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Abstract. The paper is concerned with the A -harmonic equation

div[〈G(x)∇u,∇u〉(p−2)/2G(x)∇u] = 0

where 1 < p <∞ and G is a positive definite matrix whose entries are in L∞ ∩VMO. We show
that for every r > 1 , very weak solutions of class W 1,r

loc actually belong to W 1,p
loc and are solutions

in the distributional sense, provided p is sufficiently close to 2 .

0. Introduction

We consider the familiar A -harmonic equation

(0.1) div A (x,∇u) = 0

in an open set Ω ⊂ Rn , with A = A (x, ξ) verifying usual conditions, in particular
the growth condition |A (x, ξ)| ≈ |ξ|p−1 , with p > 1. A distributional solution to
(0.1) is a function u ∈W 1,p

loc (Ω) such that

(0.2)

∫

Ω

〈A (x,∇u),∇ϕ〉 dx = 0

for all ϕ ∈ C∞0 (Ω). Hereafter, 〈 , 〉 denotes the scalar product of vectors in Rn .
Of course, (0.2) extends to arbitrary ϕ ∈ W 1,p(Ω) with compact support. The
p -integrability of ∇u is not required for (0.2) to be meaningful, but it is a nat-
ural assumption because it is used in studying regularity of solutions. Actually,
properties of solutions are often deduced by a suitable choice of test functions in
(0.2), typically ϕ = λu , with λ a cut-off function. Here, we mention only the
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well-known higher integrability of ∇u proved first in [ME], see [G] and references
therein. This result is achieved by the technique of reverse Hölder inequalities
which are obtained by testing (0.2) with appropriate ϕ .

In the paper [IS], the notion of very weak solution is considered, relaxing the
natural integrability assumption. A function u ∈W 1,r

loc (Ω), with r ≥ max{1, p−1} ,
is called a very weak solution to (0.1) if it satisfies (0.2), for all ϕ ∈ C∞0 (Ω).

It is interesting to know how far below the natural exponent can r be and
still allow for a comprehensive theory of very weak solutions. The first result in
this context was obtained in [IS]. They found exponents r1 , r2 verifying 1 < r1 <
p < r2 and such that any solution u ∈ W 1,r1

loc actually belongs to W 1,r2
loc . Thus u

is a solution in the distributional sense. Obviously, for very weak solutions (0.2)
holds for all φ ∈W 1,r/(r−p+1)(Ω) and we no longer can use λu as a test function.
In [IS] a test function for (0.2) is produced using the Hodge decomposition. We
mention that a different method for constructing test functions is proposed in [L].

In [KZ], the authors considered a particular case of (0.1), namely the p -
Laplacian

div(|∇u|p−2∇u) = 0.

Essentially, they observed that the exponent r1 in the result of [IS] may be taken
arbitrarily close to 1, provided p is sufficiently close to 2. Here, we obtain this
kind of result for the more general equation

(0.3) div
[
〈G(x)∇u,∇u〉(p−2)/2G(x)∇u

]
= 0,

where G(x) is a definite positive symmetric matrix whose entries are bounded
VMO functions. We use the Hodge decomposition which reduces our problem to
linear (p = 2) elliptic equations with VMO coefficients, see [D], [IS2].

Remark. Equations of type (0.3) arise in quasiconformal geometry and non-
linear elasticity, see for instance [I]. These are variational equations for the energy
functionals

E [u] =

∫

Ω

〈G(x)∇u,∇u〉p/2 dx.

Here G: Ω→ Rn×n is viewed as a metric tensor on Ω. In this sense our equation
div A (x,∇u) = 0 is no other than a p -harmonic equation with respect to this
metric. In a recent paper [IKM] the authors study mappings with BMO-distortion.
It becomes clear that mappings whose distortion tensor G(x) is in VMO will play
a central role in further developments.

During the publication of the paper, we learned that S. Zhou in a very recent
preprint [Z] has given independently a result similar to our Theorem 1. We thank
the referee for pointing this out.
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1. Hodge decomposition with VMO coefficients

For the definitions and basic properties of the classical spaces BMO and VMO
we refer to [JN] and [Sa], where those spaces were introduced. Here we want only
to recall that a BMO or VMO function a , defined, for example, on a cube Q ,
has an extension ã which is BMO or VMO, respectively, on the entire space Rn .
Also, the extension can be made so that, if a is bounded, ã is bounded and
‖ã‖∞ ≤ C‖a‖∞,Q . Therefore, it is not a restriction to assume that the functions
in question are defined on Rn . For these questions, see e.g. [A].

Now, let Ω be a smooth open subset of Rn . In the familiar Hodge decompo-
sition, one expresses a vector field ω ∈ Lp(Ω,Rn) , 1 < p <∞ , as

(1.1) ω = ∇φ+H,

where φ ∈W 1,p
0 (Ω) and H ∈ Lp(Ω,Rn) is a divergence free vector field. Moreover,

the following estimate holds

(1.2) ‖∇φ‖p + ‖H‖p ≤ Cp(Ω)‖ω‖p.
This is done by solving the Poisson equation

∆φ = divω.

Next, in [I], [IS], a stability property for the Hodge decomposition is proved, which
amounts to saying that if ω is a small perturbation of a gradient field, then the
term H in (1.1) is small. More precisely, if ω = |∇u|ε∇u , with u ∈ W 1,r

0 (Ω),
1 < r <∞ and ε is sufficiently small, say −1 < 2ε < r − 1, we have

(1.3) ‖H‖r/(1+ε) ≤ Cr(Ω)|ε|‖∇u‖1+ε
r .

In this paper, we shall use a somewhat more general version of the Hodge decom-
position, which is more suitable for our purposes. Let A = A(x) and B = B(x)
be n× n matrices such that

|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Λ|ξ|2, |ξ|2 ≤ 〈Bξ, ξ〉 ≤ Λ|ξ|2.
Also, we assume that the entries of the product matrix G = BA are in VMO.
Then we can decompose a vector field ω ∈ Lp(Ω,Rn) as

(1.4) ω = A∇φ+H,

where φ ∈W 1,p
0 (Ω), and H ∈ Lp(Ω,Rn) verifies

(1.5) divBH = 0.

Note that estimate (1.2) still holds. Simply we solve the equation

div(G∇φ) = div(Bω)

and use the Lp -estimate for variational equations with VMO coefficients, see [D],
[IS2]. Moreover, we have the following stability property in our decomposition.
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Lemma 1.1. Under the above assumptions, if u ∈ W 1,r
0 (Ω) , 1 < r < ∞ ,

−1 < 2ε < r − 1 , we have

|A∇u|εA∇u = A∇φ+H

with φ ∈W 1,r/(1+ε)
0 (Ω) and H ∈ Lr/(1+ε)(Ω,Rn) verifying both (1.5) and (1.3).

Proof. We mimic the proof of stability in the case of the classical Hodge
decomposition.

By the uniqueness of the decomposition (1.4) we can define a linear operator
T : Lp(Ω,Rn)→ Lp(Ω,Rn) , for all 1 < p <∞ , by the rule T ω = H . Note that
T vanishes on vector fields of the form A∇u . Therefore, T (|A∇u|εA∇u) can be
written as a commutator

H = T (|A∇u|εA∇u)− |T A∇u|εT A∇u.

Then we conclude the lemma using a result for commutators in [IS].

Remark. If A and B are equal to the identity matrix, we get the classical
Hodge decomposition.

Remark. The regularity of Ω is required in order to apply Lp theory, com-
pare with [D].

Remark. The following Hodge decomposition is also worth noting. Let
a ∈ L∞ and u ∈W 1,r(Rn) ; then

a|∇u|ε∇u = ∇φ+H

with H ∈ Lr/(1+ε)(R,Rn) verifying divH = 0 and

‖H‖r/(1+ε) ≤ Cr
(
‖a‖BMO + ‖a‖∞ |ε|

)
‖∇u‖1+ε

r .

In fact the operator T defined above is a singular integral operator and we have

H = T (a|∇u|ε∇u) = T (a |∇u|ε∇u)− aT (|∇u|ε∇u)
+ aT (|∇u|ε∇u)− a|T ∇u|εT ∇u.

Therefore, we are in a position to use the result of [CRW] on the commutators of
T with multiplication by a BMO function.
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2. The main results

Here we need to consider the nonhomogeneous counterpart of equation (0.3),
that is,

(2.1) div
[
〈G(∇u+ g),∇u+ g〉(p−2)/2G(∇u+ g)

]
= div h,

on Ω, with g ∈ Lr(Ω,Rn) and h ∈ Lr/(p−1)(Ω,Rn) for some r > max{1, p− 1} .
The matrix G = G(x) is assumed to be symmetric and verifying

〈Gξ, ξ〉 ≥ |ξ|2 for all ξ ∈ Rn.

The entries of G are in L∞ ∩VMO.

Theorem 1. Under these assumptions, for each 1 < r < 2 , there exist δ > 0
and C > 0 such that, if |p − 2| < δ then for all solutions u ∈ W 1,r

0 (Ω) to (2.1)
the following estimate holds:

(2.2)

∫

Ω

|∇u|r dx ≤ C
∫

Ω

(|g|r + |h|r/(p−1)) dx.

Here, δ and C depend on n , r , Λ, the VMO-modulus of A and Ω. In the
case that Ω is a ball or a cube, δ and C can be found independent of Ω.

Proof. Let A be the positive square root of G , i.e. G = A2 . Then 〈Aξ, ξ〉 ≥
|ξ|2 , for all ξ ∈ Rn and equation (2.1) can be rewritten as

(2.3) div
[
|A(∇u+ g)|p−2G(∇u+ g)

]
= div h.

We have

(2.4)

∫

Ω

|∇u|r ≤
∫

Ω

〈|∇u|r−p∇u, |A∇u|p−2G∇u〉.

Using Hodge decomposition, we write

(2.5) |∇u|r−p∇u = ∇φ+H

where φ ∈ W 1,r/(r−p+1)
0 (Ω). Here H ∈ Lr/(r−p+1)(Ω,Rn) with ‖H‖r/(r−p+1) ≤

C‖∇u‖r−p+1
r and satisfies

div(GH) = 0.

Inserting (2.5) in (2.4) and using equation (2.3) yields
∫

Ω

|∇u|r ≤
∫

Ω

〈∇φ+H, |A∇u|p−2G∇u〉

=

∫

Ω

〈H, |A∇u|p−2G∇u〉+
∫

Ω

〈∇φ, h〉

+

∫

Ω

〈∇φ, |A∇u|p−2G∇u− |A(∇u+ g)|p−2G(∇u+ g)〉

= I1 + I2 + I3.
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To estimate I1 , we write

I1 =

∫

Ω

〈H, |A∇u|p−2G∇u〉 =

∫

Ω

〈AH, |A∇u|p−2A∇u〉

and then decompose

|A∇w|p−2A∇w = A∇ψ +K,

where ψ ∈W 1,r/(p−1)
0 (Ω), and K ∈ Lr/(p−1)(Ω,Rn) verifies

divAK = 0

‖K‖r/(p−1) ≤ C|p− 2| ‖∇u‖p−1
r .

Hence

I1 =

∫

Ω

〈AH,A∇ψ +K〉 =
∫

Ω

〈AH,A∇ψ〉+
∫

Ω

〈AH,K〉

=

∫

Ω

〈∇ψ,GH〉+
∫

Ω

〈AH,K〉 =

∫

Ω

〈H,AK〉

=

∫

Ω

〈|∇u|r−p∇u−∇φ,AK〉 =

∫

Ω

〈|∇u|r−p∇u,AK〉

≤ ‖A‖∞‖K‖r/(p−1)‖ |∇u|r−p+1‖r/(r−p+1) ≤ C|p− 2| ‖∇u‖rr.

The terms I2 and I3 can be estimated like in [IS]–[KZ]. In this way, we end up
with the following estimate

{1− C|p− 2| − θ}‖∇u‖rr ≤ Cθ
(
‖g‖rr + ‖h‖r/(p−1)

r/(p−1)

)

where 0 < θ < 1 is arbitrary. This clearly concludes the proof.

Finally, we consider local solutions to (0.3). The technique of reverse Hölder
inequalities as used in [IS] can be easily applied to conclude the following

Theorem 2. Let Ω be an open subset of Rn and G ∈ VMO(Ω,Rn×n) ∩
L∞(Ω,Rn×n) . For any 1 < r1 < 2 there exists δ > 0 such that, if |p−2| < δ and
u ∈W 1,r1

loc (Ω) is a solution to (0.3), then u ∈W 1,r2
loc (Ω) for all exponents r2 <∞ .

Remark. That we need G to be in VMO is clear. Examples in [S] show
that, even in the linear case, corresponding to p = 2, boundedness of G is not
sufficient to obtain r1 close to 1 and r2 close to ∞ .
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