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Facultad de Matemáticas, ES-28040 Madrid, Spain; JM Ansemil@mat.ucm.es
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Abstract. In this paper we point out some relations concerning properties (BB)n and
(BB)n,s related to the “Problème des topologies” of Grothendieck and give a first example of a
Fréchet space with the (BB)2 property but without the (BB)3 property.

1. Introduction

After Taskinen’s counterexample ([T1]) to the “Problème des topologies” of
Grothendieck ([Gr]), the study of the property (BB) for Fréchet spaces has got
the attention of several authors (see, for instance, [T2], [T3], [BoDi], [GGM],
[Din2], [DiMe], [DeM], [Din3], [P], [Bl2], [DeP]). We recall that a couple of locally
convex spaces (E,F ) has the (BB) property if for every bounded subset B in
the completion of the projective tensor product E⊗̂πF there are bounded subsets
C ⊂ E and D ⊂ F such that B is contained in the closed convex hull of C⊗D =
{x ⊗ y : x ∈ C, y ∈ D}. For the definition and properties of tensor products
see [DeF].

Here we are interested in a generalization of property (BB) due to Dineen
([Din3]), the so called (BB)n property, in both cases, the full and the symmetric.
In this last case we will denote it by (BB)n,s . These properties are defined as
follows: a locally convex space E has property (BB)n (respectively (BB)n,s ), for
a given natural number n ≥ 2, if for every bounded subset B in the completed
projective tensor product ⊗̂nπE = E⊗̂π · · · ⊗̂πE (respectively in the completed
symmetric projective tensor product ⊗̂ns,πE = E⊗̂s,π · · · ⊗̂s,πE ) there is a bounded
subset C in E such that B is contained in the closed convex hull of ⊗nC =
{x1⊗· · ·⊗xn : x1, . . . , xn ∈ C} (respectively ⊗nsC = {⊗nx = x⊗· · ·⊗x : x ∈ C}).
For n = 1 we use the convention ⊗nE = ⊗nsE = E . Note that a locally convex
space E has property (BB)2 if and only if the pair (E,E) has property (BB) .
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All Banach spaces have property (BB)n for all n , but there are Fréchet spaces
which are even Montel spaces without the (BB)2,s property ([AnT]).

It is known that for a given n ≥ 3, property (BB)n,s implies property
(BB)n−1,s ([Bl2]), and also property (BB)n implies property (BB)n−1 (see be-
low). Here we give a first example of a Fréchet space E which has property (BB)2

but not property (BB)3,s . Having in mind that property (BB)n implies prop-
erty (BB)n,s (see below) we have that E has property (BB)2,s but not property
(BB)3,s and that E has property (BB)2 but not property (BB)3 . Note that all
known examples of Fréchet spaces with property (BB)2 have property (BB)n for
all n (see for instance [GGM], [DeM], [Din3]). Our example gives the answer to a
question studied in recent years by different authors (see in particular Problem 31
by Peris in the list of problems collected during the meeting on Polynomials and
Holomorphic Functions on Infinite Dimensional Spaces held in Dublin in Septem-
ber 1994).

2. Stability properties of (BB)n and (BB)n,s

In this section we state some stability properties of (BB)n and (BB)n,s that
we are going to use to obtain the announced example. Other related properties
can be seen in [Bl1].

Proposition 2.1. Let E be a locally convex space with property (BB)n .
Then E has property (BB)n,s .

Proof. Let B be a bounded subset in ⊗̂ns,πE . Since ⊗̂ns,πE is a subspace of

⊗̂nπE , B is a bounded subset of ⊗̂nπE . As E has the (BB)n property, there is an
absolutely convex bounded set C ⊂ E such that B ⊂ Γ(⊗nC) , where Γ denotes
absolutely convex closed hull. Hence

B = σ(B) ⊂ σ
(

Γ(⊗nC)
)

= Γ
(
σ(⊗nC)

)
⊂ Γ

(
⊗ns

n

(n!)1/n
C

)

(see [Din4, (1.16)]), where σ denotes the symmetrization map given by

σ(x1 ⊗ · · · ⊗ xn) =
1

n!

∑

η∈Sn
xη(1) ⊗ · · · ⊗ xη(n)

and Sn stands for the group of permutations of {1, . . . , n} .

Remark 2.2. There are not known examples of spaces with the (BB)n,s
property and without the (BB)n property. Does (BB)n,s imply (BB)n ? This
question has already been formulated by Peris in the collection of problems men-
tioned in the introduction.
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Proposition 2.3. Let E be a locally convex space and let F be a comple-
mented subspace of E . If E has the (BB)n (respectively (BB)n,s) property then
F also has it.

Proof. The (BB)n case is essentially obtained in [T1]. The symmetric case
can be obtained as follows.

Let B be a bounded subset in ⊗̂ns,πF . Then B is a bounded subset in

⊗̂ns,πE , so there is a bounded subset C in E such that B ⊂ Γ(⊗nsC) . Let ΠF be
a continuous projection from E onto F . Then ΠF (C) is a bounded subset in F
and

B = (⊗nΠF )(B) ⊂ Γ
(
⊗nsΠF (C)

)
.

On the other hand, complementation properties lead to the following result,
which will be used later on.

Proposition 2.4. (a) If given n ∈ N , n ≥ 2, the locally convex space E has
the (BB)n property, then E has the (BB)m property for each positive integer
m , 2 ≤ m ≤ n .

(b) If given n ∈ N , n ≥ 2, the locally convex space E has the (BB)n,s prop-
erty, then E has the (BB)m,s property for each positive integer m , 2 ≤ m ≤ n .

Proof. (a) There is no loss of generality in assuming that m = n− 1. Let e ∈
E , e 6= 0 and F = [e] , F is canonically complemented in E . Denote by JF and
ΠF the injection and projection, respectively, which give that complementation.

The mappings J : ⊗̂n−1
E → ⊗̂nE and Π: ⊗̂nE → ⊗̂n−1

E defined by

J(x1 ⊗ · · · ⊗ xn−1) = x1 ⊗ · · · ⊗ xn−1 ⊗ e
and

Π(x1 ⊗ · · · ⊗ xn) = λnx1 ⊗ · · · ⊗ xn−1,

with λn such that ΠF (xn) = λne (and extended in an obvious way to their
respective domains), are continuous, linear and Π ◦ J = Id.

Let B be a bounded subset in ⊗̂n−1
π E, then J(B) is bounded in ⊗̂nπE and

there is a bounded subset C in E such that

B = Π
(
J(B)

)
⊂ Π

(
Γ(⊗nC)

)
= Γ

(
Π(⊗nC)

)
⊂ Γ(k⊗n−1 C) = Γ(⊗n−1k1/(n−1)C),

where k = sup{|λ| : λe ∈ ΠF (C)} .

The proof of (b) is much more technical, it can be seen in [Bl2, Corollary 8].

The following result gives a useful representation of the symmetric projective
tensor product of a finite cartesian product (or direct sum) of locally convex spaces.
It will be used in the proof of Proposition 2.6 below and could also be used to get
a proof of Proposition 2.3 above.
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Proposition 2.5 ([AnF, 2.2 and 3.4]). If F1, . . . , Fm are locally convex spaces
then

⊗̂ns,π
( m∏

j=1

Fj

)
'

∏

l1+···+lm=n
lj∈{0,...,n}

[⊗̂l1s,πF1]⊗̂π · · · ⊗̂π[⊗̂lms,πFm],

with the obvious meaning for ⊗̂ljs,πFj when lj = 0 .

One of the keys to get the example we are looking for is the following propo-
sition.

Proposition 2.6. Let E and F be locally convex spaces. Then E × F has
property (BB)n,s if and only if the following two properties are satisfied:

(a) E and F have the (BB)n,s property.

(b) The pair (⊗̂ks,πE, ⊗̂
n−k
s,π F ) has the (BB) property for each k ∈ {1, . . . , n−1} .

Proof. Assume that E × F has property (BB)n,s . Since E and F are
complemented in E × F , (a) follows from Proposition 2.3.

Let us see now how (b) is also verified. The topological isomorphism in

Proposition 2.5 between ⊗̂ns,π(E × F ) and
∏n
k=0([⊗̂ks,πE]⊗̂π[⊗̂n−ks,π F ]) , is defined

by Q = (Q0, . . . , Qn) , where for k = 0, . . . , n ,

Qk
(
⊗n(x, y)

)
= [⊗kx]⊗ [⊗n−ky].

This map induces a continuous injection Jk: [⊗̂ks,πE]⊗̂π[⊗̂n−ks,π F ] → ⊗̂ns,π(E × F )
given by

Jk(z) = Q−1(0, . . . , 0,

k
^
z , 0, . . . , 0)

for each k = 1, . . . , n− 1. We have that Qk ◦ Jk = Id
[⊗̂ks,πE]⊗̂π [⊗̂n−ks,π F ]

.

Let B be a bounded subset in [⊗̂ks,πE]⊗̂π[⊗̂n−ks,π F ] . Then Jk(B) is bounded

in ⊗̂ns,π(E × F ) . Since E × F has the (BB)n,s property, there exists a bounded
subset C = C1 × C2 ⊂ E × F , where C1 and C2 are bounded subsets in E and
F respectively, such that Jk(B) ⊂ Γ

(
⊗ns (C1 × C2)

)
. Hence

B = Qk(Jk(B)) ⊂ Γ
(
Qk
(
⊗ns (C1 × C2)

))
= Γ

(
[⊗ksC1]⊗ [⊗n−ks C2]

)
,

and since that ⊗ksC1 is a bounded subset in ⊗̂ks,πE and ⊗n−ks C2 is a bounded

subset in ⊗̂n−ks,π F , the pair (⊗̂ks,πE, ⊗̂
n−k
s,π F ) has property (BB) .

On the other hand, each bounded subset B in the symmetric tensor product
⊗̂ns,π(E ×F ) is contained in a set Q−1

(∏n
k=0Bk

)
, where Bo (respectively Bn ) is

a bounded subset in ⊗̂ns,πF (respectively ⊗̂ns,πE ) and for each k = 1, . . . , n − 1,
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Bk is a bounded subset in [⊗̂ks,πE]⊗̂π[⊗̂n−ks,π F ] . By (b), Bk ⊂ Γ(Ck ⊗ Dk) , for

bounded subsets Ck and Dk in ⊗̂ks,πE and ⊗̂n−ks,π F respectively. Our hypothesis
(a) and Proposition 2.4(b) imply that E and F have property (BB)m,s for every
m ∈ {2, . . . , n} . In particular, for k = 1, . . . , n − 1, there are absolutely convex
bounded subsets C ′k ⊂ E and D′k ⊂ F such that Ck ⊂ Γ(⊗ksC ′k) and Dk ⊂
Γ(⊗n−ks D′k) . Hence

Bk ⊂ Γ
(

Γ(⊗ksC ′k)⊗ Γ(⊗n−ks D′k)
)

= Γ
(
(⊗ksC ′k)⊗ (⊗n−ks D′k)

)
.

For k = 0 (respectively k = n) let D′o (respectively C ′n) such that Bo ⊂
Γ(⊗nsD′o) (respectively Bn ⊂ Γ(⊗nsC ′n) and let C (respectively D ) an absolutely
convex bounded subset in E (respectively F ) which contains

⋃n
k=0 C

′
k (respec-

tively
⋃n
k=0D

′
k) . Thus

B ⊂ Q−1

( n∏

k=0

Bk

)
⊂ Q−1

( n∏

k=0

Γ
(
(⊗ksC ′k)⊗ (⊗n−ks D′k)

))

⊂ Q−1

(
(n+ 1)Γ

( n∏

k=0

(
(⊗ksC ′k)⊗ (⊗n−ks D′k)

)))

= (n+ 1)Γ

(
Q−1

( n∏

k=0

(⊗ksC ′k)⊗ (⊗n−ks D′k)

))

⊂ (n+ 1)Γ

(
Q−1

( n∏

k=0

(
(⊗ksC)⊗ (⊗n−ks D)

)))

⊂ (n+ 1)Γ
(
(n+ 1)n!⊗n (C ×D)

)
.

Since B consists of symmetric tensors, we have

B = σ(B) ⊂ σ
(
(n+ 1)Γ

(
(n+ 1)n!⊗n (C ×D)

))

⊂ Γ

(
(n+ 1)2n!

nn

n!
⊗ns (C ×D)

)

= Γ
(
⊗ns
(
n(n+ 1)2/n(C ×D)

)
,

as we desired to prove.

3. An example concerning (BB)2,s and (BB)3,s

Our example will be built on the Fréchet space

lp+ =
⋂
q>p

lq =
⋂
k

lpk ,
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(pk)k being a strictly decreasing sequence of real numbers convergent to p . Its
topology is given by the norms

‖(xj)j‖pk =

( ∞∑

j=1

|xj |pk
)1/pk

.

The space lp+ is a Fréchet non Montel space which has the Heinrich density
condition among other properties (see [MM]). Spaces lp+ have been already used to
obtain examples and counterexamples to different questions in functional analysis
(see [Di], [P], [DeP], [ABP] for instance).

For p , with 2 ≤ p <∞ , the spaces lp+ have property (BB)2 ([DeP, Example
5.5(2 ′ )]).

Apart from the space lp+ to get our example we need the particular Banach
space obtained in the following known result:

Proposition 3.1 ([DeP, Example 5.3].) For 1 < p < 2 there is a Banach
space X of cotype 2 such that (lp+, X

′) does not have property (BB) .

The last ingredient we need to get the announced example is a result we are
going to prove about the complementation of lp+ in ⊗̂ns,πlnp+ .

Proposition 3.2. Suppose 1 ≤ p < ∞ and n ∈ N . Then the space lp+ is
isomorphic to a complemented subspace of ⊗̂ns,πlnp+ .

Proof. Let (ek) be the canonical basis of lnp+ . The mapping J : lp+ →
⊗̂ns,πlnp+ defined by

J : lp+ → ⊗̂ns,πlnp+
(xj)j 7→ ∑∞

j=1 xj ⊗n ej
gives an injection from lp+ into ⊗̂ns,πlnp+ .

Let us see how J
(
(xj)j

)
∈ ⊗̂ns,πlnp+ . For q > p and k,m ∈ N , k ≤ m ,∑m

j=k xj ⊗n ej ∈ ⊗ns,πlnq and, using s -projective norms instead of the equivalent
projective norms which we have used until now (see [F]), we have,

⊗ns ‖ · ‖nq
( m∑

j=k

xj ⊗n ej
)

= sup

{∣∣∣∣
m∑

j=k

xjP (ej)

∣∣∣∣ : P ∈P(nlnq), ‖P‖ = 1

}
,

where P(nlnp) stands for the space of all n homogeneous continuous polynomials
on lnp .

Since (xj)j ∈ lq and
(
P (ej)

)
j
∈ lnq/(nq−n) = lq′ (see [Z]), it follows from

Hölder’s inequality that

∣∣∣∣
m∑

j=k

xjP (ej)

∣∣∣∣ ≤
∥∥∥∥
m∑

j=k

xjej

∥∥∥∥
q

‖
(
P (ej)

)
j
‖q′ ≤

∥∥∥∥
m∑

j=k

xjej

∥∥∥∥
q
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for all P ∈P(nlnq) , ‖P‖ = 1. This implies that
(∑m

j=1 xj ⊗n ej
)
m

is a Cauchy

sequence in the space ⊗ns,πlnp+ and then
∑∞
j=1 xj ⊗n ej ∈ ⊗̂

n
s,πlnp+ . Moreover we

have got that

⊗ns ‖ · ‖nq
( ∞∑

j=1

xj ⊗n ej
)
≤ ‖(xj)j‖q

which gives the continuity of J .

Now define
Π: ⊗ns,πlnp+ → lp+

⊗n(xj)j 7→ (xnj )j

extending it to the whole ⊗ns,πlnp+ by linearity.

It is clear that Π is well defined and for q > p ,

‖Π
(
⊗n(xj)j

)
‖qq =

∞∑

j=1

|xnj |q = ‖(xj)j‖nqnq,

and then

‖Π
(
⊗n(xj)j

)
‖q = ⊗ns ‖ · ‖nq

(
⊗n(xj)j

)
.

For z =
∑N
r=1 λr ⊗n (xr,j)j we have that

‖Π(z)‖q ≤
N∑

r=1

|λr| ‖Π
(
⊗n(xr,j)j

)
‖q =

N∑

r=1

|λr| ‖(xr,j)j‖nnq.

Taking the infimum over all representations of z we have

‖Π(z)‖q ≤ inf

{ N∑

r=1

|λr| ‖(xr,j)j‖nnq : z =

N∑

r=1

λr ⊗n (xr,j)j

}
= ⊗ns ‖ · ‖nq(z)

(see [F], [Din4]). So Π is continuous and then also its extension to ⊗̂ns,πlnp+ .
Finally it is easy to see that Π ◦ J = Id.

We note that another proof of this proposition can be obtained using results
either from [ArFa] or from [O].

Our main result can be established as follows:

Theorem 3.3. Suppose 1 < p < 2 , X as in Proposition 3.1 and E =
l2p+ ×X ′ . Then E has property (BB)2 and does not have property (BB)3,s .
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Proof. First of all we prove that E verifies the (BB)2 property. It is easy to
see that

E⊗̂πE = (l2p+ ×X ′)⊗̂π(l2p+ ×X ′)
∼= (l2p+⊗̂πl2p+)× (l2p+⊗̂πX ′)× (X ′⊗̂πl2p+)× (X ′⊗̂πX ′).

Let us see how the bounded subsets in any of the factors on the right side splits.
As we have already mentioned, l2p+ has property (BB)2 and then (l2p+, l2p+) has
property (BB) (note that 2 < 2p <∞). On the other hand since X has cotype
2 its bidual also has cotype 2 (see [DJT, Corollary 11.9]), so the dual of X ′

has cotype 2 and this, by [DeP, Proposition 3(2 ′ )], implies that (l2p+, X
′) has

property (BB) . Of course (X ′, l2p+) also has property (BB) and finally (X ′, X ′)
has property (BB) because all Banach spaces have property (BB)n for all n ≥ 2
and X is Banach. A similar argument to the one used to prove the only if part in
Proposition 2.6, using the above isomorphism, gives that E has property (BB)2

(see [T1, Corollary 3.6]).
Now assume E has property (BB)3,s , then by Proposition 2.6 the pair

(⊗̂2
s,πl2p+, X

′) has the (BB) property and, since by Proposition 3.2, lp+ is a

complemented subspace of ⊗̂2
s,πl2p+ , we get that (lp+, X

′) has the (BB) prop-
erty also (see [T1, 3.4]). This is a contradiction with Proposition 3.1 (note that
1 < p < 2) and finishes the proof.

Corollary 3.4. Let E = l2p+ ×X ′ as in Theorem 3.3. Then
(a) E has property (BB)2,s but not property (BB)n,s for any n ≥ 3 .
(b) E has property (BB)2 but not property (BB)n for any n ≥ 3 .

Proof. From the above theorem and Proposition 2.1 it follows that E has
property (BB)2,s and that E does not have property (BB)3,s . Then, by Propo-
sition 2.4(b) it does not have any of the properties (BB)n,s for n ≥ 3. This gives
part (a), part (b) follows in a similar way.

Corollary 3.5. If we denote by P(nE) the space of all n homogeneous
continuous polynomials on E , which turns to be the dual of ⊗̂ns,πE , then the
topology τb of uniform convergence on the bounded subsets of E and the strong
topology β as a dual space agree on P(2E) but they are different on P(nE) for
all n ≥ 3 when E = l2p+ ×X ′ .

Proof. Having in mind that the supremum of the modulus of a continuous
polynomial on a bounded subset B in E is the same that the supremum of the
modulus of its linearization on Γ(⊗nsB) , it follows that τb = β on P(nE) if and
only if E has the (BB)n,s property (see [Din3]). Then we get from Corollary 3.4(a)
that τb = β on P(2E) and τb 6= β on P(nE) for all n ≥ 3.

Let us denote by τω the Nachbin ported topology on P(nE) defined as the
inductive limit of the normed spaces (P(nEV ), ‖ · ‖) when V ranges over the
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family of all absolutely convex open neigborhoods of 0 in E . It happens that
τb ≤ β ≤ τω and for metrizable spaces E , τω is the barrelled topology associated
with τb on P(nE) (see [Din1, Proposition 3.41]).

Corollary 3.6. The τb and τω topologies agree on P(nE) for n = 1, 2 , with
E = l2p+ ×X ′ , but they are different on P(nE) for all n ≥ 3 .

Proof. Since by Theorem 3.3 this particular Fréchet space E has the (BB)2

property and the density condition because l2p+ and X ′ have it, the space E⊗̂πE
also has the density condition [BiBo]. Then it is distinguished which gives that its
strong dual (P(2E), β) is barrelled and so β = τω on P(2E) . Since τb = β on
P(2E) because E has the (BB)2,s property, we get that τb = τω on P(2E) and
then on P(1E) . On the other hand since E does not have the (BB)n,s property
for n ≥ 3 (Corollary 3.4(a)) we have τb 6= τω on P(nE) for all n ≥ 3.

Remark 3.7. An example of a Fréchet (even Montel) space E such that
τb = τω on P(1E) and τb 6= τω on P(2E) is already known (see [AnT]).
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Montel spaces. - Math. Proc. Cambridge Philos. Soc. 115, 1993, 305–313.

[DeP] Defant, A., and A. Peris: Maurey’s extension theorem and Grothendieck’s “problème
des topologies”. - J. London Math. Soc. (2) 58, 1998, 679–696.
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