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Abstract. The paper is concerned with the .7 -harmonic equation
div[(G(z)Vu, Vu) P~2/2G(2)Vu] = 0

where 1 < p < 0o and G is a positive definite matrix whose entries are in L* N VMO. We show
that for every r > 1, very weak solutions of class Wﬁ)g actually belong to Wﬁ)’cp and are solutions
in the distributional sense, provided p is sufficiently close to 2.

0. Introduction

We consider the familiar .o7-harmonic equation
(0.1) div.#Z(xz,Vu) =0

in an open set 2 C R", with &/ = &/ (x, ) verifying usual conditions, in particular
the growth condition |&(z,&)| ~ |£|P~!, with p > 1. A distributional solution to
(0.1) is a function u € W,L?(€2) such that

(0.2) /Q(sz(x, Vu),V)dr =0

for all p € C§°(92). Hereafter, (,) denotes the scalar product of vectors in R™.
Of course, (0.2) extends to arbitrary ¢ € W1P(Q) with compact support. The
p-integrability of Vu is not required for (0.2) to be meaningful, but it is a nat-
ural assumption because it is used in studying regularity of solutions. Actually,
properties of solutions are often deduced by a suitable choice of test functions in
(0.2), typically ¢ = Au, with A a cut-off function. Here, we mention only the
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well-known higher integrability of Vu proved first in [ME], see [G] and references
therein. This result is achieved by the technique of reverse Holder inequalities
which are obtained by testing (0.2) with appropriate ¢.

In the paper [IS], the notion of very weak solution is considered, relaxing the
natural integrability assumption. A function u € W&)Z (Q), with r > max{1,p—1},
is called a very weak solution to (0.1) if it satisfies (0.2), for all ¢ € C5°(Q2).

It is interesting to know how far below the natural exponent can r be and
still allow for a comprehensive theory of very weak solutions. The first result in
this context was obtained in [IS]. They found exponents 71, ry verifying 1 < r; <
p < ry and such that any solution u € Wli}g ' actually belongs to Wlig ?. Thus u
is a solution in the distributional sense. Obviously, for very weak solutions (0.2)
holds for all ¢ € WH/("=P+1)(Q) and we no longer can use Au as a test function.
In [IS] a test function for (0.2) is produced using the Hodge decomposition. We
mention that a different method for constructing test functions is proposed in [L].

In [KZ], the authors considered a particular case of (0.1), namely the p-
Laplacian

div(|Vu|P~2Vu) = 0.

Essentially, they observed that the exponent 7 in the result of [IS] may be taken
arbitrarily close to 1, provided p is sufficiently close to 2. Here, we obtain this
kind of result for the more general equation

(0.3) div[(G(z)Vu, Vu) P~D/2G(2)Vu] = 0,

where G(x) is a definite positive symmetric matrix whose entries are bounded
VMO functions. We use the Hodge decomposition which reduces our problem to
linear (p = 2) elliptic equations with VMO coefficients, see [D], [IS2].

Remark. Equations of type (0.3) arise in quasiconformal geometry and non-
linear elasticity, see for instance [I]. These are variational equations for the energy
functionals

Elu| = /Q<G(ac)Vu, Vu)P/? dz.

Here G: Q2 — R™*" is viewed as a metric tensor on €. In this sense our equation
div.e/(x,Vu) = 0 is no other than a p-harmonic equation with respect to this
metric. In a recent paper [[KM] the authors study mappings with BMO-distortion.
It becomes clear that mappings whose distortion tensor G(z) is in VMO will play
a central role in further developments.

During the publication of the paper, we learned that S. Zhou in a very recent
preprint [Z] has given independently a result similar to our Theorem 1. We thank
the referee for pointing this out.
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1. Hodge decomposition with VMO coefficients

For the definitions and basic properties of the classical spaces BMO and VMO
we refer to [JN] and [Sa], where those spaces were introduced. Here we want only
to recall that a BMO or VMO function a, defined, for example, on a cube @,
has an extension a which is BMO or VMO, respectively, on the entire space R"™.
Also, the extension can be made so that, if a is bounded, @ is bounded and
lallooc < C|lal|oo,q- Therefore, it is not a restriction to assume that the functions
in question are defined on R™. For these questions, see e.g. [A].

Now, let 2 be a smooth open subset of R™. In the familiar Hodge decompo-
sition, one expresses a vector field w € LP(2,R™), 1 < p < oo, as

(1.1) w=Vé+H,

where ¢ € WyP(Q) and H € LP(Q, R™) is a divergence free vector field. Moreover,
the following estimate holds

(1.2) IVollp + 1 Hllp < Co)[wllp-
This is done by solving the Poisson equation
A¢p = divw.

Next, in [I], [IS], a stability property for the Hodge decomposition is proved, which
amounts to saying that if w is a small perturbation of a gradient field, then the
term H in (1.1) is small. More precisely, if w = |Vu|*Vu, with v € W, (Q),
1 <r < oo and ¢ is sufficiently small, say —1 < 2e <r — 1, we have

(1.3) 1H [l /42) < Cr(Q)lel[[ V5 +.

In this paper, we shall use a somewhat more general version of the Hodge decom-
position, which is more suitable for our purposes. Let A = A(z) and B = B(x)
be n x n matrices such that

€7 < (AL, €) < AE)?, €7 < (BE,€) < A|E”.

Also, we assume that the entries of the product matrix G = BA are in VMO.
Then we can decompose a vector field w € LP(Q,R") as

(1.4) w= AV¢+ H,
where ¢ € WyP(Q), and H € LP(, R™) verifies
(1.5) div BH = 0.

Note that estimate (1.2) still holds. Simply we solve the equation
div(GV¢) = div(Bw)

and use the LP-estimate for variational equations with VMO coefficients, see [D],
[IS2]. Moreover, we have the following stability property in our decomposition.
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Lemma 1.1. Under the above assumptions, if u € Wol’r(Q), 1 <7r < oo,
—1 <2 <r—1, we have

|AVu|*AVu = AV¢ + H

with ¢ € W™/ U9(Q) and H € L"/(0+9)(Q, R") verifying both (1.5) and (1.3).

Proof. We mimic the proof of stability in the case of the classical Hodge
decomposition.

By the uniqueness of the decomposition (1.4) we can define a linear operator
T LP(Q,R™) — LP(Q,R™), for all 1 < p < 0o, by the rule Zw = H. Note that
7 vanishes on vector fields of the form AVwu. Therefore, .7 (|[AVu|*AVu) can be
written as a commutator

H = 7 (|AVu|*AVu) — |7 AVu|* T AVu.

Then we conclude the lemma using a result for commutators in [IS].

Remark. If A and B are equal to the identity matrix, we get the classical
Hodge decomposition.

Remark. The regularity of €2 is required in order to apply LP theory, com-
pare with [D].

Remark. The following Hodge decomposition is also worth noting. Let
a € L™ and u € WHT(R"™); then

alVu|*Vu=Vo¢+ H
with H € L"/(+)(R,R™) verifying div H = 0 and
1 1l/14e) < Cr(llalleao + llallos []) [ Vull .
In fact the operator .7 defined above is a singular integral operator and we have

H = 7(a|Vul*Vu) = T (a|Vul*Vu) — a7 (|Vu|*Vu)
+ a7 (|Vul|*Vu) — a| T Vul* T Vu.

Therefore, we are in a position to use the result of [CRW] on the commutators of
7 with multiplication by a BMO function.
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2. The main results

Here we need to consider the nonhomogeneous counterpart of equation (0.3),
that is,

(2.1) div[(G(Vu+g), Vu+ g)P=D2G(Vu + 9)] =divh,

on Q, with g € L"(Q,R"™) and h € L™/P~1(Q,R™) for some r > max{1,p — 1}.
The matrix G = G(x) is assumed to be symmetric and verifying

(GE,€) > |€]* forall € € R™.
The entries of G are in L*>° N VMO.

Theorem 1. Under these assumptions, for each 1 < r < 2, there exist § > 0
and C' > 0 such that, if |p—2| < & then for all solutions u € Wy (Q) to (2.1)
the following estimate holds:

2.2 [ Ivarrdz<c [ (gl + alr/ ) da.
Q Q

Here, 6 and C depend on n, r, A, the VMO-modulus of A and 2. In the
case that ) is a ball or a cube, 6 and C can be found independent of 2.

Proof. Let A be the positive square root of G, i.e. G = A%2. Then (A¢,€) >
]2, for all ¢ € R™ and equation (2.1) can be rewritten as

(2.3) div[|[A(Vu + ¢)|P*G(Vu+ g)] = divh.
We have
(2.4) /yvuv / IVl PV, AV 2GV).

Using Hodge decomposition, we write
(2.5) |\Vu|""PVu=V¢+ H

where ¢ € Wy """ (Q). Here H € L™/ —7H)(Q,R™) with ||H||/(r—ps1) <
C||Vul|m7PT1 and satisfies
div(GH) =

Inserting (2.5) in (2.4) and using equation (2.3) yields
/ |Vu|" < / Vo + H,|AVulP2GVu)
:/<H, ]AVu]p_zGVu>+/(V¢,h>
Q Q

+ / (Yo, |AVUP~2GVu — [A(Vu + g)P~2G(Vu + g))
Q

=0+ 1+ Is.
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To estimate I;, we write
I = / (H, |AVu[P~2GVu) = / (AH, |AVu|P~? AV u)
Q Q

and then decompose

|AVw|P~2AVw = AV + K,

where 1) € Wol’r/(pfl)(ﬂ), and K € L™/~ (Q R") verifies

divAK =0
1K o1y < Clp = 2| [IVul27".

Hence

- /Q (AH, AV + K) = /Q (AH, AV) + /Q (AH, K)

:A(Vw,GH>+A<AH,K>:/Q<H,AK>
:/Q(\Vu|”"—PVu—V¢,AK> :/Q<|Vu,r_pvu,AK>

< N Allso 1K -1y | VUl PFH i1y < Clo = 2] [ V][5

The terms Iy and I3 can be estimated like in [IS]-[KZ]. In this way, we end up
with the following estimate

{1 Clp -2/ - 0} Vull} < Co(llgllz + I1R117 1)

where 0 < € < 1 is arbitrary. This clearly concludes the proof.

Finally, we consider local solutions to (0.3). The technique of reverse Holder
inequalities as used in [IS] can be easily applied to conclude the following

Theorem 2. Let Q be an open subset of R" and G € VMO(Q, R™*™) N
L>(Q,R™ ™). For any 1 < ry < 2 there exists 0 > 0 such that, if |p—2| < § and
w e W2 (Q) is a solution to (0.3), then u € Wﬁ)?(ﬂ) for all exponents ry < 0.

loc

Remark. That we need G to be in VMO is clear. Examples in [S] show
that, even in the linear case, corresponding to p = 2, boundedness of G is not
sufficient to obtain r; close to 1 and r9 close to co.
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