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Abstract. We achieve characterizations of those ultradistributions µ ∈ E ′(ω)(R
N ) (resp.

E ′{ω}(R
N ) ) with compact support such that for each ultradifferentiable function f in E(ω)(R

N )

(resp. in E{ω}(RN ) ) each solution ν ∈ D ′(ω)(R
N ) (resp. in D ′{ω}(R

N ) ) of the convolution equation
µ ∗ ν = f belongs to the same class as f . These characterizations extend classical results of
Ehrenpreis and Hörmander for distributions and Björck and Chou for ultradistributions.

Introduction

Let D ′(ω)(R
N ) denote the (ω)-ultradistributions of Beurling type on RN

in the sense of Beurling–Björck [1] or Braun, Meise and Taylor [5]. Then each
(ω)-ultradistribution with compact support µ ∈ E ′(ω)(R

N ) induces a convolution

operator Sµ on D ′(ω)(R
N ) . Sµ or µ is called (ω)-hypoelliptic if each solution

ν ∈ D ′(ω)(R
N ) of the convolution equation

Sµ(ν) = µ ∗ ν = f

belongs in fact to E(ω)(R
N ) , when f ∈ E(ω)(R

N ) . In the classical case of distri-
butions, i.e. ω(t) = log(1+ t) , the hypoelliptic convolution operators were charac-
terized by Ehrenpreis [8] in terms of a slowly decreasing condition and the location
of the zeros in CN of the Fourier–Laplace transform µ̂ of µ , while Hörmander [9]
showed that the singular support of the solution ν of µ ∗ ν = f can be con-
trolled by the singular supports of f and µ and the support of µ . For a complete
characterization in this case we refer to Hörmander [10, II, 16.6].

The results of Ehrenpreis and Hörmander were extended in part to ultradistri-
butions by Björck [1] and Chou [7]. Björck characterized the (ω)-hypoelliptic dif-
ferential operators P (D) , while Chou gave necessary as well as sufficient conditions
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for hypoelliptic convolution operators µ acting on D ′{Mp}(R
N ) and D ′(Mp)(R

N ) .

For results concerning pseudo-differential operators on Gevrey classes we refer to
Rodino [19, 3.2, 3.3] and the references given there.

In the present paper we show that the classical characterizations of hypoel-
lipticity extend completely to convolution operators acting on D ′(ω)(R

N ) or on

D ′{ω}(R
N ) , the space of {ω} -ultradistributions of Roumieu type. Using the ab-

breviation (∗) for (ω) or {ω} , and denoting the convex hull of a set K by ch(K) ,
our main result can be stated as follows:

Theorem. For µ ∈ E ′∗(R
N ) the following assertions are equivalent:

(1) Whenever ν ∈ D ′∗(R
N ) and µ ∗ ν ∈ E∗(RN ) , then ν ∈ E∗(RN ) .

(2) µ is slowly decreasing for (∗) and limz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
= ∞ if

(∗) = (ω) (resp. lim infz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
> 0 if (∗) = {ω}).

(3) Ker Sµ ⊂ E∗(RN ) and µ is slowly decreasing for (∗) .
(4) There exists F ∈ E ′∗(R

N ) and ψ ∈ D∗(RN ) such that µ ∗ F = δ + ψ .
(5) There exists a fundamental solution E for Sµ satisfying

ch(sing supp∗(E)) = − ch
(
sing supp∗(µ)

)
.

(6) For each open set Ω ⊂ RN and u ∈ D ′∗(Ω − supp(µ) + ch(sing supp∗(µ)))
satisfying µ ∗ u ∈ E∗

(
Ω + ch

(
sing supp∗(µ)

))
, it follows that u ∈ E∗(Ω) .

For µ ∈ E ′(ω)(R
N ) the proof of the theorem is given by appropriate modifica-

tions of the classical arguments using a recent characterization of those convolu-
tion operators Sµ which are surjective on D ′(ω)(R

N ) , given by Bonet, Galbis and

Meise [2]. For µ ∈ E ′{ω}(R
N ) the proof can be reduced essentially to the Beurling

case, due to results of Braun, Meise and Taylor [5] and Meise, Taylor and Vogt [15].
As we show, they imply that for each open set Ω in RN , E{ω}(Ω) coincides topo-
logically with the intersection of the spaces E(σ)(Ω), where σ runs through all

weight functions satisfying σ(t) = o
(
ω(t)

)
as t tends to infinity. Consequently,

sing supp{ω}(u) = ∪{sing supp(σ)(u) : σ = o(ω)}
holds for each u ∈ D ′{ω}(R

N ) . From this it follows that µ ∈ E ′{ω}(R
N ) is {ω} -

hypoelliptic if and only if there exists a weight function σ0 satisfying σ0 = o(ω)
such that µ is (σ)-hypoelliptic for each weight function σ ≥ σ0 satisfying σ =
o(ω) .

Note that our results apply in particular to Gevrey ultradistributions and
more generally to ultradistributions µ in E ′{Mp}(R

N ) or E ′(Mp)(R
N ) , provided

that the sequence (Mp)p∈N0 satisfies the conditions (M1), (M2) and (M3) of Ko-
matsu [11] (see Meise and Taylor [13, 3.11]) or the weaker conditions in Braun,
Meise and Taylor [5, 8.9].

Acknowledgement. The research of the first two authors is supported by
DGESIC project no. PB97-0333.
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1. Preliminaries

In this preliminary section we introduce the nonquasianalytic classes, the
spaces of ultradistributions and most of the notation that will be used in the
sequel.

1.1. Definition. Let ω: [0,∞[→ [0,∞[ be a continuous function which is
increasing and satisfies ω(0) = 0 and ω(1) > 0. ω is called a weight function if it
satisfies the following conditions:

(α) ω(2t) ≤ K
(
1 + ω(t)

)
for some K ≥ 1 and for all t .

(β)
∫∞
−∞
(
ω(t)/(1 + t2)

)
dt <∞ .

(γ) log(1 + t2) = o
(
ω(t)

)
as t tends to ∞ .

(δ) ϕ(t) = ω(et) is convex in R .

For a weight function ω we define ω̃: CN → [0,∞[ by ω̃(z) = ω(|z|) and
again call this function ω , by abuse of notation. The Young conjugate of ϕ is
defined by ϕ∗(x) = supy>0{xy − ϕ(y)} .

1.2. Remark. (a) Each weight function ω satisfies limt→∞
(
ω(t)/t

)
= 0 by

the remark following 1.3 of [14].
(b) For each weight function ω there exists a weight function σ satisfying

σ(t) = ω(t) for all large t > 0 and σ | [0, 1[= 0. This implies ϕσ(y) = ϕω(y) for
all large y , ϕ∗∗σ = ϕσ . From this it follows that all subsequent definitions do not
change if ω is replaced by σ . On the other hand they also do not change if ω is
replaced by ω + c , c some positive number.

(c) For each weight function ω there exists a weight function σ ∈ C∞ having
bounded derivative on [0,∞[ such that σ and ω are equivalent in the sense that
ω ≤ σ ≤ Aω + C for some constants A,C > 0.

(d) Let ω be as in 1.1. Then, for x, y ∈ CN we have, by [5, 1.2], ω(x + y) ≤
K
(
1 + ω(x) + ω(y)

)
. Consequently, ω(x− y) ≥ ω(|x| − |y|) ≥ ω(x)/K − 1−ω(y) ,

for arbitrary x, y ∈ CN .

1.3. Definition. Let ω be a weight function.
(a) For a set K ⊂ RN and λ > 0 let

Eω(K,λ) :=
{

f ∈ C∞(K) : ‖f‖K,λ := sup
x∈K

sup
α
|f (α)(x)| exp

(
−λϕ∗

( |α|
λ

))
<∞

}
.

(b) For an open set Ω ⊂ RN define

E(ω)(Ω) := proj←K⊂⊂Ωprojm∈NEω(K,m)

= {f ∈ C∞(Ω) : ‖f‖K,m <∞ for each K ⊂⊂ Ω and each m ∈ N},
and

E{ω}(Ω) := proj←K⊂⊂Ωind→m∈NEω
(
K,

1

m

)

= {f ∈ C∞(Ω) : for each K ⊂⊂ Ω there is m ∈ N with ‖f‖K,1/m <∞}.
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The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ω -ultradifferentiable functions
of Beurling (resp. Roumieu) type on Ω. We write E∗(Ω), where ∗ can be either
(ω) or {ω} at all occuring places.

(c) For a compact set K in RN we let

D∗(K) := {f ∈ E∗(R
N ) : supp(f) ⊂ K},

endowed with the induced topology. For an open set Ω ⊂ RN and a fundamental
sequence (Kj)j∈N of compact subsets of Ω we let

D∗(Ω) := indj→D∗(Kj).

The dual D ′∗(Ω) of D∗(Ω) is endowed with its strong topology. The elements
of D ′(ω)(Ω) (resp. D ′{ω}(Ω)) are called ω -ultradistributions of Beurling (resp.

Roumieu) type on Ω.

1.4. Remark. (a) By Meise, Taylor and Vogt [15, 3.3], for each open set Ω
in RN , the seminorms

‖ ‖K,σ: f → sup
x∈K

sup
α∈Nn

0

|f (α)(x)| exp
(
−ϕ∗σ(|α|)

)
,

where K is any compact set in Ω and σ is a weight function satisfying σ = o(ω) ,
form a fundamental sequence of semi-norms for E{ω}(Ω).

(b) For each compact set K in RN , D{ω}(K) is a (DFN)-space by Braun,
Meise and Taylor [5, 3.6]. A fundamental system of bounded sets is given by

Bm :=

{
ϕ ∈ D{ω}(K) : |ϕ|K,m :=

∫

RN

|ϕ̂(t)|eω(t)/m dt ≤ 1

}
,

where the Fourier transform ϕ̂: RN → C is defined as

ϕ̂(t) =

∫
ϕ(x)e−i〈x,t〉 dx.

(c) For each compact set K in RN , D(ω)(K) is a nuclear Fréchet space, by
Braun, Meise and Taylor [5, 3.6]. A fundamental system of seminorms on D(ω)(K)
is given by (‖ · ‖K,m)m∈N defined in 1.3 but also by

|||ϕ|||m :=

∫

RN

|ϕ̂(t)|emω(t) dt, ϕ ∈ D(ω)(K).

1.5. Example. The following functions ω: [0,∞[→ [0,∞[ are examples of
weight functions:
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(1) ω(t) = tα , 0 < α < 1.

(2) ω(t) =
(
log(1 + t)

)β
, β > 1.

(3) ω(t) = t
(
log(1 + t)

)−β
, β > 1.

Note that for ω(t) = tα , the classes E(ω) (resp. E{ω} ) coincide with the Gevrey

classes Γ(d) (resp. Γ{d} ) for d := 1/α .
(4) Let (Mp)p∈N0 be a sequence of positive numbers which has the following

properties:
(M1) M2

j ≤Mj−1Mj+1 for all j ∈ N ;
(M2) there exists A,H > 1 with Mn ≤ AHn min0≤j≤n MjMn−j for all n ∈

N ;
(M3) there exists A > 0 with

∑∞
q=j+1 Mq−1/Mq ≤ AjMj/Mj+1 ;

and define ωM : R→ [0,∞[ by

ωM (t) =

{
supj∈N0

log
|t|jM0

Mj
for |t| > 0,

0 for t = 0.

Then ωM is a continuous even function and by Meise and Taylor [13, 3.11] there
exists a concave weight function κ with ωM (t) ≤ κ(t) ≤ CωM (t) + C for some
C > 0 and all t > 0 and such that for each open set Ω in RN we have

E(Mj)(Ω) =

{
f ∈ C∞(Ω) : sup

α∈NN
0

sup
x∈K

|f (α)(x)|
h|α|M|α|

<∞ for each h > 0

and each K ⊂ Ω compact

}
= E(κ)(Ω).

We have an analogous identity for the Roumieu spaces. Note that by [5, 8.9], these
identities hold even under weaker hypotheses on (Mp)p∈N0 .

1.6. Convolution operators. Let µ ∈ E ′∗(R
N ) , µ 6= 0, and open sets

Ω1,Ω2 in Rn be given. If Ω1 − supp(µ) ⊂ Ω2 then we define:

(1) Stµ: D∗(Ω1)→ D∗(Ω2), Stµ(ϕ) := µ̌ ∗ ϕ|Ω2 ,

where µ̌ ∗ ϕ: x → µ̌
(
ϕ(x − ·)

)
, x ∈ Ω2 , and where µ̌(ψ) := µ(ψ̌) and ψ̌(x) :=

ψ(−x) , x ∈ RN . Since Stµ is continuous and linear, so is its adjoint operator

Sµ := (Stµ)
t: D ′∗(Ω2)→ D ′∗(Ω1).

(2) T tµ: E ′∗(Ω1)→ E ′∗(Ω2), T tµ(ν) := µ̌ ∗ ν|Ω2 ,
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where µ̌ ∗ ν(ϕ) := (µ̌ ∗
(
ν̌ ∗ϕ)

)
(0). Again, T tµ is continuous and linear, so that its

adjoint
Tµ := (T tµ)

t: E∗(Ω2)→ E∗(Ω1)

is continuous and linear.
Note that Sµ(ν) = µ ∗ ν and Tµ(f) = µ ∗ f , so that it is reasonable to call

the operators Sµ and Tµ convolution operators. Note further that T tµ|D∗(Ω1) = Stµ
and Sµ|E∗(Ω2) = Tµ and that T tµ and Stµ are injective.

1.7. Definition. For u ∈ D ′∗(R
N ) the ∗ -singular support, denoted by

sing supp∗(u) , is the set of points in RN having no open neighbourhood U to
which the restriction u|U is in E∗(U) .

1.8. Remark. Similar as Hörmander [10, 4.2.5] one proves that

sing supp∗(u ∗ v) ⊂ sing supp∗(u) + sing supp∗(v)

whenever u, v ∈ D ′∗(R
N ) and one has compact support.

1.9. Spaces of entire functions. Let A(CN ) denote the space of all
entire functions on CN , endowed with the Fréchet space topology of uniform
convergence on all compact subsets of CN . For an upper semi-continuous function
v: CN →]0,∞[ we define

A(v,CN ) :=

{
f ∈ A(CN ) : ‖f‖v := sup

z∈CN

|f(z)|v(z) <∞
}

and note that A(v,CN ) is a Banach space.

1.10. Definition. Let K be a convex compact subset of RN . Then we
define the support functional HK of K by

HK(y) := sup
x∈K
〈x, y〉.

1.11. Fourier–Laplace transform. For µ ∈ E ′∗(R
N ) its Fourier–Laplace

transform µ̂ ∈ A(CN ) is defined as

µ̂(z) := µ
(
exp(−i〈 · , z〉)

)
, z ∈ CN .

To characterize its growth behaviour, fix a weight function ω and define the func-
tions wj , wj,k , vj and vj,k by

wj(z) := exp
(
−j
(
| Im z|+ ω(z)

))
,

wj,k(z) := exp

(
−j| Im z| − 1

k
ω(z)

)
,

vj(z) := exp

(
−j| Im z|+ 1

j
ω(z)

)
,

vj,k(z) := exp
(
−j| Im z|+ kω(z)

)
.
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Then the Fourier–Laplace transform F : µ → µ̂ is an isomorphism between the
following spaces (see Braun, Meise and Taylor [5, 3.5, 7.4]:

E ′(ω)(R
N ) −→ indj→A(wj ,C

N ),

E ′{ω}(R
N ) −→ indj→proj←kA(wj,k,C

N ),

D(ω)(R
N ) −→ indj→proj←kA(vj,k,C

N ),

D{ω}(R
N ) −→ indj→A(vj ,C

N ).

Moreover, for a given µ ∈ E ′∗(R
N ) and a convex compact set K in RN ,

supp(µ) ⊂ K if and only if there exists j ∈ N such that for each ε > 0 we find
C > 0 so that |µ̂(z)| ≤ C exp

(
HK(Im z) + ε| Im z|+ jω(z)

)
for every z ∈ CN .

Furthermore, for µ, ν ∈ E ′∗(R
N ) and ϕ ∈ D∗(RN ) we have

F
(
Stµ(ν)

)
= F (µ̌)F (ν) and F

(
T tµ(ϕ)

)
= F (µ̌)F (ϕ),

hence F ◦ Stµ ◦F−1 (resp. F ◦ T tµ ◦F−1 ) is the operator of multiplication by
F (µ̌) .

1.12. Definition. Given µ ∈ E ′∗(R
N ) we let

V (µ̂) := {z ∈ CN | µ̂(z) = 0}.

1.13. Definition. (a) An ultradistribution µ ∈ E ′(ω)(R
N ) is called slowly

decreasing for (ω) if there exists C > 0 such that for each x ∈ RN with |x| > C
there is ξ ∈ RN with |x− ξ| ≤ Cω(x) and |µ̂(ξ)| ≥ exp

(
−Cω(ξ)

)
.

(b) An ultradistribution µ ∈ E ′{ω}(R
N ) is called slowly decreasing for {ω} if

for each m ∈ N there exists R > 0 such that for each x ∈ RN with |x| > R there
exists ξ ∈ RN satisfying |x− ξ| ≤ ω(x)/m such that |µ̂(ξ)| ≥ exp

(
−ω(ξ)/m

)
.

1.14. Remark. If µ ∈ E ′∗(R
N ) is slowly decreasing for ∗ in the sense

of Definition 1.13 then µ is slowly decreasing in the sense of Bonet, Galbis and
Meise [2, 2.3, 3.1]. Hence it follows from [2, 2.9, 3.4] that the convolution operator
Sµ̌ and consequently Sµ is surjective on D ′∗(R

N ) . Note that by Bonet, Galbis
and Momm [3] the two slowly decreasing definitions are in fact equivalent. For
N = 1 and ∗ = (ω) this follows easily from Meise, Taylor and Vogt [14, 2.7].

1.15. Notation. For a subset A of RN , we denote the convex hull of A
by ch(A) .
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2. (ω)-hypoelliptic convolution operators

In this section we define and characterize when the convolution operator Sµ
which is induced by µ ∈ E ′(ω)(R

N ) is (ω )-hypoelliptic. To do this we use essentially

arguments which go back to Ehrenpreis [8], and Hörmander [9], [10, Section 16.6]
in the classical case of convolution operators on distributions. Throughout this
section, ω denotes a fixed weight function.

2.1. Theorem. For µ ∈ E ′(ω)(R
N ) the following assertions are equivalent:

(1) Whenever ν ∈ D ′(ω)(R
N ) and µ ∗ ν ∈ E(ω)(R

N ) , then ν ∈ E(ω)(R
N ) ,

(2) limz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
=∞ and there exist A,R > 0 such that

(2.1) |µ̂(x)| ≥ exp
(
−Aω(x)

)
for each x ∈ RN , |x| ≥ R,

(3) limz∈V (µ̂),|z|→∞
(
| Im z|/ω(z)

)
=∞ and µ is slowly decreasing for (ω) ,

(4) Ker Sµ ⊂ E(ω)(R
N ) and µ is slowly decreasing for (ω) ,

(5) there exist F ∈ D ′(ω)(R
N ) and ψ ∈ D(ω)(R

N ) such that µ ∗ F = δ + ψ ,

(6) there exists F ∈ D ′(ω)(R
N ) satisfying µ ∗ F = δ + ϕ for some ϕ ∈ E(ω)(R

N )

and ch
(
sing supp(ω)(F )

)
= − ch

(
sing supp(ω)(µ)

)
.

(7) there exists a fundamental solution E for Sµ satisfying

ch
(
sing supp(ω)(E)

)
= − ch

(
sing supp(ω)(µ)

)
,

(8) for each open set Ω ⊂ RN and u ∈ D ′(ω)

(
Ω− supp(µ) + ch

(
sing supp(ω)(µ)

))

satisfying µ ∗ u ∈ E(ω)

(
Ω + ch

(
sing supp(ω)(µ)

))
, it follows that u ∈ E(ω)(Ω) .

2.2. Definition. (a) If µ ∈ E ′(ω)(R
N ) satisfies condition 2.1(1), then µ and

also Sµ are called (ω)-hypoelliptic.
(b) F ∈ D ′(ω)(R

N ) is called a parametrix for µ ∈ E ′(ω)(R
N ) if µ ∗ F = δ + ϕ

for some ϕ ∈ E(ω)(R
N ) .

The proof of Theorem 2.1 is prepared by several intermediate results and is
given at the end of the section.

2.3. Proposition. If µ ∈ E ′(ω)(R
N ) satisfies Ker Sµ ∈ E(ω)(R

N ) , then

lim
z∈V (µ̂), |z|→∞

| Im z|
ω(z)

=∞.

Proof. Proceeding by contradiction we assume there is a sequence (ζj)j∈N ⊂
V (µ̂) such that limj→∞ |ζj | = ∞ and | Im ζj | ≤ Mω(ζj) holds for every j ∈ N
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and some M > 0. If a = (aj)j∈N ∈ l1 and ϕ ∈ D(ω)(R
N ) , by the Paley–Wiener–

Komatsu theorem [5, 3.5] there is s ∈ N such that for all n ∈ N there is Cn > 0
with

|ϕ̂(z)| ≤ Cn exp
(
s| Im z| − nω(z)

)

for all z ∈ CN . If n > sM + 1 we have, for each k ∈ N ,

k∑

j=1

|aj | |〈ei〈x,ζj〉, ϕ〉| =
k∑

j=1

|aj | |ϕ̂(−ζj)| ≤ Cn

k∑

j=1

|aj |.

This implies that the map η: l1 −→
(
D ′(ω)(R

N ), σ
(
D ′(ω)(R

N ),D(ω)(R
N )
))

defined by η(a) :=
∑∞
j=1 aj exp(i〈x, ζj〉) is well-defined, linear and continuous.

By the closed graph theorem [17, 24.31], η: l1 −→ D ′(ω)(R
N ) is continuous and

the range of η is contained in Ker Sµ , since ζj ∈ V (µ̂) for each j ∈ N . By
assumption η(l1) ⊂ E(ω)(R

N ) and we can apply again the closed graph theorem
to conclude that η: l1 −→ C∞(RN ) is also continuous. This yields C > 0 such
that, for all a = (aj)j∈N in l1 and x ∈ RN with |x| ≤ 1, we have

∑

|α|=1

∣∣∣∣
( ∞∑

j=1

aj exp(i〈x, ζj〉)
)α∣∣∣∣ ≤ C

∞∑

j=1

|aj |.

If ζj = (ζ1
j , . . . , ζ

N
j ) for each j ∈ N , we get |ζkj | ≤ C for each j ∈ N and

K = 1, . . . , N . This implies that (ζj)j∈N is bounded, in contradiction with the
choice of (ζj)j∈N .

We need the following lemma which can be seen in Sampson and Zielezny [20,
p. 141].

2.4. Lemma. Let (ξj)j∈N be a sequence in RN satisfying |ξj | > 2|ξj−1| >
2j for every j ∈ N and let (aj)j∈N be a bounded sequence in C . Then the series∑∞
j=1 aj exp(i〈 · , ξj〉) converges in D ′(RN ) to some η ∈ D ′(RN ) . If η ∈ C 3 , then

limj→∞ |aj | = 0 .

2.5. Proposition. If µ ∈ E ′(ω)(R
N ) is (ω) -hypoelliptic, then there exist

A,R > 0 such that (2.1) holds, i.e.,

|µ̂(x)| ≥ exp
(
−Aω(x)

)
for each x ∈ RN , |x| ≥ R.

Proof. Arguing by contradiction we construct a sequence (ξj)j∈N ⊂ RN such
that |ξj | > 2|ξj−1| > 2j for every j ≥ 2 and |µ̂(ξj)| < exp

(
−jω(ξj)

)
, for each

j ∈ N . By Lemma 2.4, η :=
∑∞
j=1 exp(i〈 · , ξj〉) belongs to D ′(RN ) and hence to
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D ′(ω)(R
N ) but it is not a C∞ function on RN . We show that µ ∗ η ∈ E(ω)(R

N )

to reach a contradiction. First observe that, for ϕ ∈ D(ω)(R
N ) , we have

〈µ ∗ η, ϕ〉 = 〈η, µ̌ ∗ ϕ〉 =

∞∑

j=1

µ̂(ξj)ϕ̂(−ξj) =

∞∑

j=1

µ̂(ξj)
〈
exp(i〈 · , ξj〉), ϕ

〉
.

Next note that the definition of ϕ∗ implies for j,m ∈ N , j > m large enough,
α ∈ N0 :

∣∣(µ̂(ξj) exp(i〈 · , ξj〉)
)(α)∣∣ exp

(
−mϕ∗

( |α|
m

))
= |µ̂(ξj)| |ξj ||α| exp

(
−mϕ∗

( |α|
m

))

≤ exp
(
−jω(|ξj |) + |α| log |ξj | −mϕ∗

( |α|
m

))

≤ exp(−j + m)ω(ξj) ≤ exp(−j + m).

From this it follows easily that µ ∗ η ∈ E(ω)(R
N ) .

2.6. Proposition. If µ ∈ E ′(ω)(R
N ) satisfies the following two conditions:

(a) limz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
=∞ ,

(b) µ̂ is slowly-decreasing for (ω) .
Then there exist A,R > 0 such that (2.1) holds.

Proof. Since ω satisfies condition (α) and (γ) we can find k > 0 such that
ω(x) ≤ kω( 1

2x) if |x| > k . Because of (b), there exists B > 0 such that for all
x ∈ RN there is y ∈ RN with |x− y| < Bω(x) and |µ̂(y)| > B−1 exp

(
−Bω(x)

)
.

Since ω(t) = o(t) as t goes to ∞ , we can enlarge k to get also ω(x) < |x|/2B if
|x| > k .

By condition (a), for each m ∈ N there exists Cm > 0 such that

| Im ζ| ≥ (m + 1)ω(|ζ|) if µ̂(ζ) = 0 and |ζ| ≥ Cm.

We select m0 ∈ N , m0 > kB . For x ∈ RN with |x| > 2max(B,Cm0 , k) we define
g(λ) := µ̂

(
x + λ(y − x)

)
, λ ∈ C , where y ∈ RN is the element associated with x

in condition (b) (see above). Clearly g ∈H (C) and, if |λ| ≤ 1
2 , we have

|x + λ(y − x)| ≥ |x| − ( 1
2B)ω(x) ≥ 1

2 |x| > Cm0

and ∣∣Im
(
x + λ(y − x)

)∣∣ = | Imλ| |y − x| ≤ 1
2Bω(x) ≤ 1

2kBω( 1
2x)

≤ m0ω
(
x + λ(y − x)

)
,

which implies g(λ) 6= 0 for each λ ∈ C with |λ| ≤ 1
2 .
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Now we apply the minimum-modulus theorem of Chou [7, II.2.1] with R = 1,
r = 1

3 , λ0 = 1, η < 1
32 , H = 2 + log(3e/2η) , to get

|g(0)| ≥ |g(1)|3(H+1)

(sup|λ|≤3e |g(λ)|3H)
(
sup|λ|≤3/2 |g(λ)|2

) .

If |λ| ≤ 3e, we have |x+λ(y−x)| ≤ |x|+3eBω(x) ≤ 4e|x| and
∣∣Im
(
x+λ(y−x)

)∣∣ ≤
3eBω(x) . By the theorem of Paley–Wiener–Schwartz–Komatsu [5, 7.2], there is
D > 0 such that for all |λ| ≤ 3e we have

∣∣µ̂
(
x + λ(x− y)

)∣∣ ≤ D exp
(
Dω(x)

)
for

all |λ| ≤ 3e . This yields

|µ̂(x)| ≥ exp
(
−A(3H + 3)ω(x)

)
(
D exp

(
Dω(x)

))3H+2
,

and the proof is complete.

For the convenience of the reader we recall the following result from Hörman-
der [9, Lemma 1].

2.7. Lemma. Given positive constants S , T and ε > 0 we can find L ∈ N
such that for all 0 < s < S and 0 < r < R/L if u is harmonic when x2 +y2 < R2

and satisfies the inequalities
(i) u(x, 0) ≤ 0 ,
(ii) u(x, y) ≥ −S|y| − Tr if x2 + y2 < R2 ,

it follows that
(iii) u(x, y) ≤ s|y|+ εr if x2 + y2 < r2 .

2.8. Proposition. Let µ ∈ E ′(ω)(R
N ) satisfy the hypothesis of 2.6. There

exists D > 0 such that for each m ∈ N and each convex compact neighbourhood
K of ch

(
supp(µ)

)
there exists Rm > 0 such that

(∗) 1

|µ̂(z)| ≤ exp
(
HK(− Im z) + Dω(Re z)

)

for z ∈ CN , |z| ≥ Rm and | Im z| ≤ mω(Re z) .

Proof. We first observe that, if z ∈ CN satisfies | Im z| < mω(z) for some
m ∈ N , then |Re z|/|z| goes to 1 as |z| goes to ∞ . This follows from the estimate

1 =
|z|
|z| ≤

|Re z|
|z| +

| Im z|
|z| <

|Re z|
|z| + m

ω(z)

|z| ,

since ω(t) = o(t) as t→∞ .
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Next fix a compact convex neighbourhood K of supp(µ) and m ∈ N and
consider z = x + iy ∈ CN with 0 < |y| < mω(z) . Define the entire function

gz(λ) := µ̂(x + λy/|y|), λ ∈ C.

We study gz for |λ| < Mω(x) for some M ∈ N , depending on m but not on z ,
to be selected later.

By condition (a) in Proposition 2.6, for each s ∈ N there exists D̃s such that

µ̂(z) 6= 0 if |z| ≥D̃s, | Im z| ≤ sω(z).

We claim there is DM > 0 such that if z = x + iy ∈ CN satisfies |z| > DM ,
0 < |y| < mω(z) and |λ| < Mω(x) , then gz(λ) 6= 0 and

|gz(t)| ≥ exp
(
−Aω(x + ty/|y|)

)

for all t ∈ R , |t| < Mω(x) , where A is the constant in (2.1) (which holds by
Proposition 2.6).

To prove the claim, recall there is k ∈ N such that ω(x) ≤ kω( 1
2x) if |x| ≥ k

and, given M , there is KM > 0 such that t − Mω(t) > 1
2 t if t > KM . For

|x| > max(KM , 2D̃kM , 2k) , we have

∣∣x + λy/|y|
∣∣ ≥ |x| −Mω(x) ≥ 1

2 |x| (and ≥ k).

In particular |x| ≤ 2
∣∣x + λy/|y|

∣∣ , hence

∣∣Im(x + λy/|y|)
∣∣ = | Imλ| < Mω(x) ≤Mω

(
2
∣∣x + λy/|y|

∣∣)

≤Mkω
(∣∣x + λy/|y|

∣∣).

Thus gz(λ) = µ̂(x + λy/|y|) 6= 0. On the other hand, if |x| > max(2R,KM ) (R
as in (2.1)) and t ∈ R , |t| < Mω(x) , we get

∣∣x + ty/|y|
∣∣ ≥ |x| − |t| ≥ |x| −Mω(x) ≥ 1

2 |x| > R,

hence
|gz(t)| =

∣∣µ̂(x + ty/|y|)
∣∣ ≥ exp

(
−Aω(x + ty/|y|)

)
.

By the very first observation of the proof, there is DM > 0 such that

|z| ≥ DM , z = x + iy ∈ CN , 0 < |y| < mω(z)

implies
|x| ≥ max(KM , 2D̃kM , 2k, 2R).
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This completes the proof of the claim.
We write HK(y/|y|) = α + β , HK(−y/|y|) = α− β . Then HK(Im yλ/|y|) =

α|λ|+ βλ . By the theorem of Paley–Wiener–Schwartz–Komatsu [5, 7.2], there is
b > 0 such that

|µ̂(z)| ≤ exp
(
HK(Im z) + bω(z)

)
, if |z| ≥ b.

Now, if z = x + iy ∈ CN satisfies |z| > max(b,KM , k) and |λ| < Mω(x) , then

|gz(λ)| ≤ exp
(
α| Imλ|+ β Imλ + bω(x + λy/|y|)

)
.

Since
∣∣x + λy/|y|

∣∣ ≤ |x|+ |λ| ≤ |x|+ Mω(x) ≤ 2|x| , we get

|gz(λ)| ≤ exp
(
α| Imλ|+ β Imλ + bkω(x)

)
.

We define

uz(λ) := log

(
eβ Imλe−Akω(x)

|gz(λ)|

)
= β Imλ−Akω(x)− log |gz(λ)|,

which is harmonic if |z| > Rm := max(DM , b,KM , k) and |λ| < Mω(x) , since
gz(λ) does not vanish. For t ∈ R , |t| < Mω(x) , we get

ω(x + ty/|y|) ≤ ω(2|x|) ≤ kω(x),

hence
exp
(
−A
(
ω(x + ty/|y|)

))
≥ exp

(
−Akω(x)

)
.

By our claim above, if t ∈ R , |t| < Mω(x) and λ ∈ C , |λ| < Mω(x) we have

uz(t) ≤ −Akω(x)−
(
−Akω(x)

)
= 0,

and

uz(λ) ≥ β Imλ−Akω(x)−α| Imλ|−β Imλ−bkω(x) = −α| Imλ|−(Ak+bk)ω(x).

Now let

ε :=
1

2(m + 1)
, T :=

(Ak + bk)

(m + 1)
, S := sup

|η|=1

(
1
2 (
(
HK(η) + HK(−η)

))

and choose L ∈ N according to Lemma 2.7. Observe that the constants depend on
m but not on z . Next let M := L(m+1)+1, R := Mω(x) and r = (m+1)ω(x) .
Then we conclude from Lemma 2.7. that

|uz(λ)| ≤ α| Imλ|+ ε(m + 1)ω(x), if |λ| ≤ r.

Setting λ = i|y| , we get

uz(i|y|) = β|y| −Akω(x)− log |µ̂(z)| ≤ α|y|+ ω(x).

This yields
− log |µ̂(z)| ≤ (α− β)|y|+ (Ak + 1)ω(x).

Thus 1/|µ̂(z)| ≤ exp
(
HK(−y)+ (Ak +1)ω(x)

)
if z = x+ iy ∈ CN , |z| ≥ Rm and

|y| ≤ mω(x) .
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2.9. Lemma. If µ ∈ E ′(ω)(R
N ) satisfies the hypotheses of Proposition 2.6

and µ̂(x) does not vanish if |x| ≥ R0 , then

〈F,ϕ〉 :=
( 1

2π

)N ∫

|x|≥R0

ϕ̂(−x)

µ̂(x)
dx, ϕ ∈ D(ω)(R

N )

defines an element F ∈ D ′(ω)(R
N ) satisfying sing supp(ω)(F ) ⊂ − ch

(
supp(µ)

)

and µ ∗ F = δ + G for some G which is real analytic on RN .

Proof. By the theorem of Paley–Wiener–Schwartz–Komatsu [5, 7.2] and (2.1)
(which follows from Proposition 2.6), it is easy to see that F defines an element
of D ′(ω)(R

N ) .

Moreover, for ϕ ∈ D(ω)(R
N ) , we have

〈µ ∗ F,ϕ〉 :=
( 1

2π

)N ∫

|x|≥R0

ϕ̂(−x)µ̂(x)

µ̂(x)
dx =

∫

|x|≥R0

ϕ̂(x) dx

= ϕ(0)−
( 1

2π

)N ∫

|x|≤R0

ϕ̂(x) dx = ϕ(0) +

∫

RN

ϕ(t)G(t) dt,

where G(t) = −(2π)−N
∫
|x|≤R0

ei〈,x,t〉 dx defines a real analytic function on RN .

Thus µ ∗ F = δ + G as desired.
The main step in the proof is to show that sing supp(ω)(F ) ⊂ − ch

(
supp(µ)

)
.

To see this we fix x0 /∈ − ch
(
supp(µ)

)
. We select a compact convex neighbourhood

K of − ch
(
supp(µ)

)
such that x0 /∈ K . By Proposition 2.8, there exists D > 0

such that for each m ∈ N there exists Rm ≥ R0 such that

1

|µ̂(z)| ≤ exp
(
HK(Im z)+Dω(Re z)

)
, if z ∈ CN , |z| ≥ Rm , | Im z| ≤ mω(Re z) .

Since x0 /∈ K , there are η ∈ RN , |η| = 1, σ > 0 and a compact convex
ball V around x0 of radius δ > 0 such that HK(η) + HV (−η) ≤ −σ . Applying
an orthogonal and real change of variables, we may assume η = (1, 0, . . . , 0). We
choose ϕ ∈ D(ω)(V

′) such that ϕ is identically 1 near x0 , with V ′ = Bδ/2(x0) .
If we prove that for each k ∈ N there exists Ck > 0 such that

(∗) |ϕ̂F (ξ)| ≤ Ck exp
(
−kω(ξ)

)
for all ξ ∈ RN ,

it follows that ϕF ∈ E(ω)(R
N ) and F is of class E(ω) near x0 as desired.

To prove (∗) , we first observe that, for ξ ∈ RN ,

ϕ̂F (ξ) = (2π)−N
∫

|x|≥R0

ϕ̂(ξ − x)

µ̂(x)
dx.
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By 1.2(d) there is β ∈ N (depending only on ω ) such that ω(ξ− x) ≥ β−1ω(ξ)−
ω(x)−1 for all x, ξ ∈ RN . We may assume that ω is C 1 on R and has a bounded
derivative (see 1.2(c)). Now we fix k ∈ N and select t ∈ N such that σt > D+βk .
We denote by ‖x‖ := max(|xi|, i = 1, . . . , N) the sup-norm on RN . We have

(2π)N |ϕ̂F (ξ)| ≤
∣∣∣∣
∫

{x||x|≥R0, ‖x‖≤Rt}

ϕ̂(ξ − x)

µ̂(x)
dx

∣∣∣∣+
∣∣∣∣
∫

‖x‖≥Rt

ϕ̂(ξ − x)

µ̂(x)
dx

∣∣∣∣

=: A(ξ) + B(ξ).

Since ϕ ∈ D(ω)(R
N ) and V is a compact convex neighbourhood of supp(ϕ) , for

each m ∈ N there is Lm > 0 such that

|ϕ̂(z)| ≤ Lm exp
(
HV (Im z)−mω(Re z)

)

for each z ∈ CN .
Consequently, there is Ck > 0 with

A(ξ) ≤ Ck exp
(
−kω(ξ)

) ∫

{x||x|≥R0, ‖x‖≤Rt}

exp
(
βkω(x)

)

|µ̂(x)| dx ≤ C ′k exp
(
−kω(ξ)

)
;

since the integral is finite.
On the other hand, writing x = (x1, x

′) ∈ RN ,

B(ξ) ≤
∣∣∣∣
∫

‖x′‖≥Rt

∫

R

ϕ̂(ξ − x)

µ̂(x)
dx

∣∣∣∣+
∣∣∣∣
∫

‖x′‖≤Rt

∫

|x1|≥Rt

ϕ̂(ξ − x)

µ̂(x)
dx

∣∣∣∣ =: I1(ξ)+I2(ξ).

We treat the two integrals separately. In I1(ξ) we change the path of integration in
the second integral by Cauchy’s theorem. We define z = γ(x1) = x1 + itω(x1, x

′) ,
x1 ∈ R , x′ ∈ RN−1 . Then, if gt(x1) is the bounded derivative of γ , we have

I1(ξ) =

∣∣∣∣
∫

‖x′‖≥Rt

∫

R

ϕ̂
((
−γ(x1),−x′) + ξ

)

µ̂
(
γ(x1), x′

) gt(x1) dx

∣∣∣∣

≤
∫

‖x′‖≥Rt

∫

R

∣∣ϕ̂
((
−γ(x1),−x′

)
+ ξ
)∣∣

∣∣µ̂
(
γ(x1), x′

)∣∣ |gt(x1)| dx

≤ CLβk

∫

‖x′‖≥Rt

∫

R

exp
(
HK

(
tω(x1, x

′)η
)

+ Dω(x1, x
′)

+ HV

(
−tω(x1, x

′)η
)
− kβω(−x + ξ)

)
dx1 dx′

≤ L′k

∫

RN−1

∫

R

exp
(((

HK(η) + HV (−η)
)
t + D + kβ

)
ω(x)− kω(ξ)

)
dx1 dx′

≤ L′k exp
(
−kω(ξ)

) ∫

RN

exp
(
−εω(x)

)
dx

for some ε > 0, and the integral is finite.
Since the integral I2(ξ) can be estimated in the same way, the proof is com-

plete.
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2.10. Remark. Note that arguments similar to the ones given in the proof
of 2.9 permit to show the following: For µ ∈ E ′(ω)(R

N ) and a compact convex

set K in RN , the inclusion sing supp(ω)(µ) ⊂ K is equivalent to the existence of
b > 0 such that for each m ∈ N there exists Cm > 0 such that

|µ̂(z)| ≤ Cm exp
(
HK(Im z) + bω(z)

)

for all z ∈ CN with | Im z| ≤ mω(z) and |z| ≥ Cm . Compare with [10, Volume I,
7.3.8].

2.11. Remark. Let µ ∈ E ′(ω)(R
N ) be (ω)-hypoelliptic and let F and G be

parametrices for µ . Then sing supp(ω)(F ) = sing supp(ω)(G) . Indeed, µ ∗ F =

δ + f , µ ∗G = δ + g and f, g ∈ E(ω)(R
N ) . Then µ ∗ (F −G) = f − g ∈ E(ω)(R

N ) .
Since µ is (ω)-hypoelliptic, it follows that F − G ∈ E(ω)(R

N ) , which yields the
conclusion.

As a consequence of Theorem 2.1, every parametrix F of µ ∈ E ′(ω)(R
N ) which

is (ω)-hypoelliptic satisfies ch
(
sing supp(ω)(F )

)
= − ch

(
sing supp(ω)(µ)

)
.

Proof of Theorem 2.1. (1) ⇒ (2) ⇒ (3): The implication (1)⇒(2) is a
direct consequence of Propositions 2.3 and 2.5. By the very definition of slowly
decreasing for (ω) , (3) follows from (2).

(3) ⇒ (5): By Propositions 2.6 and 2.8 and Lemma 2.9, (3) implies the
existence of F ∈ D ′(ω)(R

N ) such that µ ∗ F = δ + G , G is real analytic on RN

and sing supp(ω)(F ) ⊂ − ch
(
supp(µ)

)
. Select ψ ∈ D(ω)(R

N ) which is identically

1 on a neighbourhood of − ch
(
supp(µ)

)
and set F1 = ψF ∈ E ′(ω)(R

N ) . We have

µ ∗ F1 = δ + G− µ ∗
(
(1− ψ)F

)
.

Clearly ϕ = G− µ ∗
(
(1− ψ)F

)
∈ D(ω)(R

N ) , and (3) implies (5).
(5) ⇒ (1): Let h ∈ D ′(ω)(R

N ) satisfy µ ∗ h ∈ E(ω)(R
N ) and choose F ∈

E ′(ω)(R
N ) as in (5). Then F ∗ (µ ∗ h) = (δ + ψ) ∗ h = h + ψ ∗ h implies h =

−ψ ∗ h + F ∗ (µ ∗ h) ∈ E(ω)(R
N ) . Hence (1) holds.

(1) ⇒ (6): By Lemma 2.9 and the implications already proved, there is
a parametrix F of µ with sing supp(ω)(F ) ⊂ − ch

(
supp(µ)

)
. Next fix x0 /∈

− ch
(
sing supp(ω)(µ)

)
and choose χ ∈ D(ω)(R

N ) identically 1 on a neighbourhood

of ch
(
sing supp(ω)µ

)
and such that −x0 /∈ ch

(
supp(χ)

)
. Then let ν := χµ ∈

E ′(ω)(R
N ) . Clearly x0 /∈ − ch(supp ν) and µ = ν + ϕ for some ϕ ∈ D(ω)(R

N ) .

We note that ν is (ω)-hypoelliptic. Indeed, if ν ∗ h ∈ E(ω)(R
N ) for some h ∈

D ′(ω)(R
N ) , we have µ ∗ h = ν ∗ h + ϕ ∗ h ∈ E(ω)(R

N ) , hence h ∈ E(ω)(R
N ) .

By Lemma 2.9, there is a parametrix F0 for ν such that sing supp(ω)(F0) ⊂
− ch

(
supp(ν)

)
. In particular F0 is of class E(ω) on a neighbourhood of x0 . It is
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easy to see that F0 is also a parametrix for µ . By Remark 2.11, sing supp(ω)(F0) =
sing supp(ω)(F ) , which implies x0 /∈ sing supp(ω)(F ) .

(6) ⇒ (7): The same argument used above to show (5)⇒(1), permits to
conclude (1) from (6). By what is already proved, we get (3). In particular µ is
slowly decreasing for (ω) and by [2, Corollary 2.9] there is a fundamental solution
E ∈ D ′(ω)(R

N ) with µ ∗ E = δ . In particular E is a parametrix for µ , which is

(ω)-hypoelliptic. By Remark 2.11, ch
(
sing supp(ω)(E)

)
= ch

(
sing supp(ω)(F )

)
=

− ch( sing supp(ω)µ) .

(7)⇒ (8): Let Ω be an open subset of RN and let u ∈ D ′(ω)(Ω− supp(µ) +

ch
(
sing supp(ω)µ)

)
satisfy µ ∗ u ∈ E(ω)

(
Ω + ch

(
sing supp(ω)(µ)

))
. We fix x0 ∈ Ω

and we show that the restriction of u to BR(x0) belongs to E(ω)

(
BR(x0)

)
for

some R > 0. To do so, take R > 0 such that B2R(x0) ⊂ Ω, choose ϕ ∈
D(ω)

(
Ω−supp(µ)+ch

(
sing supp(ω)(µ)

))
which is identically 1 on a neighbourhood

of BR(x0) − supp(µ) + ch(sing supp(ω)µ) and let v := ϕu ∈ E ′(ω)(R
n) . Since u

and v coincide on a neighbourhood of BR(x0) − supp(µ) + ch(sing supp(ω)µ) ,

we get that µ ∗ u and µ ∗ v coincide on BR(x0) + ch
(
sing supp(ω)(µ)

)
, hence

µ ∗ v ∈ E(ω)

(
BR(x0) + ch

(
sing supp(ω)(µ)

))
. Therefore,

sing supp(ω)(v) = sing supp(ω)(E ∗ µ ∗ v) ⊂ sing supp(ω)(E) + sing supp(ω)(µ ∗ v)

⊂ − ch
(
sing supp(ω)(µ)

)
+ (Rn\

(
BR(x0) + ch

(
sing supp (ω)(µ)

))

⊂ Rn\BR(x0).

(8)⇒ (1): This is obvious.
(1)⇒ (4): First observe that (1) clearly implies Ker Sµ ⊂ E(ω)(R

N ) and, by
what is already proved it also implies that µ is slowly decreasing for (ω) .

(4) ⇒ (1): Conversely, assume that (4) holds and take ν ∈ D ′(ω)(R
N ) such

that ν ∗ µ = g ∈ E(ω)(R
N ) . Since µ is slowly decreasing for (ω) , we can apply

[2, Corollary 2.9] to find f ∈ E(ω)(R
N ) such that µ ∗ f = g . Accordingly ν − f ∈

Ker Sµ ⊂ E(ω)(R
N ) . This yields ν ∈ E(ω)(R

N ) and (1) is satisfied.

2.12. Remark. Theorem 2.1 should be compared with the characterization
of the (ω)-hypoelliptic differential operators given by [1, 4.1.1] and the results
stated in Chou [7, IV.11, Remarque 4]. In both articles classes of ultradifferentiable
functions are used which are defined in a different way than those considered here.
However, in many cases these different definitions decribed the same classes. Note
that there are more equivalences and more precise statements in Theorem 2.1 than
in Chou [7].

2.13. Proposition. Let σ and ω be two weights such that ω(t) = o
(
σ(t)

)

as t→∞ . Then the following assertions hold.

(a) There exists µ ∈ E ′(ω)(R
N ) which is (σ) -hypoelliptic but not (ω) -hypoelliptic.

(b) There exists µ ∈ E ′(ω)(R) which is (ω) -hypoelliptic but not (σ) -hypoelliptic.
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Proof. (a) By Braun [4, Theorem 7], there exist an elliptic ultradifferential
operator G(D) of class (σ) and f ∈ E{σ}(RN ) which is real analytic on RN\{0}
such that G(D)f = δ . We select ϕ ∈ D{σ}(RN ) identically 1 on a neighbourhood
of {0} and define µ := ϕf ∈ D{σ}(RN ) ⊂ D(ω)(R

N ) . Clearly µ is not (ω)-slowly
decreasing, hence it is not (ω)-hypoelliptic. On the other hand G(D)µ = δ + χ
with χ ∈ D(σ)(R

N ) , and µ has a parametrix in D ′(σ)(R
N ) , hence it is (σ)-

hypoelliptic.
(b) By [5, 1.7], there is m: [0,∞[→ [0,∞[ such that ω(t) = o

(
m(t)

)
and

m(t) = o
(
σ(t)

)
as t → ∞ . Proceeding by recurrence, with r1 ≥ 2, select a

sequence (rj)j∈N with 4rj ≤ rj+1 , j ∈ N , such that, for all j ∈ N ,
(i) 1 + σ(rj) ≥ m(rj) ,
(ii) j

(
ω(rj) + 1

)
≤ m(rj) ,

(iii) (j + 1)2 ≤ inft≥rj
(
ω(t)/log(t)

)
.

By (iii), if n(t) = card {j ∈ N | rj ≤ t} , t ≥ 0, we have n(t) log t = o
(
ω(t)

)

as t → ∞ . For each j ∈ N , select zj ∈ C with |zj | = rj , Im zj = m(rj) and let
f(z) :=

∏
j∈N

(
1− (z/zj)

)
, z ∈ C . The function f is entire, its zeros are the zj ’s

and
log |f(z)| ≤ n(|z|) log |z|+ log 2 + 4

9 ,

for each z ∈ C by Braun, Meise, Vogt [6, 3.11]. Hence there is µ ∈ E ′(ω)(R) with

µ̂ = f , supp(µ) = {o} and Tµ is surjective on E(ω)(R) , therefore on E(σ)(R) . By
our construction and Theorem 2.1, µ is (ω)-hypoelliptic, but not (σ)-hypoelliptic,
since the first part of condition (2) in Theorem 2.1 is not satisfied for (σ) .

2.14. Remark. Observe that the example µ ∈ E ′(ω)(R
N ) constructed in

Proposition 2.11(a) satisfies Ker Sµ ⊂ E(σ)(R
N ) ⊂ E(ω)(R

N ) but it is not (ω)-
slowly decreasing. Accordingly the condition Ker Sµ ⊂ E(ω)(R

N ) alone does not
imply that µ is (ω)-hypoelliptic.

We refer the reader Ehrenpreis [8, pp. 574–579] for interesting examples on
hypoelliptic convolution operators in the case of classical distributions.

3. {ω}-hypoelliptic convolution operators

In this section we define and characterize when the convolution operator Sµ
which is induced by µ ∈ E ′{ω}(R

N ) is {ω} -hypoelliptic. The statements look very
similar, but the proofs require new ingredients. Some of them, as for example
Proposition 3.5 and Corollary 3.7, might be of independent interest. Again in this
section ω denotes a fixed weight function.

3.1. Theorem. For µ ∈ E ′{ω}(R
N ) the following assertions are equivalent:

(1) Whenever ν ∈ D ′{ω}(R
N ) and µ ∗ ν ∈ E{ω}(RN ) , then ν ∈ E{ω}(RN ) ,

(2) lim infz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
> 0 and for each m ∈ N there is Rm > 0

such that |µ̂(x)| ≥ exp
(
−ω(x)/m

)
for each x ∈ RN , |x| ≥ Rm ,
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(3) lim infz∈V (µ̂), |z|→∞
(
| Im z|/ω(z)

)
> 0 and µ is slowly decreasing for {ω} ,

(4) Ker Sµ ⊂ E{ω}(RN ) and µ is slowly decreasing for {ω} ,
(5) Ker Sµ ⊂ E{ω}(RN ) and Tµ: E{ω}(RN )→ E{ω}(RN ) is surjective,
(6) there exist F ∈ E ′{ω}(R

N ) and ψ ∈ D{ω}(RN ) such that µ ∗ F = δ + ψ ,

(7) there exists F ∈ D ′{ω}(R
N ) satisfying µ ∗F = δ + ϕ for some ϕ ∈ E{ω}(RN )

and the convex hull of sing supp{ω}(F ) and −sing supp{ω}(µ) coincide,
(8) there exists a fundamental solution E for Sµ satisfying

ch
(
sing supp{ω}(E)

)
= − ch

(
sing supp{ω}(µ)

)
,

(9) for each open set Ω ⊂ RN and u ∈ D ′{ω}
(
Ω−supp(µ)+ch

(
sing supp{ω}(µ)

))

satisfying µ∗u ∈ E{ω}
(
Ω+ch

(
sing supp{ω}(µ)

))
, it follows that u ∈ E{ω}(Ω) .

3.2. Definition. (a) If µ ∈ E ′{ω}(R
N ) satisfies condition 3.1(1), then µ and

also Sµ are called {ω} -hypoelliptic.
(b) F ∈ D ′{ω}(R

N ) is called a parametrix for µ ∈ E ′{ω}(R
N ) if µ ∗F = δ + ϕ

for some ϕ ∈ E{ω}(RN ) .

3.3. Proposition. If µ ∈ E ′{ω}(R
N ) satisfies Ker Sµ ⊂ E{ω}(RN ) , then

lim
z∈V (µ̂)

inf
|z|→∞

| Im z|
ω(z)

> 0.

Proof. Arguing by contradiction we assume that there exists a sequence
(zj)j∈N ⊂ CN , |zj | → ∞ , µ̂(zj) = 0 and | Im zj | < ω(zj)/j for each j ∈ N . If
a = (aj)j∈N ∈ l1 and ϕ ∈ D{ω}(RN ) , we can apply the Paley–Wiener–Komatsu
theorem [5, 3.5] to conclude

k∑

j=1

|aj | |〈ei〈x,zj〉, ϕ〉| ≤ C
k∑

j=1

|aj | exp

((
D

j
− ε

)
ω(zj)

)
,

for some ε > 0, D,C > 0 depending only on ϕ . Now an application of the closed
graph theorem (see Meise and Vogt [17, 24.31]) and an obvious modification of the
proof of 2.3 leads to a contradiction.

3.4. Proposition. Let µ ∈ E ′{ω}(R
N ) is {ω} -hypoelliptic, then for each

m ∈ N there is Rm > 0 such that |µ̂(x)| ≥ exp
(
−ω(x)/m

)
for each x ∈ RN ,

|x| ≥ Rm .

Proof. Proceeding by contradiction, we find m ∈ N and a sequence (ξj)j∈N

in RN such that |ξj | > 2|ξj−1| > 2j for each j ≥ 2 such that |µ̂(ξj)| ≤
exp
(
−ω(ξj)/m

)
for each j ∈ N . By Lemma 2.4, η :=

∑∞
j=1 exp(i〈 · , ξj〉) be-

longs to D ′{ω}(R
N ) but it is not a C∞ function on RN . Proceeding similarly as

in the proof of 2.5 we show µ ∗ η ∈ E{ω}(RN ) . This is a contradiction.



280 J. Bonet, C. Fernández, and R. Meise

3.5. Proposition. Let ω and σ0 be two weight functions with σ0 = o(ω) .
Let S := {σ : σ is a weight function, σ0 ≤ σ, σ = o(ω)} . Then, for each open set
Ω in RN , the following topological equality holds

E{ω}(Ω) =
⋂
σ∈S

E(σ)(Ω),

when the space on the right hand side is endowed with the corresponding projective
limit topology.

Proof. To prove the equality as vector spaces, it suffices to show

D{ω}
(
Bδ(0)

)
=
⋂
σ∈S

D(σ)

(
Bδ(0)

)
,

for each δ > 0, since the equality holds if it holds locally. By Meise, Taylor
and Vogt [5, 3.9] the inclusion “⊂” is valid. To prove the converse inclusion, fix
f ∈ ⋂σ∈S D(σ)

(
Bδ(0)

)
and choose (ρε)ε>0 in D{ω}(RN ) such that ρε → δ in

D ′{ω}(R
N ) as ε ↓ 0. Fix σ ∈ S and note that f ∗ ρε → f in E(σ)

(
Bδ(0)

)
(see

the proof of [5, 3.8]). Since this holds for all σ ∈ S , it follows from [15, 3.3] that
(f ∗ ρε)ε>0 is a Cauchy net in E{ω}

(
Bδ(0)

)
, which is a complete space by [5, 4.9].

Accordingly, there exists g ∈ E{ω}
(
Bδ(0)

)
such that f ∗ ρε → g in E{ω}

(
Bδ(0)

)
.

Since f ∗ ρε → f pointwise, it follows that f = g ∈ D{ω}
(
Bδ(0)

)
.

Note that the topological equality in the proposition follows from the algebraic
one and [15, 3.3].

3.6. Remark. Under certain conditions on the sequence (Mp)p≥0 , see [5,
8.9] and 1.5(4), the spaces E {Mp}(Ω) coincide with E{ωM}(Ω) for a suitably defined
weight function ωM . In this situation the proposition above shows that in Chou [7,
I.2.6] even the topological equality holds.

3.7. Corollary. For each u ∈ D ′{ω}(R
N ) we have

sing supp{ω}(u) =
⋃
σ∈S

sing supp(σ)(u).

Proof. Let A := sing supp{ω}(u) . Then u|RN\A ∈ E{ω}(RN\A) . By Propo-

sition 3.5, u|RN\A ∈ E(σ)(R
N\A) for each σ ∈ S . Hence sing supp(σ)(u) ⊂ A for

each σ ∈ S . Since A is closed, this implies

B :=
⋃
σ∈S

sing supp(σ)(u) ⊂ A.

To prove the converse implication, fix x0 ∈ RN\B . If no such x0 exists, we have
B = RN , hence A = RN . Choose a neighbourhood V of xo such that V ∩B = ∅ .
Then u|V ∈ E(σ)(V ) for every σ ∈ S and hence, by Proposition 3.5, u ∈ E{ω}(V ) .
This implies x0 /∈ sing supp{ω}(u) . Therefore RN\B ⊂ RN\A and consequently
A ⊂ B .
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3.8. Lemma. If µ ∈ E ′{ω}(R
N ) satisfies the hypothesis of 3.1(3), then

there is a weight function σ0 with σ0 = o(ω) such that for each weight function σ
satisfying σ0 ≤ σ and σ = o(ω) , µ belongs to E ′(σ)(R

N ) and µ is (σ) -hypoelliptic.

Proof. By [5, 7.6] there is a weight function σ1 with σ1 = o(ω) such that
µ ∈ E ′(σ1)(R

N ) . By [2, 3.2], there is a weight σ0 ≥ σ1 with σ0 = o(ω) and

such that µ is (σ0)-slowly decreasing. By the very definition µ ∈ E ′(σ)(R
N ) and

µ is (σ)-slowly decreasing for every weight function σ such that σ0 ≤ σ and
σ = o(ω) . By Theorem 2.1 it remains to show that Im z/σ(z) tends to ∞ as
|z| → ∞ , z ∈ V (µ̂) , for every weight function σ . To see this observe that

Im z

σ(z)
=

Im z

ω(z)

ω(z)

σ(z)
, z ∈ CN

and apply σ = o(ω) and the first part of the assumption 3.1(3).

3.9. Remark. If F and G are two parametrices of the {ω} -hypoelliptic
operator µ ∈ E ′{ω}(R

N ) , then sing supp{ω}(F ) and sing supp{ω}(G) coincide.
The proof is the same as the one of 2.11.

Proof of Theorem 3.1. (1)⇒ (2): This follows directly from Propositions 3.3
and 3.4.

(2)⇒ (3): This holds obviously.
(3) ⇒ (6): By 3.8, there is R0 > 0 such that µ̂(x) 6= 0 for every x ∈ RN

with |x| ≥ R0 , since µ ∈ E ′(σ0)(R
N ) and is (σ0)-hypoelliptic. We define, for

ϕ ∈ D{ω}(RN ) ,

〈F0, ϕ〉 :=
( 1

2π

)N ∫

|x|≥R0

ϕ̂(−x)

µ̂(x)
dx.

Since µ ∈ E ′(σ)(R
N ) and is (σ)-hypoelliptic for all weight functions σ with σ0 ≤ σ

and σ = o(ω) , the same definition of F0 for each ϕ ∈ D(σ)(R
N ) yields, by

Lemma 2.9, that F0 ∈ D ′(σ)(R
N ) ⊂ D ′{ω}(R

N ) , and F0 is a parametrix for µ such

that µ ∗ F0 = δ + G for a real analytic function G on RN and

sing supp(σ)(F0) ⊂ − ch
(
supp(µ)

)
.

As supp(µ) is compact, using Corollary 3.7 we obtain

sing supp{ω}(F0) ⊂ − ch
(
supp(µ)

)
.

We fix ϕ ∈ D{ω}(RN ) identically 1 on a neighbourhood of ch
(
sing supp{ω}(µ)

)

and we set F = ϕF0 ∈ E ′{ω}(R
N ) . Since (1− ϕ)F0 ∈ E{ω}(RN ) , we have

µ ∗ F = δ + G− µ ∗
(
(1− ϕ)F0

)
;
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since G− µ ∗
(
(1− ϕ)F0

)
∈ E{ω}(RN ) , we reach the conclusion.

(6)⇒ (1): This follows with an argument similar to the one we used to check
(5)⇒ (1) in the proof of Theorem 2.1.

(1)⇒ (7): Since (1) implies (2), we can proceed as in the proof of (3)⇒ (6)
to get that, for some R0 > 0,

〈F,ϕ〉 :=
( 1

2π

)N ∫

|x|≥R0

ϕ̂(−x)

µ̂(x)
dx

defines F ∈ D ′(σ)(R
N ) with sing supp(σ)(F ) ⊂ − ch

(
supp(µ)

)
for every weight

function σ ≥ σ0 and σ = o(ω) , and F ∗µ = δ + g , g real analytic in RN . By the
proof of (1)⇒(6) in Theorem 2.1,

sing supp(σ)(F ) ⊂ − ch
(
sing supp(σ)(µ)

)

for every σ and we can apply Corollary 3.7 to conclude

sing supp{ω}(F ) ⊂ − ch
(
sing supp{ω}(µ)

)
.

If we apply (6), which follows from (1), we obtain G ∈ E ′{ω}(R
N ) with µ∗G = δ+ψ

and with ψ ∈ E{ω}(RN ) , that is, G is {ω} -hypoelliptic and µ is a parametrix
for G . Since all the parametrices have the same {ω} -singular support,

sing supp{ω}(µ) ⊂ − ch
(
sing supp{ω}(F )

)
.

(7)⇒ (8): Multiplying by a cut-off function on D{ω}(RN ) which is identically

1 on a neighbourhood of − ch
(
sing supp{ω}(µ)

)
, we conclude (6), which is already

equivalent to (1) and (3). Consequently µ is {ω} -slowly decreasing, hence there is
a fundamental solution E ∈ D ′{ω}(R

N ) of µ by [2, 3.4]. Since E is a parametrix

for µ , we can apply 3.9 to conclude (8).
(8)⇒ (9): The proof is the same as the proof of (7)⇒ (8) in Theorem 2.1.
(9)⇒ (1)⇒ (4): The first implication is obvious, the second one follows from

Proposition 3.4.
(4)⇒ (5): First observe that Ker Sµ is a Fréchet space and Ker Sµ = Ker Tµ .

Since µ is slowly decreasing for {ω} , the operator Tµ is locally surjective by [2,
3.4]. Since Ker Tµ is a Fréchet space, a Mittag-Leffler argument shows that Tµ
is surjective on E{ω}(RN ) . Alternatively one can use the theory of the vanishing

of the derived functor Proj1 as it is developed in Palamodov [18] and Vogt [21]:
since Ker Sµ is a Fréchet space and Ker Sµ = Ker Tµ , we have Proj1 Ker Tµ = 0.
Since Proj1E{ω}(RN ) = 0, this implies that Tµ is surjective on E{ω)(R

N ) .
(5) ⇒ (1): We fix ν ∈ D ′{ω}(R

N ) such that g = ν ∗ µ ∈ E{ω}(RN ) . Since

Tµ is surjective, we find f ∈ E{ω}(RN ) with f ∗ µ = g . This implies f − ν ∈
Ker Sµ ⊂ E{ω}(RN ) , from where ν ∈ E{ω}(RN ) follows.
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3.10. Remark. Theorem 3.1 extends the results of Chou [7, IV.2-1] in case
that the classes of ultradifferentiable functions considered in Chou coincide with
those considered in the present paper. In this case our results are more precise
and give more equivalences.

Note that the proof of (3) ⇒ (6) in Theorem 3.1 shows that the converse of
Lemma 3.8 holds, too.

3.11. Corollary. Let µ ∈ E ′{ω}(R
N ) be given. Then µ is {ω} -hypoelliptic

if and only if there is a weight function σ0 with σ0 = o(ω) such that for each
weight function σ satisfying σ0 ≤ σ and σ = o(ω) , µ belongs to E ′(σ)(R

N ) and

µ is (σ) -hypoelliptic.

3.12. Remark. Note that by [5, 8.8] the intersection of all spaces E(ω)(R
N )

is equal to the intersection of all spaces E{ω}(RN ) and hence equal to the space
of all real analytic functions on RN , by the theorem of Bang–Mandelbrojt (see
Chou [7, I.2.2]). Thus, each µ ∈ E ′(ω)(R

N ) (resp. µ ∈ E ′{ω}(R
N )) which is (σ)-

hypoelliptic (resp. {σ} -hypoelliptic) for every non-quasianalytic weight function
σ with σ ≥ ω , is elliptic in the sense of [7, IV.3].
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