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Abstract. The local dilatation Hp at a boundary point of a quasiconformal mapping on a
plane domain of arbitrary connectivity is defined and it is shown that there is always a substantial
point p , such that Hp = H , where H is the boundary dilatation. Infinitesimal local boundary
dilatation is also defined and it is shown that the sets of infinitesimally substantial and substantial
boundary points coincide.

Introduction

Let Ω be a plane domain with two or more boundary points and let M(Ω)
be the space of L∞ -Beltrami coefficients µ defined on Ω with ‖µ‖∞ < 1. With
respect to the global parameter z for Ω, elements µ of M(Ω) are just functions
and we arbitrarily put µ(z) identically equal to zero outside of Ω. Corresponding
to any such µ there is a global quasiconformal self-mapping fµ of the plane which
solves the Beltrami equation [3], [2],

(1) fz̄(z) = µ(z)fz(z),

and fµ is defined uniquely up to postcomposition by a complex affine map of
the plane. We say such a solution fµ to this equation is induced by µ . Con-
versely, any quasiconformal mapping f defined on Ω has a Beltrami coefficient
µ(z) = fz̄(z)/fz(z) in M(Ω). µ is called the complex dilatation of f and
K = (1 + k)/(1− k) , where k = k(µ) = ‖µ‖∞ , is called the dilatation of f .
K bounds the ratio of extremal length problems corresponding under f taken in
the domain and range of f .

The Teichmüller space T (Ω) of Ω is a space of equivalence classes of Beltrami
coefficients in M(Ω). Any Beltrami coefficient µ in M(Ω) induces a mapping fµ

which is a solution to (1), with µ identically equal to zero in the complement
of Ω. Two such Beltrami coefficients µ0 and µ1 are equivalent if they induce
mappings f0 and f1 such that there is a conformal map c from f0(Ω) to f1(Ω)
and an isotopy through quasiconformal mappings gt , 0 ≤ t ≤ 1, from Ω to Ω
which extend continuously to the boundary of Ω such that
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1. g0(z) is identically equal to z on Ω,
2. g1 is identically equal to f−1

1 ◦ c ◦ f0 on Ω, and
3. gt(p) = f−1

1 ◦ c ◦ f0(p) = p for every point p in the boundary of Ω.

Note that this equivalence relation is nonlinear. It is known [6] that the equivalence
relation induced by this isotopy condition is the same as the equivalence relation
induced by the same conditions except the isotopy in condition 3 is replaced by
an isotopy fixing the ideal boundary points of Ω.

This equivalence relation partitions M(Ω) into equivalence classes and the
space of equivalence classes is by definition the Teichmüller space T (Ω). The
equivalence class [µ] of an element µ of M(Ω) always contains an extremal repre-
sentative, that is, a representative µ0 with the property that ‖µ0‖∞ ≤ ‖µ‖∞ for
all other representatives µ of the same class. The proof of this fact depends on the
equicontinuity of a family of quasiconformal mappings with bounded dilatation.
We define

k0([µ]) = ‖µ0‖∞,

where µ0 is an extremal representative of its class. The dilatation of the class
is K0([µ]) =

(
1 + k0([µ])

)
/
(
1− k0([µ])

)
and the Teichmüller metric on T (Ω) is

defined to be
d([µ], [ν]) = 1

2 log K0([σ]),

where σ is the Beltrami coefficient of f ν ◦ (fµ)−1 . Teichmüller’s metric d is the
quotient metric with respect to the Kobayashi metric on M(Ω).

There is another natural constant associated with any equivalence class τ
in M(Ω). For any µ , define h∗(µ) to be the infimum over all compact subsets F
contained in Ω of the essential supremum norm of the Beltrami coefficient µ(z)
as z varies over Ω \ F . Define h(τ) to be the infimum of h∗(µ) taken over all
representatives µ of the class τ . The numbers

H∗(µ) =
1 + h∗(µ)

1− h∗(µ)
and H(τ) =

1 + h(τ)

1− h(τ)

are called the boundary dilatations of µ and of the class τ = [µ] , respectively. It
is obvious that h(τ) ≤ k0(τ) . By definition, τ in T (Ω) is called a Strebel point if
h(τ) < k0(τ) (see [19], [7], and [14]).

Let p be any point in the boundary of ∂Ω and let µ in M(Ω) represent a
class τ in T (Ω). Define h∗p(µ) to be the infimum over all open sets U in the plane
containing p of ess supz∈U |µ(z)| . hp(τ) is the infimum over all µ representing
the class τ of h∗p(µ) . The numbers

H∗p (µ) =
1 + h∗p(µ)

1− h∗p(µ)
and Hp(τ) =

1 + hp(τ)

1− hp(τ)

are called the local boundary dilatations at p of µ in M(Ω) and τ in T (Ω),
respectively.
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The definitions so far given depend on the nonlinear equivalence relation which
determines the Teichmüller classes in M(Ω). There is an infinitesimal version of
this equivalence relation which is linear. Let A(Ω) be the space of integrable
holomorphic quadratic differentials ϕ(z) defined on Ω with norm given by

‖ϕ‖ =

∫∫

Ω

|ϕ(z)| dx dy.

We say two Beltrami coefficients µ1 and µ2 are linearly equivalent if

∫∫

Ω

µ1(z)ϕ(z) dx dy =

∫∫

Ω

µ2(z)ϕ(z) dx dy

for all ϕ in A(Ω).
We find it convenient to stipulate that elements of ϕ of A(Ω) are identically

equal to zero in the complement of Ω. Since A(Ω) is a closed subspace of the
Banach space L1(Ω), by the Hahn–Banach and Riesz representation theorems,
the dual space Z(Ω) to A(Ω) is isomorphic to L∞(Ω)/N . N is the space of
complex-valued, L∞ -Beltrami differentials µ defined on Ω such that

∫∫

Ω

µ(z)ϕ(z) dx dy = 0,

for all ϕ in A(Ω). If v is an element of Z(Ω) and µ is a Beltrami differential in
L∞(Ω), we say µ represents v if

v(ϕ) =

∫∫

Ω

µϕ

for all ϕ in A(Ω). Thus, the linear equivalence classes of Beltrami differentials
are in one-to-one correspondence with the elements v of Z(Ω).

Corresponding to this linear equivalence relation there is a notion of infinites-
imal boundary dilatation b(v) of the equivalence class determined by v :

(2)
b(v) = inf{b∗(µ) : µ represents v} where

b∗(µ) = inf{‖µ |Ω\E ‖∞ : E ⊂ Ω, E compact}.

b is a semi-norm on Z(Ω). A sequence {ϕn} in A(Ω) is called degenerating
if ‖ϕn‖ = 1 and if ϕn(z) converges uniformly to 0 on compact subsets of Ω.
Another semi-norm β on Z(Ω) is defined by

(3) β(v) = sup
{ϕn}

lim sup
n
|v(ϕn)|,
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where the supremum is taken over all degenerating sequences {ϕn} . Obviously,
β(v) ≤ b(v) and in [4] it is shown that β(v) = b(v) .

We can also define the infinitesimal local boundary dilatation at any point in
∂Ω:

(4)
bp(v) = inf{b∗p(µ) : µ represents v} where

b∗p(µ) = inf{‖µ |Ω∩U ‖∞ : U is a neighborhood of p in the plane}.

bp is the infinitesimal version of hp . Of course, there is also an analogy βp to β . A
degenerating sequence ϕn , (with ‖ϕn‖ = 1) in A(Ω) is said to degenerate towards
p if for every open set U containing p ,

lim
n→∞

∫∫

U

|ϕn(z)| dx dy = 1.

We define

(5) βp(v) = sup
{ϕn}

lim sup
n
|v(ϕn)|,

where the supremum is taken over all sequences {ϕn} in A(Ω) which degenerate
towards p . Obviously, βp(v) ≤ bp(v) and one of our preliminary results is that
βp(v) = bp(v) for all v .

Two important results of this paper are the (affirmative) solution of Gardiner’s
conjecture

(6) H(τ) = max
p∈∂Ω

Hp(τ)

and its infinitesimal version

(7) b(v) = max
p∈∂Ω

bp(v).

We first prove the infinitesimal statement (7) and we also show that bp(v) =
βp(v) for every v ∈ Z(Ω). In [4] it is shown that β(v) = b(v) for all v ∈
Z(Ω). Thus, β(v) = maxp∈∂Ω βp(v) for every v ∈ Z(Ω), and both semi-norms
bp and βp achieve their maxima at the same boundary points. Every such point
is called an infinitesimally substantial boundary point of Ω for v . Formula (6) is
a generalization of Fehlmann’s result which says that H([µ]) = maxp∈∂∆ Hp([µ])
for every Beltrami coefficient µ in the unit disc ∆, (see [8] and [9]). Frederick P.
Gardiner conjectured that Fehlmann’s theorem generalizes to all plane domains.
In [16], Reich showed that a similar version of our infinitesimal result (7) holds in
the case of the unit disc using a different method of proof. Reich’s approach also
provided another proof of Fehlmann’s result for all non-Strebel points in T (∆).
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The proof of the result (6) breaks into two cases, according to whether the
Teichmüller class τ is a Strebel or non-Strebel point. The Teichmüller class τ is
called a non-Strebel class if it is represented by an extremal Beltrami coefficient µ
for which there is degenerating Hamilton sequence. A sequence ϕn with ‖ϕn‖ = 1
in A(Ω) is called a degenerating Hamilton sequence if it is degenerating and if

lim
n→∞

∫∫

Ω

ϕn(z)µ(z) dx dy = ‖µ‖∞.

It turns out that this notion can be expressed either in terms of the linear or
non-linear equivalence relation on Beltrami coefficients. Suppose µ is extremal
and represents the Teichmüller class τ . Then µ also represents a linear functional
v in Z(Ω). It is known that β(v) < ‖v‖ if, and only if, h(τ) < k0(τ) . Strebel
points τ in T (Ω) are those for which either one of these inequalities is strict and
non-Strebel points are those for which either inequality is an equality.

The third important result of this paper concerns the case when µ represents
a non-Strebel class. Assume µ is extremal in its Teichmüller class, let v be the
linear functional in Z(Ω) represented by µ and let τ be the equivalence class of
µ in T (Ω). Then the set of points p in the boundary of Ω for which any of the
following equalities hold is the same set:

(1) H(τ) = Hp(τ) ,
(2) b(v) = bp(v) ,
(3) β(v) = βp(v) ,
(4) there exists a Hamilton sequence for µ degenerating towards p .

Points in the boundary of Ω for which Hp(τ) = H(τ) are called substantial points
for τ and points for which bp(v) = b(v) are called infinitesimally substantial points
for v . In (2) and (3) the sets are determined by the linear equivalence class of the
linear functional v , whereas in (1) the set is determined by the nonlinear Teich-
müller equivalence class of τ . For a non-Strebel class τ represented by an extremal
Beltrami coefficient µ , this result implies that the set of infinitesimally substantial
points corresponding to the element v in Z(Ω) represented by µ coincides with the
set of substantial boundary points for the Teichmüller class τ represented by µ .
Since Hp and bp are upper semi-continuous functions defined on the compact
boundary of Ω, the sets of points p satisfying (1) or (2) are non-empty.

The result generalizes Fehlmann’s theorem on the existence of substantial
points in two ways. First of all, exactly as Gardiner conjectured, it applies to all
plane domains, not just the unit disc. Secondly, both for the unit disc and for
any plane domain, it says that for non-Strebel classes the sets of substantial and
infinitesimally substantial boundary points coincide.

This paper is organized into seven sections. In the first section, we prove
b(v) = maxp bp(v) for v in Z(unit disc) . Proving this inequality can be viewed
as a problem of sewing together vector fields V with dilatation bounded by M
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near a large number of points p on the boundary of Ω to obtain a globally defined
vector field with dilatation no more than M + ε . Instead of sewing, we go all the
way to the boundary of the unit disk and apply the Beurling–Ahlfors extension
process to a suitably chosen alteration of the vector field defined on the boundary
of the disc.

In the second section we define another quantity G(τ) associated to a Teich-
müller class τ which turns out to be the same as the boundary dilatation H(τ) .
By definition, G(τ) =

(
1 + g(τ)

)
/
(
1− g(τ)

)
, where g(τ) is

lim
k→∞

sup
{ϕn}

lim sup
n→∞

Re

∫

Ω

µkϕn dx dy

and where the sequence µk is in the equivalence class τ and is approximating in
the sense that h∗(µk) < h(τ) + 1/k and the supremum is over all degenerating
sequences {ϕn} of quadratic differentials of norm equal to one. It turns out
that because of the principle of Teichmüller contraction in asymptotic Teichmüller
space [4], g(τ) does not depend on the selection of the approximating sequence µk
in the equivalence class τ . The main result of this section is that G(τ) = H(τ) .
The freedom to work with G as a replacement for H is an essential element
in our proof of the first main result. In this section, we give another way to
define boundary dilatation. We call it S(τ) and it is the maximal distortion of
degenerating sequences of quadratic differentials under the mapping by heights
induced by the Teichmüller class of τ . In the case Ω is the unit disc we show
that S = G = H . We believe this result should be true for any domain Ω,
but verification awaits the proof of a preliminary theorem, namely, that there is
a well-defined “mapping by heights” for quadratic differentials on plane domains
corresponding to any Teichmüller class. This topic has been recently explored by
Strebel, Gardiner and Lakic (see [21] and [15] for more details).

In the third section, we prove b(v) = maxp∈∂Ω bp(v) for any plane domain.
The sewing step is avoided once again by going all the way to the boundary and
applying the Sullivan–Thurston [22] extension process used in [5] for vector fields
vanishing at the boundary.

In the fourth section, we prove βp(v) = bp(v) in all cases. We use the same
method which was used to show β(v) = b(v) in [4].

In the fifth section, we give an alternative definition of local boundary dilata-
tion at a point p in the boundary of Ω of a Teichmüller class τ . By definition gp(τ)
is a limit over sequences {ϕn} degenerating towards p of integrals

∫
Ω

µkϕn where
µk is a sequence of Beltrami coefficients in the class of τ whose local dilatations
at the point p give better and better approximations to hp(τ) . We prove the local
result that gp(τ) = hp(τ) which is analogous to the global result of the second
section. The proof depends on applying the fundamental inequalities for boundary
dilatation in [4] and on truncating suitable Beltrami coefficients representing the
class of τ .
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In the sixth section, we prove Gardiner’s conjecture maxp∈∂Ω Hp(τ) = H(τ)
for non-Strebel points by using the result of the third section and the two forms
of the main inequality to show that points p which realize the maximum of βp
coincide with points p which realize the maximum of hp .

In the seventh section, we show the equality maxp∈∂Ω Hp(τ) = H(τ) also
holds for Strebel points τ . Here the method is to use the two main inequalities
for boundary dilatation given in [4].

In the appendix, we give a brief discussion of some consequences of our theo-
rems for Strebel’s chimney domain.

1. Unit disc case

Theorem 1. For all v in Z(∆) , b(v) = maxp∈∂∆ bp(v) .

Proof. Suppose that maxp∈∂∆ bp(v) < b(v) for some v in Z(∆). Choose c
so that maxp∈∂∆ bp(v) < c < b(v) . Let ϕn be a degenerating sequence in A(∆)
so that v(ϕn)→ β(v) . Let µ be an extremal representative of v . Then

∫

∆

µϕn → b(v),

and
‖µ‖∞ = ‖v‖.

Since c > maxp∈∂∆ bp(v) , there exists l > 0 such that for every arc I on the unit
circle of length less than l there exists a neighborhood U of I and a Beltrami
differential ν equivalent to µ so that

‖ν |U∩∆ ‖ < c.

Following Fehlmann’s idea (see [8] and [9]), we divide the unit circle into N > 4π/l
disjoint arcs Ii of equal length. Let the end points of arc Ii be ai and ai+1 , with
aN+1 = a1 . Let ε > 0. Choose an arc Vi on the unit circle with length less than
l/4 and the center at the point ai . Let Ri be the sector in ∆ bounded by Vi and
the two radial lines terminating at the end-points of Vi . Dividing the sector Ri

into more than 1/ε disjoint sectors and observing that each ϕn has norm one, we
see that there exist points xi on Vi , sectors Si and a subsequence ψn of ϕn such
that xi is a mid-point of the boundary arc of Si and

lim sup
n→∞

∫

Si

|ψn| < ε for all i.

Since the length of the open arc Ai from xi to xi+1 is less than l , there
exists a neighborhood Ui of Ai and a Beltrami differential νi equivalent to µ so
that ∂Ui ∪ ∂∆ = {xi, xi+1} and

‖νi |Ui∩∆ ‖ < c.
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Let η1
i = (νi − µ)χ∆\Ui and vi = [η1

i ] . Here χ is the characteristic function of a
set. Then we also have vi = [η2

i ] where η2
i = (µ− νi)χ∆∩Ui .

Let H be the upper half plane and let ζ1
i and ζ2

i be the pull-backs of η1
i and

η2
i by a Möbius transformation m that maps the unit disc onto the upper half

plane H and satisfies m(xi) =∞ . The space Z(H) is isomorphic to the space of
all Zygmund bounded functions on the real axis, and the isomorphism sends each
v = [ζ] ∈ Z(H) into a Zygmund bounded function V defined by

V (z) =
−1

π

∫

C

z(z − 1)ζ(w)

w(w − 1)(w − z)
du dv,

where ζ is extended to the lower half plane using the reflection j(z) = z̄ , i.e.
ζ(z̄) = ζ(z) (see 13]). Let Vi be a Zygmund bounded function corresponding to
the linear functional m∗vi in Z(H) . Formula (21) in [13] shows that

Vi(z + t) + Vi(z − t)− 2Vi(z)

t
=
−1

π

∫

C

ζji (tw + z)

w(w − 1)(w + 1)
du dv,

for j = 1, 2. Therefore Vi satisfies the little Zygmund condition

Vi(z + t) + Vi(z − t)− 2Vi(z) = o(t)

locally uniformly for all z in R/{m(xi+1)} . Therefore, by pulling-back the Beur-
ling–Ahlfors extension

(8) Fi(x + iy) =
1

2y

∫ x+y

x−y
Vi(t) dt +

i

y

[∫ x+y

x

Vi(t) dt−
∫ x

x−y
Vi(t) dt

]
,

it follows from Lemma 8.1 in [13] that a Beltrami differential ηi = m∗∂̄Fi(z) in
the unit disc satisfies vi = [ηi] , ‖ηi‖∞ ≤ C‖vi‖ and ηi(z) → 0 if z tends to a
point on ∂∆− {xi, xi+1} . Observe that

‖vi‖ ≤ ‖η2
i ‖∞ ≤ ‖v‖+ c.

Thus, all differentials ηi are uniformly bounded in the L∞ norm.
With no loss of generality we may assume that the neighborhoods Ui are

disjoint and that the set

F = ∆ \
N⋃
i=1

Ui

is a union of a compact set and of measure zero. Then,

v = [µ] =

[ N∑

i=1

µχUi∩∆ + µχF

]
=

[ N∑

i=1

(ηi + νiχUi∩∆) + µχF

]
.
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Let

µ̃ =

N∑

i=1

(ηi + νiχUi∩∆) + µχF .

Then v = [µ̃] and

µ̃ = η +
N∑

i=1

νiχUi∩∆ + µχF ,

where

η =
N∑

i=1

ηi.

Therefore,

lim sup
n→∞

∣∣∣∣
∫

∪Si
µ̃ψn

∣∣∣∣ ≤
(
NC(‖v‖+ c) + Nc

)
lim sup
n→∞

∫

∪Si
|ψn|

≤
(
NC(‖v‖+ c) + Nc

)
εN.

Furthermore, if Wi = (Ui ∩∆) \ (Si ∪ Si+1) , then

lim sup
n→∞

∣∣∣∣
∫

∪Wi

µ̃ψn

∣∣∣∣ ≤ lim sup
n→∞

N∑

i=1

∣∣∣∣
∫

Wi

νiψn

∣∣∣∣+
N∑

i=1

N∑

j=1

lim sup
n→∞

∣∣∣∣
∫

Wi

ηjψn

∣∣∣∣

= lim sup
n→∞

N∑

i=1

∣∣∣∣
∫

Wi

νiψn

∣∣∣∣ ≤ c lim sup
n→∞

N∑

i=1

∫

Wi

|ψn| ≤ c.

Thus,

b(v) = lim
n→∞

v(ψn) = lim sup
n→∞

∫

∆

µ̃ψn ≤ c +
(
NC(‖v‖+ c) + Nc

)
εN,

which is a contradiction provided that ε is sufficiently small.

2. Boundary dilatation

The boundary dilatation H(τ) determines Teichmüller’s metric on the asymp-
totic Teichmüller space AT(Ω) = T (Ω)mod T0(Ω), (see [13] and [4]). It also de-
termines the Strebel points in the Teichmüller space T (Ω). In this section we
find several ways to express the boundary dilatation. They are analogous to the
several different representations of the dilatation K0(τ) , which determines the
Teichmüller’s metric in T (Ω).

The first point of view is looking at the mapping by heights introduced by
Strebel in [21]. If f is a quasiconformal homeomorphism of the unit disk ∆ and
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ϕ is in A(∆), then there is a unique integrable holomorphic quadratic differential
ψ such that the vertical ϕ -distance between any two boundary points r and s is
equal to the vertical ψ -distance between f(r) and f(s) , (see [21]). We say that
ψ is the image of ϕ under the mapping by heights induced by f , and we denote
ψ by MH(f, ϕ) . Notice that if [f1] and [f2] are the same points in the universal
Teichmüller space T (∆) then there exists a conformal homeomorphism α of ∆
such that f1(t) = α ◦ f2(t) for every t ∈ ∂∆. Therefore ψ2 = MH(f2, ϕ) is a
pull-back of ψ1 = MH(f1, ϕ) by α :

ψ2 = ψ1(α)α′2.

That yields ‖ψ1‖ = ‖ψ2‖ . We define a function from T (∆) × A(∆) onto A(∆)
by (τ, ϕ) → MH(f, ϕ) , where f is normalized to fix 1, −1 and i , and [f ] = τ .
This function describes the mapping by heights up to the pull-backs by Möbius
transformations, so we will also call it the mapping by heights and denote it
by MH. It is proved in [15] that K0(τ) is equal to the supremum of ‖MH(τ, ϕ)‖
over all unit vectors ϕ in A(∆). In a parallel manner we define

S(τ) = sup
(ϕn)

lim sup
n→∞

‖MH(τ, ϕn)‖.

Here the supremum is over all degenerating sequences of unit vectors ϕn .
A second point of view comes from looking at the semi-norm b , the infinites-

imal version of the boundary dilatation h . Since b(v) = β(v) for all v , we would
like to find the corresponding statement for the boundary dilatation. We use the
estimates for the Teichmüller metric given by the following Reich–Strebel inequal-
ities:

K0(τ) ≤ sup
‖ψ‖=1

∫

Ω

|ψ|
∣∣1 + µ(ψ/|ψ|)

∣∣2

1− |µ|2(9)

1

K0(τ)
≤
∫

Ω

|ϕ|
∣∣1− µ(ϕ/|ϕ|)

∣∣2

1− |µ|2(10)

for all τ = [µ] ∈ T (Ω) and all unit vectors ϕ in A(Ω), (see [11] for the proofs).
We say that the inequalities (10) and (9) are the first and the second funda-
mental inequalities of Reich–Strebel, respectively. Reich and Strebel proved the
inequalities (10) and (9) by studying the trajectory structure of the quadratic
differential ϕ . Using further analysis of this structure and previous results of
Hamilton and Krushkal, Reich and Strebel came to the following criterion for the
extremality of the Beltrami coefficient µ : µ is extremal in its Teichmüller class if,
and only if, there exists a Hamilton sequence for µ . Thus,

k0(τ) = sup
‖ϕ‖=1

Re

∫

Ω

µϕ.
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We note that when the class τ contains more than one extremal representative, this
supremum takes the same value independently of which extremal representative
is chosen. To define the analogous quantity corresponding to boundary dilatation
we use Beltrami coefficients µk which nearly realize the boundary dilatation in
their asymptotic Teichmüller class. We call a sequence µk in a given class τ an
approximating sequence if h∗(µk) − h(τ) approaches 0 as k approaches infinity.
Let

G(τ) =
1 + g(τ)

1− g(τ)
and

g(τ) = sup
µk

lim sup
k→∞

sup
{ϕn}

lim sup
n→∞

Re

∫

Ω

µkϕn.

Here, the first supremum is over any sequence µk of approximating Beltrami
coefficients for the class τ and the second supremum is over all degenerating
sequences {ϕn} in A(Ω).

Note that β(v = [µ]) is the infinitesimal version of g(τ = [µ]) and b(v = [µ])
is the infinitesimal version of h(τ = [µ]) . The part of the following theorem which
equates G(τ) and H(τ) is analogous to the theorem from [4] which equates β(v)
and b(v) .

Theorem 2. The distortions H , G and S coincide. More precisely,

G(τ) = S(τ) = H(τ) for all τ ∈ T (∆),

G(τ) = H(τ) for all τ ∈ T (Ω).

Proof. H(τ) = S(τ) by Theorem 5 in [15]. Clearly g(τ) ≤ h(τ) . To prove
the reverse inequality we may assume that H(τ) > 1. By the definition of H(τ) ,
there exists a sequence of representatives µn of τ such that h∗(µn)→ h(τ) . Then,
by the theorem on inequalities for the boundary dilatation in [4] or, in the case of
the unit disc, by the main theorem of [12], β([µn])→ h(τ) . Thus, g(τ) ≥ h(τ) .

3. Infinitesimal substantial points

In the proof of Theorem 1 we used Beurling–Ahlfors extension (8) of Zygmund
bounded functions on the unit circle. In [16], Reich showed a similar result by
considering the extension induced by the kernel

S(z, w) =
(1− |z|2)3

2πi(1− z̄w)3(w − z)
.

These extensions apply to the unit disc case and cannot be easily extended to an
arbitrary plane domain case. In this section we generalize Theorem 1 to the plane
domain case by looking at the infinitesimal version of the Sullivan–Thurston [22]
extension of holomorphic motions.

Let Ω be a plane domain and let Λ be the complement of Ω. We assume
that Λ contains at least three points.
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Theorem 3. For all v in Z(Ω) , b(v) = maxp∈∂Ω bp(v) .

Proof. Suppose that maxp∈∂Ω bp(v) < b(v) for some v in Z(Ω). Choose c so
that maxp∈∂Ω bp(v) < c < b(v) . Let ϕn be a degenerating sequence in A(Ω) so
that v(ϕn)→ β(v) . Let µ be an extremal representative of v . Then

∫

Ω

µϕn → b(v)

and
‖µ‖∞ = ‖v‖.

We may assume ∞ ∈ Ω. Then Λ is compact in the Euclidean metric, and for some
positive integer M > 0, Λ is contained in the square of side length 2M centered
at the origin. Since c > maxp∈∂Ω bp(v) , there exists l > 0 such that for every
subset Y of Λ of diameter less than l there exists a neighborhood U of Y and a
Beltrami differential ν representing v so that ‖ν |U∩Ω ‖ < c (as usual, we assume
that the L∞ norm of the characteristic function of an empty set is equal to zero).
Also, we may assume µ , ν and ϕn are identically equal to zero in the complement
of Ω. We use a two-dimensional analogue of an idea of Fehlmann (see [8] and [9]).
Divide the square [−M,M ]2 into N squares A1, A2, . . . , AN of equal diameter d
with d less than 1

2 l . Fix ε > 0. For every square Ai = [a, b] × [c, d] we consider
the frames Fik = Pik \Qik where

Pik =

[
a− l

10

k + 1

L
, b +

l

10

k + 1

L

]
×
[
c− l

10

k + 1

L
, d +

l

10

k + 1

L

]

and

Qik = Pik−1
=

[
a− l

10

k

L
, b +

l

10

k

L

]
×
[
c− l

10

k

L
, d +

l

10

k

L

]
,

where L > 1/ε and k = 0, 1, 2, . . . , L . Since ‖ϕn‖ = 1 for all n , there is a
subsequence ψn of ϕn and a frame Si = Fik such that

lim sup
n→∞

∫

Si

|ψn| ≤ ε for all i.

Let

R′ik =

[
a− l

10

k + 1
2

L
, b +

l

10

k + 1
2

L

]
×
[
c− l

10

k + 1
2

L
, d +

l

10

k + 1
2

L

]

be the rectangle bounded by the core curve of the frame Si . Also let R1 = R′1k ,
R2 = R′2k \ R1, . . . , RN = R′Nk \ (R1 ∪ R2 ∪ · · · ∪ RN−1) . Note that Λ ⊂ R1 ∪
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R2 ∪ · · ·RN . The diameter of each Ri is less than l , thus there exists a Beltrami
coefficient νi representing v and a neighborhood Ui of Ri such that

∂Ui ⊂
N⋃
i=1

Si and ‖νi |Ui∩Ω ‖∞ < c.

Let η1
i = (νi − µ)χΩ/Ui . Then [η1

i ] = [η2
i ] where η2

i = (µ− νi)χUi∩Ω . Pick three

points λ1 , λ2 , λ3 in Λ, let ϕz a rational function holomorphic in C defined by

ϕz(w) = − 1

π

(z − λ1)(z − λ2)(z − λ3)

(w − λ1)(w − λ2)(w − λ3)(w − z)

and let

Vi(z) =

∫

Ω

ϕz(w)η1
i (w) du dv.

Since the function w 7→ ϕz(w) belongs to A(Ω), we also have

Vi(z) =

∫

Ω

ϕz(w)η2
i (w) du dv.

Vi is a vector field on Λ with bounded cross ratio norm (see [5]), and any extension

of Vi to a vector field Ṽ on C with bounded ∂̄ -derivative satisfies [η1
i ] = [∂̄Ṽ ] .

Instead of Beurling–Ahlfors extension used in Section 2 or the kernel S(z, w) used
in [16] for the unit disc case, we now apply the infinitesimal version of the extension
procedure used by Sullivan and Thurston [22] to extend a holomorphic motion.
This extension was used in [5] to show that the infinitesimal Teichmüller norm is

equivalent to the cross ratio norm. The extension Ṽ is obtained as the limit of
extensions Ṽ n applied to the finite sets Λn = {λ1, λ2, . . . , λn+2} such that the set

{λ1, λ2, . . .} is dense in Λ. The vector fields Ṽ n are obtained by pasting together
the local extensions by a suitable (ample and uniform) partition of unity. The
local extensions are achieved by restricting Λn to a three-point set or a four-point
set depending on the thick-thin decomposition of the domain Ωn complementary
to Λn . In the case of a three point set we use the best affine extension (i.e. the
extension with the smallest L∞ norm of its ∂̄−derivative). In the case of a four
point set we use the canonical extension obtained by looking at the one-dimensional
Teichmüller space of the (extended complex) plane punctured at those four points
(see [5] for more details). Since η1

i (z) → 0 if z converges to a point on Λ ∩ Ui
and η2

i (z) → 0 if z converges to a point on Λ \ Ui , the proof of the Equivalence

Theorem in [5] shows (see in particular Section 7.5 in [5]) that the extension Ṽ
of Vi has ∂̄ -derivative ηi which satisfies ηi(z) → 0 if z converges to a point on

Λ \ ∂Ui . Furthermore ‖∂̄Ṽ ‖∞ ≤ C‖η2
i ‖∞ for some universal constant C . The

rest of the proof is the same as in the unit disc case.
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4. Local boundary semi-norms

Let Ω be a plane domain whose complement Λ contains at least three points.
It is shown in [4] that β(v) = b(v) for all v in Z(Ω). Now we prove the local
version of this theorem.

Theorem 4. If v ∈ Z(Ω) , then

bp(v) = βp(v)

for all p ∈ ∂Ω .

Proof. Let p ∈ ∂Ω. It is easy to see that 0 ≤ βp(v) ≤ bp(v) . We now show
that βp(v) ≥ bp(v) . Clearly, we may assume bp(v) > 0. Let µ be an extremal
Beltrami differential representing v . By the definition of bp(v) , there exists a
sequence of Beltrami differentials µn and a sequence of neighborhoods Un of p
such that Un+1 is contained in Un for all n ,

⋂
n Un = {p} , each µn represents

v , and |µn(z)| ≤ bp(v) + 1/n for all z in Un ∩ Ω. The result of the previous
section implies that there exists a Beltrami differential νn representing [µnχΩ\Un ]
such that ‖νn‖∞ ≤ C‖[µnχΩ\Un ]‖ and νn(z) → 0 when z converges to a point
on Un ∩ Λ (νn is the ∂̄ -derivative of the extension in [5] of the vector field on Λ
corresponding to [µnχΩ\Un ]) . Thus, there are neighborhoods Vn of p such that
Vn ⊂ Un and |νn(z)| < 1/n for all z ∈ Vn ∩ Ω. Since νn is equivalent to µn −
µnχUn∩Ω , it is also equivalent to µ−µnχUn∩Ω . Furthermore ‖µ−µnχUn∩Ω‖∞ ≤
‖v‖+ b(v) + 1. Thus,

‖νn‖∞ ≤ C
(
‖v‖+ b(v) + 1

)

for some universal constant C . Note that µ is equivalent to the Beltrami differen-
tial ηn = νn + µnχUn∩Ω . Let vn = [ηnχVn∩Ω] . Choose a unit vector ϕn in A(Ω)
such that vn(ϕn) > ‖vn‖ − 1/n . Then

bp(v) = bp(vn) ≤ ‖vn‖ < vn(ϕn) + 1/n

≤ ‖ηnχVn∩Ω‖∞
∫

Vn∩Ω

|ϕn|+ 1/n ≤
(
bp(v) +

2

n

)∫

Vn∩Ω

|ϕn|+ 1/n.

Hence, ∫

Vn∩Ω

|ϕn| ≥
bp(v)− 1/n

bp(v) + 2/n
→ 1 as n→∞.

Therefore ϕn degenerates towards p . Furthermore,

|v(ϕn)| =
∣∣∣∣
∫

Ω

ηnϕn

∣∣∣∣ ≥ |vn(ϕn)| −
∣∣∣∣
∫

Ω\Vn
ηnϕn

∣∣∣∣

> ‖vn‖ −
1

n
− (C + 1)

(
‖v‖+ b(v) + 1

) 3/n

bp(v) + 2/n

≥ bp(v)− 1

n
− (C + 1)

(
‖v‖+ b(v) + 1

) 3/n

bp(v) + 2/n
.
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Therefore
βp(v) ≥ lim sup

n→∞
|v(ϕn)| ≥ bp(v).

5. Local boundary dilatation

In Section 2 we introduced the formula for the boundary dilatation using
degenerating sequences. In this section we study the corresponding local situation.
Let p be a boundary point of the plane domain Ω and let τ be a point in T (Ω).
In a parallel manner we define

gp(τ) = lim
k→∞

sup
{ϕn}

lim sup
n→∞

Re

∫

Ω

µkϕn.

Here µk is a Beltrami coefficient in the class of τ such that h∗p(µk) < hp(τ) + 1/k
and the supremum is over all sequences {ϕn} in A(Ω) degenerating towards p .
In keeping with standard notation, we put

Gp =
1 + gp
1− gp

.

Note that βp is the infinitesimal version of gp and bp is the infinitesimal version
of hp . The following theorem is the analogue of Theorem 4 and the local version
of Theorem 2.

Theorem 5. For all τ ∈ T (Ω) ,

gp(τ) = hp(τ).

Proof. It is easy to see that gp ≤ hp . In order to estimate hp − gp , select
µ representing the class τ in T (Ω) such that h∗p(µ) is arbitrarily close to hp(τ) .
Clearly, h∗p(µ) = b∗p(µ) . Moreover, if we let v be the linear functional in Z(Ω)
represented by µ , then Theorem 5 and the existence of the limit in the definition
of gp(τ) follow from the next lemma.

Lemma 1. For every Ω ,

b∗p(µ)− βp(v) ≤ H∗p (µ)−Hp(τ).

Proof. Pick a neighborhood U = {z : |z−p| < r} of p such that K(µχΩ∩U ) ≤
H∗p (µ) + 1/n and bq(v) ≤ bp(v) + 1/n for all q ∈ ∂Ω ∩ U . Define a new Beltrami
coefficient η on Ω by letting

η(z) = µ(z) for all z in Ω with |z − p| < 1
2r ,

η(z) = 0 for all z ∈ Ω \ U , and
η(z) = tµ for all t ∈ (0, 1) and all z in Ω with |z − p| = r

(
1− 1

2 t
)
.
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Then by Theorem 3, b([η]) = supq∈∂Ω bq([η]) ≤ bp(v) + 1/n . Moreover,

H∗(η)−H([η]) ≤ H∗(η)−Hp([η]) = H∗(η)−Hp(τ)

≤ K(η)−Hp(τ) ≤ H∗p (µ)−Hp(τ) + 1/n.

Therefore, the inequalities for boundary dilatation in [4] yield

b∗(η)− b([η]) ≤ H∗p (µ)−Hp(τ) + 1/n.

Combining these inequalities we obtain

b∗p(µ)− βp(v) = b∗p(η)− bp(v) ≤ b∗(η)− bp(v)

≤ b∗(η)− b([η]) + 1/n ≤ H∗p (µ)−Hp(τ) + 2/n.

6. Substantial points for non-Strebel classes

Now suppose that τ is a non-Strebel point in T (Ω). Let µ be an extremal
Beltrami coefficient representing τ . Then there exists a degenerating Hamilton
sequence for µ and we have h(τ) = ‖µ‖∞ = β([µ]) = b([µ]) (see [7], [4]). We
now prove the local version of this result. Note that µ also represents a linear
functional v = [µ] in Z(Ω).

Theorem 6. The following five conditions are equivalent for every boundary
point p of Ω and every extremal representative µ of a non-Strebel point τ in
T (Ω):

(1) H(τ) = Hp(τ) ,
(2) G(τ) = Gp(τ) ,
(3) b(v) = bp(v) ,
(4) β(v) = βp(v) ,
(5) there exists a Hamilton sequence for µ degenerating towards p .

Proof. Let p be a boundary point of Ω and let µ be an extremal repre-
sentative of a non-Strebel point τ in T (Ω). Also let v be a functional in Z(Ω)
represented by the Beltrami differential µ . It is shown in [4] that b(v) = β(v) .
Furthermore bp(v) = βp(v) by Theorem 4. Thus, (3) is equivalent to (4). The
equivalence of (4) and (5) follows from the definitions of the semi-norms β and βp
and the equivalence of (1) and (2) follows from Theorems 2 and 5.

We now show that (1) is equivalent to (5). Let f be a quasiconformal mapping
with domain Ω and Beltrami coefficient µ . Assume first that there exists a Hamil-
ton sequence ϕn such that

∫
Ω

ϕnµ → ‖µ‖∞ and ϕn is degenerating towards p .
Suppose that Hp(τ) < (1 + ‖µ‖∞)/(1− ‖µ‖∞) . Then there exists a neighbor-
hood U of p and a quasiconformal mapping g with domain Ω, range f(Ω) and
Beltrami coefficient ν such that g−1 ◦ f is homotopic to identity relative to the
boundary of Ω and ‖ν |g−1◦f(U∩Ω) ‖∞ < ‖µ‖∞ . Let σ = νχg−1◦f(U∩Ω) . Then σ
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is equivalent to a Beltrami coefficient ζ so that ζ(z) = µ(z) for all z ∈ U ∩ Ω.
Thus, the first fundamental inequality of Reich and Strebel yields

1− ‖ν |g−1◦f(U∩Ω) ‖∞
1 + ‖ν |g−1◦f(U∩Ω) ‖∞

≤ 1

K0([σ])
≤ lim inf

n→∞

∫

Ω

|ϕn|
∣∣1− ζϕn/|ϕn|

∣∣2

1− |ζ|2

= lim inf
n→∞

∫

Ω∩U
|ϕn|

∣∣1− µϕn/|ϕn|
∣∣2

1− |µ|2

≤ 1 + ‖µ‖2∞ − 2 lim supn→∞Re
∫

Ω∩U µϕn

1− ‖µ‖2∞

=
1 + ‖µ‖2∞ − 2 lim supn→∞

∫
Ω

µϕn

1− ‖µ‖2∞
=

1− ‖µ‖∞
1 + ‖µ‖∞

,

a contradiction.
Finally, assume that Hp(τ) = H(τ) and let Un = {z ∈ Ω : |z − p| < 1/n} . If

µn = µχUn , then

K0([µn]) ≥ Hp([µn]) = Hp(τ) =
1 + ‖µ‖∞
1− ‖µ‖∞

.

Thus, by the second fundamental inequality of Reich and Strebel, there exists a
unit vector ϕn in A(Ω) such that

∫

Ω

|ϕn|
∣∣1 + µnϕn/|ϕn|

∣∣2

1− |µn|2
≥ 1 + ‖µ‖∞

1− ‖µ‖∞
− 1

n
.

Therefore,

1 + ‖µ‖∞
1− ‖µ‖∞

≤ lim inf
n→∞

1 + ‖µn‖2∞ + 2Re
∫

Ω
µnϕn

1− ‖µn‖2∞

≤ 1 + ‖µ‖2∞ + 2 lim infn→∞Re
∫

Ω
µnϕn

1− ‖µ‖2∞
,

lim inf
n→∞

Re

∫

Un

µϕn ≥ ‖µ‖∞.

Therefore,
∫
Un
|ϕn| → 1 as n→∞ and ϕn is degenerating towards p . Moreover,

lim inf
n→∞

Re

∫

Ω

ϕnµ ≥ lim inf
n→∞

Re

∫

Un

ϕnµ− ‖µ‖∞ lim sup
n→∞

∫

Ω\Un
|ϕn| ≥ ‖µ‖∞.

Corollary 1. With the same hypotheses as in the previous theorem, sub-
stantial points exist.
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Proof. From this theorem and from Theorems 3 and 4, there exist points p
for which the maximum in (1), (2), (3) and (4) are simultaneously achieved.

Remark. Using the kernel

S(z, w) =
(1− |z|2)3

2πi(1− z̄w)3(w − z)
,

Reich partially proved Theorem 6 in the case of the unit disc (see [16]) and hence
provided another proof of Fehlmann’s theorem for non-Strebel points. Theorem 6
together with the results in Chapters 2 and 4 provides two new proofs of the
same result and it also provides the generalization to the plane domain case. We
generalize Fehlmann’s theorem for Strebel points in Theorem 8.

We say that a boundary point p of the plane domain Ω is a substantial
point for a Beltrami coefficient µ if H([µ]) = Hp(µ) . Also, we say that p is an
infinitesimally substantial point for a Beltrami differential µ if b([µ]) = bp([µ]) .
The set of all substantial points is called the substantial set, and the set of all
infinitesimally substantial points is called the infinitesimally substantial set. These
sets are clearly closed subsets of Ω. Theorem 6 shows that the substantial set
coincides with the infinitesimally substantial set for any plane domain and any
extremal representative of a non-Strebel point.

Theorem 7. Let Ω be a plane domain and let µ be an extremal representa-
tive of a non-Strebel point in T (Ω) . Then every degenerating Hamilton sequence
for µ degenerates towards a subset of the set of substantial points.

Proof. Let ϕn be a degenerating Hamilton sequence for an extremal repre-
sentative µ of a non-Strebel point τ ∈ T (Ω). Fix a neighborhood U of the set of
all substantial points for µ . Let ε be a small positive number. Let p be a point in
∂Ω/U . By Theorem 6, p is not an infinitesimally substantial point for µ . Thus,
there exists a neighborhood V = {z ∈ Ω : |z − p| < δ} of p in Ω, a subsequence
ψn of ϕn and a Beltrami differential ν infinitesimally equivalent to µ such that
‖ν |V ‖∞ < ‖µ‖∞ and

lim sup
n→∞

∫

W

|ψn| < ε,

where W is a thin annulus consisting of those points z for which δ−α < |z−p| <
δ + α for sufficiently small α > 0. By the proof of Theorem 3, the Beltrami
differential µχV is infinitesimally equivalent to the Beltrami differential η + νχV
where η(z) → 0 as z converges to a point in ∂Ω \W , and ‖η‖∞ ≤ 2C‖µ‖∞ .
Therefore,

‖µ‖∞ = lim sup
n→∞

∫

Ω

ψnµ

≤ lim sup
n→∞

(
‖ν |V ‖∞

∫

V

|ψn|+ ‖µ‖∞
∫

Ω\V
|ψn|

)
+ (2C)‖µ‖∞ε.
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Thus,
∫
V
|ψn| → 0 as n → ∞ . Since ∂Ω \ U is compact, by passing to a subse-

quence we conclude that
∫

Ω/U
|ϕn| → 0 as n→∞ .

7. Substantial points for Strebel classes

The following theorem generalizes to an arbitrary plane domain Fehlmann’s
theorem on the existence of substantial boundary points for points in the Teich-
müller space of the unit disc, and so it answers affirmatively Gardiner’s conjecture.

Theorem 8. For all points τ in T (Ω)

H(τ) = max
p∈∂Ω

Hp(τ).

Proof. Let τ be a point in T (Ω). If τ is a non-Strebel point, then the theorem
follows from Theorem 6. Suppose that τ is a Strebel point. We may assume
H(τ) > 1. Let µn be a sequence of Beltrami coefficients representing τ such that
h∗(µn) ≤ h(τ) + 1/n . Let f be a quasiconformal mapping with domain Ω and
Beltrami coefficient µn . Then, by the inequalities for boundary dilatation which
led to Teichmüller’s contraction principle in [4] and [12], h∗(µn)− β([µn])→ 0 as
n → ∞ . By Theorems 3 and 4, there exists a point pn on the boundary of Ω
such that βpn([µn]) = β([µn]) . Thus, h(τ) − βpn([µn]) → 0 as n → ∞ . Take a
sequence ϕk degenerating towards pn such that

Re

∫

Ω

ϕkµn → βpn([µn]).

There exists a neighborhood U of pn and a quasiconformal mapping g with
domain Ω, range f(Ω) and Beltrami coefficient ν such that g−1 ◦ f is homotopic
to identity relative to the boundary of Ω, ‖µn |U∩Ω ‖∞ < h∗(µn) + 1/n and
‖ν |g−1◦f(U∩Ω) ‖∞ < hpn([µn])+1/n . Let σ = νχg−1◦f(U∩Ω) . Then σ is equivalent
to a Beltrami coefficient ζ so that ζ(z) = µn(z) for all z ∈ U ∩Ω. Thus, the first
fundamental inequality for boundary dilatation yields

1− hpn − 1/n

1 + hpn + 1/n
≤ 1− ‖ν |g−1◦f(U∩Ω) ‖∞

1 + ‖ν |g−1◦f(U∩Ω) ‖∞
≤ 1

K0([σ])

≤ lim inf
k→∞

∫

Ω

|ϕk|
∣∣1− ζϕk/|ϕk|

∣∣2

1− |ζ|2

= lim inf
k→∞

∫

Ω∩U
|ϕk|

∣∣1− µnϕk/|ϕk|
∣∣2

1− |µn|2

≤ 1 + ‖µn |U∩Ω ‖2∞ − 2 lim supk→∞Re
∫

Ω∩U µnϕk

1− ‖µ |U∩Ω ‖2∞
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=
1 + ‖µn |U∩Ω ‖2∞ − 2 lim supk→∞Re

∫
Ω

µnϕk

1− ‖µn |U∩Ω ‖2∞

≤ 1 +
(
h∗(µn) + 1/n

)2 − 2β([µn])

1−
(
h∗(µn) + 1/n

)2 → 1− h

1 + h
.

Therefore,

hpn(τ)→ h(τ) as n→∞.

Finally, since Λ is compact and Hp is an upper-semicontinuous function of p ,
there exists a point p in Λ for which Hp(τ) = H(τ) .

Remark. Note that Theorem 3 is the infinitesimal version of Theorem 9.

Appendix

One way to construct interesting Teichmüller classes of mappings is to consider
the stretch map fK(z) = x + iy defined on different plain domains. Since fK is
the Teichmüller mapping associated to the quadratic differential dz2 and since the
norm of this quadratic differential is just the Euclidean area of the domain, these
examples are uniquely extremal when the domains have finite Euclidean area. As
studied in many papers by Reich and Strebel (see [19] for further references), when
the domains have infinite area, the stretch map may be either uniquely extremal or
just extremal or not extremal. One of the most important domains in this study is
Strebel’s chimney domain S . The chimney domain S is the union of the chimney
C and the lower half plane. The chimney C is the region in the upper half plane
between the vertical line x = 0 and the vertical line x = 2. This was the first
example of a non-uniquely extremal quasiconformal mapping fK . Strebel’s frame
mapping theorem implies that the boundary dilatation H(fK) = K (see [19], [18]
and [20] for more details).

In the chimney domain, the point at infinity is the only substantial boundary
point. It is easy to see that the boundary dilatation of fK at any boundary point
of S except a vertex point at the base of the chimney or at the point i∞ is less
than K . To see that Hp < K at p = 0, consider three triangles, T1 , T2 , and T3 .
Let T1 have vertices at −1, −i and 0, T2 have vertices at 0, −i , and 1, and
T3 have vertices at 0, 1 and i . Consider the piecewise affine map which maps
T1 to T̃ 1 with vertices at −K , −iK1/2 , and 0, T2 to T̃ 2 with vertices at 0,
−iK1/2 , and 1 and T3 to T̃ 3 = T3 . Since the dilatation of this piecewise affine
map is no more than K1/2 and since it agrees with fK on the boundary of S in a
neighborhood of p , we see that Hp < K at this point. Clearly this same estimate
of Hp applies at the vertex point p = 2 of S . By Theorems 3, 6 and 9 there must
be a boundary point for which Hp = H and this point must by i∞ . Moreover,
by Theorem 7, the support of any Hamilton sequence ϕn must “move up” the
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chimney C . That is, for every positive number M and every ε > 0, there exists
an integer n0 , such that for n ≥ n0 ,

∫∫

S∩{z:y>M}
|ϕn(z)| dx dy > 1− ε.
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