

divΨ =
1√
g

∂

∂xi
(√

g gijψj
)
.
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The Sobolev space W 1,p(G) = W 1,p(G, gij ) (1 ≤ p ≤ ∞) is the Banach space
L1,p(G) ∩ Lp(G) equipped with the norm

‖u;W 1,p(G)‖ := ‖u;Lp(G)‖+ ‖∇u;Lp(G)‖.

Given a Riemannian manifold D of dimension d ≥ 2 and given an exponent
1 < p < ∞ , the Royden p-algebra Mp(D) is the Banach algebra L1,p(D) ∩
L∞(D) ∩ C(D) equipped with the norm

(7) ‖u;Mp(D)‖ := ‖u;L∞(D)‖ + ‖∇u;Lp(D)‖.

By the standard mollifier method we can show that the subalgebra Mp(D) ∩
C∞(D) is dense in Mp(D) with respect to the norm in (7). Hence Mp(D) may
also be defined as the completion of {u ∈ C∞(D) : ‖u;Mp(D)‖ < ∞} without
appealing to the Dirichlet space. It is important that Mp(D) is closed under
lattice operations ∪ and ∩ given by (u∪v)(x) = max

(
u(x), v(x)

)
and (u∩v)(x) =

min
(
u(x), v(x)

)
(cf. e.g. p. 21 in [4]). The maximal ideal space D∗p of Mp(D) is

referred to as the Royden p-compactification, which can also be characterized as
the compact Hausdorff space containing D as its open and dense subspace such
that every function u ∈ Mp(D) is continuously extended to D∗p and Mp(D) ,
viewed as a subspace of C(D∗p) by this continuous extension, is dense in C(D∗p)
with respect to its supremum norm.

8. Capacities of rings. A ring R in a Riemannian manifold D is a
subset R of D with the following properties: R is a subdomain of D so that R
is contained in a unique component DR of D ; DR \ R consists of exactly two
components one of which, denoted by C1 , is compact and the other, denoted by
C0 , is noncompact. The set C1 will be referred to as the inner part of Rc := D\R
and the set D \ (R∪C1) as the outer part of Rc . We denote by W (R) the class of
functions u ∈W 1,1

loc (R)∩C(D) such that u = 1 on the inner part of Rc and u = 0
on the outer part of Rc which includes C0 . The p-capacity cappR (1 ≤ p ≤ ∞)
of the ring R ⊂ D is given by

(9) cappR := inf
u∈W (R)

‖∇u;Lp(R)‖p

for 1 ≤ p < ∞ and cap∞R := infu∈W (R) ‖∇u;L∞(R)‖ . Note that cappR does
not depend upon which Riemannian manifold D the ring R is embedded as long as
the metric structure on R is unaltered. The following inequality will be made use
of (cf. e.g. p. 32 in [4]): if 1 < p <∞ , if R is a ring in D , and if Rk (1 ≤ k ≤ n)
are disjoint rings contained in R each of which separates the boundary components
of R , then

(10) (cappR)1/(1−p) ≥
n∑

k=1

(cappRk)1/(1−p).
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Suppose that a ring R is contained in a parametric domain (U, x) on D for
which two metric structures (gij) and (δij) can be considered. If the need occurs
to indicate that cappR is considered on (U, δij) , then we write

cappR = capp(R, δij ) = inf
u∈W (R)

∫

R

|∇u(x)|pδij dx;

if cappR is considered on (U, gij ) , then we write

cappR = capp(R, gij ) = inf
u∈W (R)

∫

R

|∇u|pgij dV

for 1 ≤ p < ∞ . Similar remarks are applied to cap∞(R, gij) and cap∞(R, δij ) .
If, moreover, U is a λ-domain for any λ ∈ [1,∞) , then (6) implies that

(11)
1

λ(d+p)/2
capp(R, δij ) ≤ capp(R, gij) ≤ λ(d+p)/2capp(R, δij ).

In the case p =∞ , the inequality corresponding to (11) takes the following form:
λ−1/2cap∞(R, δij ) ≤ cap∞(R, gij ) ≤ λ1/2cap∞(R, δij ) , which, however, will not
be used in this paper.

We fix a parametric domain (U, x) in D . It is possible that the parametric
domain is the d-dimensional Euclidean space Rd itself. A ring R contained in U
is said to be a spherical ring in (U, x) if

(12) R = {x ∈ U : a < |x− P | < b},

where P ∈ U and a and b are positive numbers with 0 < a < b < inf∂U |x− P | .
At this point we must be careful: in the case where R happens to be included in
another parametric domain (V, y) of D , R may not be a spherical ring in (V, y)
even if R is a spherical ring in (U, x) . Namely, the notion of spherical rings cannot
be introduced to the general Riemannian manifold D and is strictly attached to
the parametric domain in question. Let R be a spherical ring in a parametric
domain (U, x) with the expression (12). Then we have (cf. e.g. p. 35 in [4])

(13) cappR = capp(R, δij ) =





ωd

(
bq − aq

q

)1−p
(1 < p <∞, p 6= d),

ωd

(
log

b

a

)1−d
(p = d),

where we have set q = (p − d)/(p − 1) and ωd is the surface area of the Eu-
clidean unit sphere Sd−1 . In passing we state that cap1(R, δij ) = ωda

d−1 and
cap∞(R, δij ) = 1/(b− a) , again results not used in this paper.
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Another important ring in Rd which we use later is a Teichmüller ring RT
defined by RT = Rd \ {te1 : t ∈ [−1, 0] ∪ [1,∞)} , where e1 is the unit vector
(1, 0, . . . , 0) in Rd . We set

(14) td := capd(RT , δij).

Finally we state a separation lemma on the topology of the Royden com-
pactification. Let (Rn)n≥1 be a sequence of rings Rn in D (n = 1, 2, . . .) with
the following properties: (Rn ∪ Cn1) ∩ (Rm ∪ Cm1) = ∅ for n 6= m , where Cn1

is the inner part of (Rn)c = D \ Rn ; (Rn)n≥1 does not accumulate in D , i.e.
{n : E ∩ (Rn ∪ Cn1) 6= ∅} is a finite set for any compact set E in D . Such a
sequence (Rn)n≥1 will be called an admissible sequence, which defines two disjoint
closed sets X and Y in D as follows:

X :=
∞⋃
n=1

Cn1 and Y :=
∞⋂
n=1

(D \ (Rn ∪ Cn1)).

We denote by cl(X;D∗p) the closure of X in D∗p . Although X ∩ Y = ∅ in D ,
cl(X;D∗p) and cl(Y ;D∗p) may intersect on the Royden p-boundary

Γp(D) := D∗p \D.

Concerning this we have the following result.

15. Lemma. The set cl
(⋃∞

n=1Rn;D∗p
)

for an admissible sequence (Rn)n≥1

in D separates cl(X;D∗P ) and cl(Y ;D∗p) in D∗p in the sense that

(16)
(
cl(X;D∗P )

)
∩
(
cl(Y ;D∗p)

)
= ∅

if and only if

(17)

∞∑

n=1

cappRn <∞.

Proof. First we show that (16) implies (17). By (16) the Urysohn theorem
assures the existence of a function u ∈ C(D∗p) such that u = 3 on cl(X;D∗p) and
u = −2 on cl(Y ;D∗p) . Since Mp(D) is dense in C(D∗p) , there is a function v ∈
Mp(D) such that v > 2 on X and v < −1 on Y . Finally, let w =

(
(v ∩ 1) ∪ 0

)
∈

Mp(D) , which satisfies w | X = 1, w | Y = 0 and 0 ≤ w ≤ 1 on D . Set wn = w
on Rn∪Cn1 and wn = 0 on D\(Rn∪Cn1) for n = 1, 2, . . . . Clearly wn ∈W (Rn)
so that cappRn ≤ ‖∇wn;Lp(Rn)‖p (n = 1, 2, . . .) and w =

∑∞
n=1wn . Since the

supports of wn in D (n = 1, 2, . . .) are mutually disjoint, we see that

∞∑

n=1

cappRn ≤
∞∑

n=1

‖∇wn;Lp(Rn)‖p = ‖∇w;Lp(D)‖p ≤ ‖w;Mp(D)‖p <∞,



Quasi-isometric mappings 247

i.e. (17) has been deduced.
Conversely, suppose that (17) is the case. We wish to derive (16) from (17).

Choose a function wn ∈ W (Rn) such that ‖∇wn;Lp(Rn)‖p < 2cappRn for each
n = 1, 2, . . . . We may suppose that 0 ≤ wn ≤ 1 on D by replacing wn with
(wn ∩ 1) ∪ 0 if necessary (see e.g. p. 20 in [4]). Clearly w :=

∑∞
n=1wn ∈ Mp(D)

since ‖w;L∞(D)‖ = 1 and

‖∇w;Lp(D)‖p =
∞∑

n=1

‖∇wn;Lp(Dn)‖p ≤ 2
∞∑

n=1

cappRn <∞.

Observe that w = 1 on X and w = 0 on Y . Hence, by the continuity of w on
D∗p , we see that w = 1 on cl(X;D∗p) and w = 0 on cl(Y ;D∗p) , which yields (16).

As a consequence of Lemma 15 we can characterize points in the Royden p-
boundary Γp(D) = D∗p \D among points in D∗p in terms of their being not Gδ for
1 ≤ p ≤ d . This is no longer true for d < p ≤ ∞ . Recall that a point ζ ∈ D∗p is
said to be Gδ if there exists a countable sequence (Ωi)i≥1 of open neighborhoods
Ωi of ζ such that

⋂
i≥1 Ωi = {ζ} .

18. Corollary to Lemma 15. A point ζ in D∗p (1 ≤ p ≤ d) belongs to D
if and only if ζ is Gδ .

Proof. We only have to show that ζ ∈ Γp(D) = D∗p \ D is not Gδ . On
the contrary, suppose ζ is Gδ so that there exists a sequence (Ωi)i≥1 of open
neighborhoods of ζ such that Ωi ⊃ cl(Ωi+1;D∗p) (i = 1, 2, . . .) and

⋂
i≥1 Ωi =

{ζ} . Since D is dense in D∗p , Hi := D ∩
(
Ωi \ cl(Ωi+1;D∗p)

)
is a nonempty

open subset of D for each i . Hence we can find a sequence (Pn)n≥1 of points
Pn ∈ Hn (n = 1, 2, . . .) and a sequence

(
(Un, xn)

)
n≥1

of 2-domains (Un, xn)

contained in Hn (n = 1, 2, . . .) such that Un = {xn : |xn − Pn| < rn} (rn >
0, n = 1, 2, . . .). Let Rn := {xn : an < |xn − Pn| < bn} (0 < an < bn :=
1
2
rn ) be a spherical ring in (Un, xn) . Clearly (Rn)n≥1 is an admissible sequence.

Since capp(Rn, δij ) = ωd
(
|q|/
(
1 − (an/bn)|q|

))p−1
a
|d−p|
n by (13) for 1 < p < d ,

capd(Rn, δij ) = ωd/
(
log(bn/an)

)d−1
, and cap1(Rn, δij ) = ωda

d−1
n , we can see that

capp(Rn, δij) < 2−n by choosing an ∈ (0, 1
2rn) small enough so that cappR =

capp(R, gij) ≤ 2(d+p)/2capp(R, δij ) < 2(d+p)/22−n (n = 1, 2, . . .) by (11). Hence
(17) is satisfied but (16) is invalid because the intersection on the left-hand side
of (16) contains ζ due to the fact that Rn ⊂ Hn (n = 1, 2, . . .). This is clearly a
contradiction to Lemma 15.

19. Analytic properties of quasi-isometric mappings. A quasi-isomet-
ric (or quasiconformal) mapping f of a Riemannian manifold D onto another D′

is, as defined in the introduction, a homeomorphism f of D onto D′ such that

K−1%(x, y) ≤ %
(
f(x), f(y)

)
≤ K%(x, y)
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for every pair of points x and y in D for some fixed K ∈ [1,∞) , (or

sup
x∈D

(
lim sup
r↓0

((
max

%(x,y)=r
%′
(
f(x), f(y)

))
/
(

min
%(x,y)=r

%′
(
f(x), f(y)

))))
<∞,

respectively), where % and %′ are geodesic distances on D or D′ . In this case
we also say that f is a K -quasi-isometric referring to K . For simplicity, quasi-
isometric (or quasiconformal) mappings will occasionally be abbreviated as qi (or
qc). Consider a K -qi f of a d-dimensional Riemannian manifold D equipped
with the metric tensor (gij) onto another d-dimensional Riemannian manifold D′

equipped with the metric tensor (g′ij) . Fix an arbitrary λ ∈ (0,∞) and choose any
λ-domain (U, x) in D and any λ-domain (U ′, x′) in D′ such that f(U) = U ′ .
The mapping f : (U, δij )→ (U ′, δij) has the representation

(20) x′ = f(x) =
(
f1(x), . . . , fd(x)

)

on U in terms of the parameters x and x′ . As the composite mapping of
id: (U, δij ) → (U, gij) , f : (U, gij) → (U ′, g′ij) , and id: (U ′, g′ij) → (U ′, δij ) , we see
that the mapping f : (U, δij )→ (U ′, δij ) is λK -qi since id: (U, δij)→ (U, gij) and

id: (U ′, g′ij)→ (U ′, δij ) are
√
λ -qi as a consequence of λ−1 |dx|2 ≤ ds2 ≤ λ |dx|2 ,

where dx = (dx1, . . . , dxd) , |dx|2 = δij dx
i dxj , and ds2 = gij(x) dxi dxj , which is

deduced from λ−1(δij ) ≤ (gij ) ≤ λ(δij ) . Hence we see that

(21)
1

λK
|x− y| ≤ |f(x) − f(y)| ≤ λK|x − y|

whenever the line segment [x, y] := {(1−t)x+ty : t ∈ [0, 1]} ⊂ U and [f(x), f(y)] ⊂
U ′ . In particular (21) implies that

(22) lim sup
h→0

|f(x + h)− f(x)|
|h| ≤ λK <∞

for every x ∈ U and

(23) lim inf
h→0

|f(x + h)− f(x)|
|h| ≥ 1

λK
> 0.

As an important consequence of (22), the Rademacher–Stepanoff theorem (cf.
e.g. p. 218 in [1]) assures that f(x) is differentiable at a.e. x ∈ U , i.e.

(24) f(x + h)− f(x) = f ′(x)h + ε(x, h)|h| ( lim
h→0

ε(x, h) = 0)

for a.e. x ∈ U , where f ′(x) is the d×d matrix (∂f i/∂xj) . Fix an arbitrary vector
h with |h| = 1. Then for any positive number t > 0 we have, by replacing h in
(24) with th ,

|f ′(x)h| − |ε(x, th)| ≤ |f(x + th)− f(x)|
|th|
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and on letting t ↓ 0 we obtain by (22) that |f ′(x)h| ≤ λK . Therefore

(25) |f ′(x)| := sup
|h|=1

|f ′(x)h| ≤ λK

for a.e. x ∈ U . Similarly we have

|f ′(x)h|+ |ε(x, th)| ≥ |f(x + th)− f(x)|
|th|

and hence by (23) we deduce |f ′(x)h| ≥ 1/λK . Thus

(26) l
(
f ′(x)

)
:= inf
|h|=1

|f ′(x)h| ≥ 1

λK
.

From (25) it follows that |∂f i(x)/∂xj | ≤ |f ′(x)| ≤ λK for a.e. x ∈ U (i, j =

1, . . . , d) and thus |∇f | =
(∑d

i=1 |∇fi|2
)1/2 ∈ L∞(U) . By (21), f(x) is ACL

(absolutely continuous on almost all straight lines which are parallel to coordinate
axes). That f(x) is ACL and ∇f ∈ L∞(U) is necessary and sufficient for f to
belong to L1,∞(U) (cf. e.g. pp. 8–9 in [7]) so that, by the continuity of f , we have

(27) f ∈W 1,∞
loc (D).

By (25) and (26) we have the matrix inequality

l
(
f ′(x)

)2
(δij ) ≤ f ′(x)∗f ′(x) ≤ |f ′(x)|2(δij)

for a.e. x ∈ U , where f ′(x)∗ is the transposed matrix of f ′(x) . Let λ1(x) ≥ · · · ≥
λd(x) be the square roots of the proper values of the symmetric positive matrix
f ′(x)∗f ′(x) . Then

1

λK
≤ l
(
f ′(x)

)
= λd(x) ≤ · · · ≤ λ1(x) = |f ′(x)| ≤ λK.

Observe that
∏d
i=1 λi(x)2 = det

(
f ′(x)∗f ′(x)

)
=
(
det f ′(x)

)2
is the square of the

Jacobian Jf (x) of f at x . Hence, by λKλi ≥ 1 (i = 2, 3, . . . , d), we see that

|f ′(x)|p = λ1(x)p ≤ λ1(x)(λK)p−1 ≤ λ1(x)(λK)p−1
d∏

i=2

(
λKλi(x)

)

= (λK)d+p−2
d∏

i=1

λi(x) = (λK)d+p−2|Jf (x)|,

i.e. we have deduced that

(28) |f ′(x)|p ≤ (λK)d+p−2|Jf (x)|

for a.e. x ∈ U . This is used to prove the following result.
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29. Proposition. The pull-back v = u ◦ f of any u in Mp(D
′) by a K -qi

f of D onto D′ belongs to Mp(D) and satisfies the inequality

(30)

∫

D

|∇v(x)|pgij
√
g(x) dx ≤ Kd+p−2

∫

D′
|∇u(x′)|pg′

ij

√
g′(x′) dx′

and, in particular,

(31) ‖v;Mp(D)‖ ≤ K(d+p−2)/p‖u;Mp(D
′)‖.

Proof. The inequality (30) is nothing but

‖∇v;Lp(D)‖ ≤ K(d+p−2)/p‖∇u;Lp(D′)‖.

This with ‖v;L∞(D)‖ = ‖u;L∞(D′)‖ implies (31). Suppose that Proposition 29
is true if u ∈Mp(D′)∩C∞(D′) . Since Mp(D

′)∩C∞(D′) is dense in Mp(D′) , for
an arbitrary u ∈ Mp(D′) , there exists a sequence (uk)k≥1 in Mp(D

′) ∩ C∞(D′)
such that ‖u−uk;Mp(D′)‖ → 0 (k →∞). In particular ‖uk −uk′ ;Mp(D

′)‖ → 0
(k, k′ → ∞). By our assumption, vk := uk ◦ f ∈ Mp(D) (k = 1, 2, . . .). By
(31), the inequalities ‖vk − vk′ ;Mp(D)‖ ≤ K(d+p−2)/p‖uk − uk′ ;Mp(D

′)‖ assure
that ‖vk − vk′ ;Mp(D)‖ → 0 (k, k′ → ∞). By the completeness of Mp(D) , since
‖v − vk;L∞(D)‖ → 0 (k → ∞), we see that v ∈ Mp(D) . By the validity of (30)
(and hence of (31)) for vk , we see that (30) is valid for v . For this reason we can
assume u ∈Mp(D

′) ∩ C∞(D′) to prove Proposition 29.

It is clear by (25) that v = u ◦ f ∈ W 1,∞
loc ∩ L∞(D) ∩ C(D) if u ∈ Mp(D′) ∩

C∞(D′) . Hence we only have to prove (30) to deduce v ∈Mp(D) . Fix an arbitrary
λ ∈ (1,∞) . Let D =

⋃∞
k=1Ek be a union of disjoint Borel sets Ek in D such that

each Ek is contained in a λ-domain Uk in D and E′k = f(Ek) in a λ-domain
U ′k = f(Uk) in D′ for k = 1, 2, . . . . Fix a k and consider the λK -qi f of (Uk, δij)
onto (U ′k, δij) with the representation (20) on Uk in terms of the parameter x in
Uk and x′ in U ′k . By the chain rule we have

(32) ∇v(x) = f ′(x)∗∇u
(
f(x)

)

for a.e. x ∈ Uk . Since |f ′(x)∗| = |f ′(x)| , (28) and (32) yield

|∇v(x)|p ≤ (λK)d+p−2
∣∣∇u

(
f(x)

)∣∣p|Jf (x)|

for a.e. x ∈ Uk . In view of (22), the formula of the change of variables in integra-
tions is valid for x′ = f(x) :

∫

Ek

∣∣∇u
(
f(x)

)∣∣p|Jf (x)| dx =

∫

E′
k

|∇u(x′)|p dx′.
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From the above two displayed relations we deduce∫

Ek

|∇v(x)|p dx ≤ (λK)d+p−2

∫

E′
k

|∇u(x′)|p dx′.

Observe that |∇v|pgij ≤ λp/2|∇v|p and
√
g ≤ λd/2 , and, similarly, that |∇u|p ≤

λp/2|∇u|pg′ij and 1 ≤ λd/2
√
g′ . The above displayed inequality then implies that

∫

Ek

|∇v(x)|pgij
√
g(x) dx ≤ λ2(d+p−1)Kd+p−2

∫

E′
k

|∇u(x′)|p
√
g′(x′) dx′.

On adding these inequalities for k = 1, 2, . . . we obtain (30) with Kd+p−2 replaced
by λ2(p+d−1)Kd+p−2 . Since λ ∈ (1,∞) is arbitrary, we deduce (30) itself by letting
λ ↓ 1.

33. Distortion of rings and their capacities. Throughout this section
we fix two nonempty open sets V and V ′ in Rd (or, what amounts to the same,
two parametric domains (V, x) and (V ′, x′) in certain Riemannian manifolds D
and D′ , respectively, considered as (V, δij) and (V ′, δij )) and consider homeomor-
phisms f of V onto V ′ . We introduce two classes of such homeomorphisms f .
The first class Lip(K) = Lip(K;V, V ′) for a positive constant K ∈ (0,∞) is the
family of homeomorphisms f of V onto V ′ such that

(34) lim sup
r↓0

max|x−P |=r |f(x) − f(P )|
r

≤ K

at every point P ∈ V . If the inverse f−1 of a homeomorphism f of V onto V ′

satisfies a similar property as (34), we should write f−1 ∈ Lip(K;V ′, V ) but we
often loosely write f−1 ∈ Lip(K) . This class was first introduced by Gehring [3].
Note that f(R) may be viewed as a ring in V ′ in the natural fashion along with a
ring R in V : the inner part and the outer part of f(R)c = V ′\f(R) are the images
of those of Rc = V \ R under f , respectively. For each p ∈ (1,∞) the second
class Qp(K, δ) = Qp(K, δ;V, V

′) for two constants K ∈ (0,∞) and δ ∈ (0,∞]
is defined to be the family of homeomorphisms f of V onto V ′ satisfying the
following condition:

(35) cappf(R) ≤ KcappR

for every spherical ring R in V such that R ⊂ V and

(36) cappR < δ.

In the case δ =∞ the condition (36) is redundant and thus the condition is given
only by (35). The same remark as for the use of the notation f−1 ∈ Lip(K) also
applies to the use of f−1 ∈ Qp(K, δ) . Clearly we see that Qp(K,∞) ⊂ Qp(K, δ) ⊂
Qp(K

′, δ′) for 0 < K ≤ K ′ < ∞ and 0 < δ′ ≤ δ ≤ ∞ . The class Qp(K,∞) was
introduced by Gehring [3] under the notation Qp(K) . The following result plays
a key role in the proof of Theorem 4 in this paper.
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37. Lemma. Suppose that 1 ≤ p < d , 0 < K < ∞ , and 0 < δ ≤ ∞ are
arbitrarily given. Then f, f−1 ∈ Qp(K, δ) implies that f, f−1 ∈ Lip(K1) , where
K1 depends only upon d , p , and K and does not depend on δ . Explicitly, K1

can be chosen as

(38) K1 = K1(K) := K1/(d−p) exp
((

2d+1ω
1+1/d
d K2(d−1)/(d−p)t−1/d

d

)d/(d−1))
.

Recall that td was given in (14). Lemma 37 is partly a generalization of
Gehring’s theorem ([3]): f, f−1 ∈ Qp(K,∞) for 1 ≤ p < ∞ with p 6= d and
0 < K < ∞ implies f, f−1 ∈ Lip(K ′) , where K ′ depends only upon d , p ,
and K . Namely, Lemma 37 contains Gehring’s theorem for 1 ≤ p < d . However,
Lemma 37 is no longer true for small finite positive numbers δ > 0 if 1 ≤ p < d
is replaced by d < p ≤ ∞ . Nevertheless, Lemma 37 can be proven by suitably
modifying Gehring’s original proof ([3]) of the theorem. A complete proof of
Lemma 37 can be found in [12].

If we assume that f is K1 -qi, then f, f−1 ∈ Lip(K1) , which is the conclusion
of Lemma 37, follows immediately. We now prove the converse of this so that
f, f−1 ∈ Lip(K) can be used for the definition of K -qi in the case of mappings
between space open sets.

39. Lemma. If f, f−1 ∈ Lip(K) , then f is a K -qi of V onto V ′ .

Proof. We define positive numbers s(r) > 0 for sufficiently small positive
numbers r > 0 by min|x−P |=r |f(x)−f(P )| =: s(r) for an arbitrarily fixed P ∈ V .
On setting P ′ := f(P ) we see that max|x′−P ′ |=s(r) |f−1(x′) − f−1(P ′)| = r .
Observe that s(r) ↓ 0 as r ↓ 0. Hence, by f−1 ∈ Lip(K) = Lip(K;V ′, V ) , we see
that

lim sup
r↓0

r

s(r)
= lim sup

r↓0

max|x′−P ′|=s(r) |f−1(x′)− f−1(P ′)|
s(r)

≤ lim sup
s↓0

max|x′−P ′|=s |f−1(x′) − f−1(P ′)|
s

≤ K.

Therefore we infer that

lim sup
r↓0

max|x−P |=r |f(x) − f(P )|
min|x−P |=r |f(x) − f(P )| = lim sup

r↓0

(
max|x−P |=r |f(x) − f(P )|

r
· r

s(r)

)

≤
(

lim sup
r↓0

max|x−P |=r |f(x) − f(P )|
r

)
·
(

lim sup
r↓0

r

s(r)

)
≤ K2,

concluding that f is a qc of V onto V ′ by the metric definition (2) of quasi-

conformality. This assures that f is differentiable a.e. on V and f ∈ W 1,d
loc (V )

(cf. e.g. pp. 109–111 in [19]). The latter in particular implies that f is ACL in



Quasi-isometric mappings 253

an arbitrarily given direction l : f is absolutely continuous on almost all straight
lines which are parallel to l . Suppose that f is differentiable at x ∈ V , i.e.

f(x + h)− f(x) = f ′(x)h + ε(x, h)|h| ( lim
h→0

ε(x, h) = 0).

For any |h| = 1 and any small t > 0, we have

|f ′(x)h| ≤ |f(x + th)− f(x)|
|th| + |ε(x, th)| ≤ max|y−x|=t |f(y) − f(x)|

t
+ |ε(x, th)|.

On letting t ↓ 0 we deduce |f ′(x)h| ≤ K since f ∈ Lip(K) . We can thus conclude
that

(40) |f ′(x)| = sup
|h|=1

|f ′(x)h| ≤ K

for a.e. x ∈ U . We now maintain that

(41) |f(x) − f(y)| ≤ K|x− y|

for any line segment [x, y] = {(1 − t)x + ty : t ∈ [0, 1]} ⊂ V . Since f is ACL in
the direction of [x, y] , we see that f is absolutely continuous in V on almost all
straight lines L parallel to [x, y] . As a consequence of (40), |f ′(x)| ≤ K in V on
almost all straight lines L parallel to [x, y] a.e. with respect to the linear measure
on L . Hence we can find a sequence of line segments [xn, yn] ⊂ V with the
following properties: xn → x and yn → y as n→∞ ; f is absolutely continuous
on [xn, yn] ; |f ′(x)| ≤ K a.e. on [xn, yn] with respect to the linear measure. Then

|f(xn) − f(yn)| ≤
∫

[xn,yn]

|df(z)| =
∫

[xn,yn]

|f ′(z) dz|

≤
∫

[xn,yn]

|f ′(z)| |dz| ≤ K
∫

[xn,yn]

|dz| = K|xn − yn|,

i.e. |f(xn) − f(yn)| ≤ K|xn − yn| (n = 1, 2, . . .), from which (41) follows by the
continuity of f . By the symmetry of the situation for f and f−1 , we deduce the
same inequality for f−1 so that

1

K
|x− y| ≤ |f(x) − f(y)| ≤ K|x − y|

for every x and y in V with [x, y] ⊂ V and [f(x), f(y)] ⊂ V ′ . Thus we can show
the validity of (3) with respect to δij -geodesic distances % on V and %′ on V ′ so
that f : V → V ′ is a K -qi.
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Combining Lemmas 37 and 39, we obtain the following result, which will be
used in the final part of the proof of the main theorem.

42. Theorem. Suppose that 1 ≤ p < d , 0 < K < ∞ , and 0 < δ ≤ ∞ are
arbitrarily given. Then f, f−1 ∈ Qp(K, δ) implies that f is a K1 -qi of V onto
V ′ , where K1 = K1(K) is given by (38) so that it is independent of δ .

43. Proof of the main theorem. In this section we assume that the
exponent p is fixed in (1, d) and we choose two Riemannian manifolds D and D′

of the same dimension d ≥ 2 which are orientable and countable and no component
of D and D′ is compact. The proof of Theorem 4 consists of two parts.

First part. Assume that there exists an almost quasi-isometric mapping f of
D onto D′ , i.e. f is a homeomorphism of D onto D′ and there exists a compact
subset E ⊂ D such that f = f | D \E is a K -quasi-isometric mapping of D \E
onto D′ \ E′ , where E′ = f(E) is a compact subset of D′ and K a constant
in [1,∞) . We are to show that f can be extended to a homeomorphism f ∗ of
the Royden compactification D∗p of D onto the Royden compactification (D′)∗p
of D′ . Choose an arbitrary point ξ in the Royden p-boundary Γp(D) = D∗p \D .
Since D is dense in D∗p , the point ξ is an accumulation point of D .

We first show that the net
(
f(xλ)

)
in D′ converges to a point ξ′ ∈ Γp(D

′)
for any net (xλ) in D convergent to ξ . Clearly

(
f(xλ)

)
does not accumulate

at any point in D′ along with (xλ) so that the cluster points of
(
f(xλ)

)
are

contained in Γp(D
′) . On the contrary we assume the existence of two subnets

(xλ′) and (xλ′′) of (xλ) such that
(
f(xλ′ )

)
and

(
f(xλ′′ )

)
are convergent to η′

and η′′ in Γp(D
′) , respectively, with η′ 6= η′′ . Since Mp(D

′) is dense in C
(
(D′)∗p

)

and forms a lattice, we can find a function u ∈ Mp(D′) such that u ≡ 0 in a
neighborhood G′ of E′ , u(η′) = 0, and u(η′′) = 1. Viewing u ∈ Mp(D

′ \ E′) ,
we see by Proposition 29 that v := u ◦ f ∈ Mp(D \ E) . Since v ≡ 0 in the
neighborhood G = f−1(G′) of E = f−1(E′) , we can conclude that v ∈ Mp(D) .
From v(xλ′ ) = u

(
f(xλ′ )

)
and v(xλ′′) = u

(
f(xλ′′ )

)
it follows that v(ξ) = u(η′) = 0

and v(ξ) = u(η′′) = 1, which is a contradiction.
We next show that the nets

(
f(xλ′ )

)
and

(
f(yλ′′ )

)
in D′ converge to a point

in Γp(D′) for any two nets (xλ′) and (yλ′′) convergent to ξ ∈ Γp(D) . In fact, let
(zλ) be a net convergent to ξ such that (zλ) contains (xλ′ ) and (yλ′′ ) as its sub-
nets. Then we see that limλ f(xλ′ ) = limλ′′ f(yλ′′ ) = limλ f(zλ) . Hence we have
shown that f∗(ξ) := limx∈D,x→ξ f(x) ∈ Γp(D′) for any ξ ∈ Γp(D) . On setting
f∗ = f on D , we see that f∗ is a continuous mapping of D∗p onto (D′)∗p . The
uniqueness of f∗ on D∗p is a consequence of the denseness of D in D∗p . Similarly
we can show that f−1 can also be uniquely extended to a continuous mapping
(f−1)∗ of (D′)∗p onto D∗p . Since (f−1)∗ ◦ f∗ and f∗ ◦ (f−1)∗ are identities on D∗p
and (D′)∗p , respectively, as the unique extensions of id: D → D and id: D′ → D′ ,
respectively, we see that f∗ is a homeomorphism of D∗p onto (D′)∗p which is the
unique extension of f : D → D′ .
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Second part. Suppose the existence of a homeomorphism f ∗ of D∗p onto
(D′)∗p . We are to show that f := f∗ | D is an almost quasi-isometric mapping of
D onto D′ , which is the essential part of this paper.

Choose an arbitrary point x ∈ D . Since x is Gδ , f∗(x) ∈ (D′)∗p is also Gδ
so that f∗(x) ∈ D′ by Corollary 18. Thus we have shown that f∗(D) ⊂ D′ .
Similarly we can conclude that (f∗)−1(D′) ⊂ D . These show that f∗(D) = D′

and therefore f := f∗ | D is a homeomorphism of D onto D′ . We are to show
that f is an almost quasi-isometric mapping of D onto D′ .

We fix a family V = VD = {V } of open sets V in D with the following
properties: V is contained in a 2-domain UV in D and V ′ := f(V ) is contained
in the 2-domain U ′V ′ = f(UV ) in D′ ;

⋃
V∈V V = D . This is possible since the

family of 2-domains forms a base of open sets on any Riemannian manifold and
f : D → D′ is a homeomorphism. We set V ′ := {V ′ : V ′ = f(V ), V ∈ V } , which
enjoys the same properties as V does. We also fix an exhaustion (Ωn)n≥1 of D ,
i.e. Ωn is a relatively compact open subset of D (n = 1, 2, . . .), Ωn ⊂ Ωn+1 (n =
1, 2, . . .), and

⋃
n≥1 Ωn = D . Then (Ω′n)n≥1 with Ω′n := f(Ωn) (n = 1, 2, . . .)

also forms an exhaustion of D′ . We set Dn := D\Ωn and D′n := f(Dn) = D′ \Ω′n
(n = 1, 2, . . .). Then (Dn)n≥1 ((D′n)n≥1 , respectively) is a decreasing sequence
of open sets Dn (D′n , respectively) with compact complements D \Dn (D′ \D′n ,
respectively) such that

⋂
n≥1 Dn = ∅ (

⋂
n≥1D

′
n = ∅ , respectively). If we set

VDn := {V ∩ Dn : V ∈ VD and V ∩ Dn 6= ∅} (n = 1, 2, . . .), then VDn plays
the same role for Dn as V does for D . Take an arbitrary n ∈ {1, 2, . . .} . If
f ∈ Qp(2n+p−1, 2−n;V ∩Dn, V

′ ∩D′n) (f−1 ∈ Qp(2n+p−1, 2−n;V ′ ∩D′n, V ∩Dn) ,
respectively) for every V ∈ V with V ∩ Dn 6= ∅ (so that V ′ ∩ D′n 6= ∅), where
V ′ = f(V ) and V ′ ∩D′n = f(V ) ∩ f(Dn) = f(V ∩Dn) , then we write

f ∈ (n) (f−1 ∈ (n), respectively).

Hence, for example, f /∈ (n) means that there exists a V ∈ V with V ∩Dn 6= ∅
such that f /∈ Qp(2n+p−1, 2−n;V ∩Dn, V

′ ∩D′n) . We maintain

44. Assertion. If f ∈ (n) (f−1 ∈ (n) , respectively) for some n , then
f ∈ (m) (f−1 ∈ (m) , respectively) for every m ≥ n .

In fact, f ∈ (n) assures that f ∈ Qp(2
n+p−1, 2−n;V ∩ Dn, V

′ ∩ D′n) for
every V ∈ V with V ∩ Dn 6= ∅ . Choose any V ∈ V with V ∩ Dm 6= ∅ .
Since Dm ⊂ Dn , V ∩ Dn 6= ∅ along with V ∩ Dm 6= ∅ and therefore f ∈
Qp(2

n+p−1, 2−n;V ∩Dn, V
′∩D′n) . In view of the fact that 2n+p−1 ≤ 2m+p−1 and

2−n ≥ 2−m , we have the inclusion relation Qp(2
m+p−1, 2−m;V ∩Dm, V

′ ∩D′m) ⊃
Qp(2

n+p−1, 2−n;V ∩Dn, V
′∩D′n) so that f ∈ Qp(2m+p−1, 2−m;V ∩Dm, V

′∩D′m) ,
i.e. f ∈ (m) , which completes the proof of Assertion 44. Next we assert

45. Assertion. If f ∈ (n) and f−1 ∈ (n) for some n , then f = f | Dn is a
qi of Dn onto D′n .
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Indeed, by Theorem 42, we see that f : (V ∩ Dn, δij ) → (V ′ ∩ D′n, δij) is a
K1 -qi with K1 = K1(2n+p−1) (cf. (38)). Clearly id: (V ∩Dn, gij)→ (V ∩Dn, δij)
and id: (V ′∩D′n, δij )→ (V ′∩D′n, g′ij) are

√
2 -qi, where (g′ij ) is the metric tensor

on D′ . Therefore, as the suitable composition of these maps above, we see that
f : (V ∩Dn, gij) → (V ′ ∩D′n, g′ij) is a 2K1 -qi. Since this is true for every V ∈ V
with V ∩Dn 6= ∅ and

⋃
V∈V V = D ⊃ Dn , we can conclude that f : Dn → D′n is

a 2K1 -qi. The proof of Assertion 45 is thus complete.
To complete the proof of the second part it is sufficient to show that f : Dn →

D′n is a qi for some n . We prove it by contradiction. To get a contradiction,
suppose that f : Dn → D′n is not qi for every n = 1, 2, . . . . Then we maintain
that either f /∈ (n) for every n or f−1 /∈ (n) for every n . In fact, if f /∈ (n)
for every n , then we are done. Otherwise, there is a k with f ∈ (k) . Then by
Assertion 44 we have f ∈ (n) for every n ≥ k . In this case we must have f−1 6∈ (n)
for every n and the assertion is assured. To see this assume that f−1 ∈ (l) for
some l . Then f−1 ∈ (n) for every n ≥ l again by Assertion 44. Then f ∈ (k ∪ l)
and f−1 ∈ (k ∪ l) . By Assertion 45 we see that f is a qi of Dk∪l onto D′k∪l ,
contradicting our assumption. On interchanging the roles of f and f−1 (and thus
those of D and D′ ) if necessary, we can assume that

f /∈ (n) (n = 1, 2, . . .),

from which we will derive a contradiction.
The fact that f /∈ (1) implies the existence of a 2-domain V ∈ VD1 such that

f /∈ Qp
(
21+p−1, 2−1;V, f(V )

)
. We can then find a spherical ring S1 ⊂ V (⊂ D1)

such that

cappS1 < 2−1, cappf(S1) > 21+p−1cappS1.

Here cappS1 means capp(S1, δij ) . We set n1 := 1. Let n2 be the least integer

such that n2 ≥ n1 + 1 (and hence Dn1+1 ⊃ Dn2 ) and Dn2 ∩ Sn1 = ∅ . Since
f /∈ (n2) , there exists a V ∈ VDn2

with f /∈ Qp
(
2n2+p−1, 2−n2 ;V, f(V )

)
. Hence

we can find a spherical ring Sn2 ⊂ V (⊂ Dn2) such that

cappSn2 < 2−n2 , cappf(Sn2 ) > 2n2+p−1cappSn2,

where cappSn2 means capp(Sn2 , δij) . Repeating this process we can construct a
sequence (Snk)k≥1 of spherical rings Snk with the following properties: nk + 1 ≤
nk+1 ; Snk ⊂ Dnk ; Snk ∩ Snl = ∅ (k 6= l );

(46) cappSnk < 2−nk , cappf(Snk ) > 2nk+p−1cappSnk (k = 1, 2, . . .).

Fix a k and set T = Snk . Since it is a spherical ring in a 2-domain (UVnk , x)
and contained in Vnk , T has a representation T = {x : a < |x − P | < b} , where
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P ∈ Vnk and 0 < a < b <∞ . Let l = [(2−nk/cappT )1/(p−1)] > 0, where [ ] is the
Gaussian symbol, which means that

(47) lp−1 ≤ 2−nk

cappT
< (l + 1)p−1 ≤ 2p−1lp−1.

Using the notation q = (p− d)/(p − 1) (cf. (13)) we set

tj :=

(
(l − j)aq + jbq

l

)1/q

(j = 0, 1, . . . , l).

We divide the ring T into l small sphherical rings Tj given by

Tj := {x : tj−1 < |x− P | < tj} (j = 1, . . . , l).

By (13) we have cappT = capp(T, δij ) = ωd
(
(bq − aq)/q

)1−p
. Similarly

cappTj = ωd

(
tqj − tqj−1

q

)1−p

= ωd

(
1

q

(
1

l

(
(l − j)aq + jbq

)
− 1

l

(
(l − j + 1)aq + (j − 1)bq

)))1−p

= ωd

(
bq − aq

q

)1−p
lp−1 = lp−1cappT,

i.e., we have shown that cappTj = lp−1cappT . Therefore we have the following
identity for the subdivision {Tj}1≤j≤l of T :

(48)
l∑

j=1

(cappTj)
1/(1−p) = (cappT )1/(1−p).

Concerning the induced subdivision {f(Tj )} of f(T ) , the general inequality (10)
implies the inequality

(49)

l∑

j=1

(
cappf(Tj )

)1/(1−p) ≤
(
cappf(T )

)1/(1−p)
.

Now suppose that cappf(Tj ) ≤ 2nk+p−1cappTj for every 1 ≤ j ≤ l . Then
(
cappf(Tj )

)1/(1−p) ≥ 2(nk+p−1)/(1−p)(cappTj )
1/(1−p) for every 1 ≤ j ≤ l . Using
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(49) and (48) we deduce

(
cappf(T )

)1/(1−p) ≥
l∑

j=1

(
cappf(Tj )

)1/(1−p)

≥ 2(nk+p−1)/(1−p)
l∑

j=1

(cappTj)
1/(1−p)

= 2(nk+p−1)/(1−p)(cappT )1/(1−p),

which means that cappf(T ) ≤ 2nk+p−1cappT . This contradicts (46) since T =
Snk . Therefore there must exist a number j0 ∈ {1, . . . , l} such that

(50) cappf(Tj0 ) > 2nk+p−1cappTj0 .

We now set Rk := Tj0 . By (47) we have lp−1cappT ≤ 2−nk ≤ 2p−1lp−1cappT .
Since lp−1cappT = cappTj0 = cappRk , we see that

cappRk ≤ 2−nk ≤ 2p−1cappRk.

This is equivalent to cappRk ≤ 2−nk (< 2−k since nk > k ) and cappRk ≥
2−nk−p+1 . The latter inequality with (50) implies that

cappf(Rk) > 2nk+p−1cappRk ≥ 2nk+p−1 · 2−nk−p+1 = 1.

By (46), capp(Rk, gij) < 2(d+p)/2 · 2−k and capp
(
f(Rk), gij

)
> 2(d+p)/2 .

We have thus constructed an admissible sequence (Rk)k≥1 of rings Rk in D
in the sense of Section 8 (cf. Lemma 15) such that cappRk = capp(Rk, gij) and

cappf(Rk) = capp
(
f(Rk), g′ij

)
satisfy

(51) cappRk < 2(d+p)/2 · 2−k and cappf(Rk) > 2(d+p)/2

for every k = 1, 2, . . . . Let Ck1 be the inner part of Rck = D \Rk and we set

X :=
∞⋃
k=1

Ck1 and Y :=
∞⋂
k=1

(
D \ (Rk ∪ Ck1)

)

as in Section 8 (cf. Lemma 15). The first inequality in (51) implies that

∞∑

k=1

cappRk <
∞∑

k=1

2(d+p)/2 · 2−k = 2(d+p)/2 <∞
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and therefore Lemma 15 assures that

(
cl(X;D∗p)

)
∩
(
cl(Y ;D∗p)

)
= ∅.

Due to the fact that f∗ is a homeomorphism of D∗p onto (D′)∗p , we see that

(
cl
(
f(X); (D′ )∗p

))
∩
(
cl
(
f(Y ); (D′)∗p

))
= f∗

(
cl(X,D∗p)

)
∩ f∗

(
cl(Y ;D∗p)

)

= f∗
((

cl(X;D∗p)
)
∩
(
cl(Y ;D∗p)

))

= f∗(∅) = ∅.

Since again
(
f(Rk)

)
k≥1

is an admissible sequence of rings f(Rk) on D′ , the

above relation must imply by Lemma 15 that
∑∞

k=1 cappf(Rk) < ∞ . However,
the second inequality in (51) implies that

∞∑

k=1

cappf(Rk) ≥
∞∑

k=1

2(d+p)/2 =∞,

which is a contradiction. This comes from the erroneous assumption that f : Dn →
D′n is not a qi for every n = 1, 2, . . . , and thus we have established the existence
of an n such that f = f | Dn is a qi of Dn onto D′n . The second part of the
proof of the main theorem is herewith complete.
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