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Abstract. In this paper we give a structural characterization of three classes of tree au-
tomata. Namely, we shall homomorphically represent the classes of nilpotent, definite, and mono-
tone tree automata by means of quasi-cascade-products of unary nilpotent and unary definite tree
automata in the first two cases, and by means of products of simpler tree automata in the third
case.

Introduction

In the sixties, an intensive axiomatic investigation of the algebra of regular
languages and some important special language classes was carried out. One of
the best results for the axiomatic characterizations of regular languages can be
found in [11]. The studies of special languages concerned mainly the classes of
nilpotent and definite languages (see [8], [12] and [1], [6], [10], [9], respectively).
The concepts of nilpotent languages, nilpotent automata, definite languages, and
definite automata, together with the basic results characterizing them, have been
generalized to trees. In [14] a nice survey is given of the structural properties of
the classes of nilpotent and definite tree automata.

1. Notions and notation

Sets of operational symbols will be denoted by Σ with or without superscripts.
If Σ is finite, then it is called a ranked alphabet. For the subset of Σ consisting
of all m -ary operational symbols from Σ we shall use the notation Σm (m ≥ 0).
By a Σ-algebra we mean a pair A = (A, {σA | σ ∈ Σ}) , where σA is an m -ary
operation on A if σ ∈ Σm . If there will be no danger of confusion then we omit the
superscript A in σA and simply write A = (A,Σ). Finally, all algebras considered
in this paper will be finite, i.e. A is finite and Σ is a ranked alphabet.

A rank type is a nonvoid set R of nonnegative integers. A set Σ of operational
symbols is of rank type R if {m | Σm 6= ∅} = R . An algebra A = (A,Σ) is of rank
type R if Σ is of rank type R . To avoid technical difficulties, we shall suppose
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that 0 /∈ R for all rank types R considered in this paper. It is also assumed that
none of the sets of operational symbols contains any 0-ary symbol.

Let Ξ be a set of variables. The set TΣ(Ξ) of ΣΞ-trees is defined as follows:

(i) Ξ ⊆ TΣ(Ξ),

(ii) σ(p1, . . . , pm) ∈ TΣ(Ξ) whenever m > 0, σ ∈ Σm and p1, . . . , pm ∈ TΣ(Ξ),

and

(iii) every ΣΞ-tree can be obtained by applying the rules (i) and (ii) a finite
number of times.

In the sequel Ξ will stand for the countable set {ξ1, ξ2, . . .} and for every
m > 0, Ξm will denote the subset {ξ1, . . . , ξm} of Ξ. The subset of TΣ(Ξm)
consisting of all trees in which each ξi (1 ≤ ξi ≤ m) occurs exactly once will be

denoted by T̂Σ(Ξm) . Moreover, if Σ = Σ1 then the elements of TΣ(Ξ1) will be
called also words in analogy with classical automata theory.

If p ∈ TΣ(Ξl) and p1, . . . , pl ∈ TΣ(Ξm) are trees, then p(p1, . . . , pl) ∈ TΣ(Ξm)
is the tree obtained by replacing each occurrence of ξi (i = 1, . . . , l ) in p by pi .
Moreover, if for Σ = Σ1 , p ∈ TΣ(Ξ1) can be given in the form p = q(r) (q, r ∈
TΣ(Ξ1)) then q is a suffix of p .

Let A = (A,Σ) be an algebra and p ∈ TΣ(Ξn) a tree for a positive integer n .
The mapping pA: An → A is defined in the following way. For an arbitrary
a = (a1, . . . , an) ∈ An ,

(i) if p = xi (1 ≤ i ≤ n), then pA(a) = ai ,

(ii) if p = σ(p1, . . . , pm) (σ ∈ Σm, p1, . . . , pm ∈ TΣ(Ξn)), then
pA(a) = σA

(
pA

1 (a), . . . , pA
m(a)

)
.

A tree recognizer is a system A = (A,a, A′) , where

(i) A = (A,Σ) is an algebra,

(ii) a ∈ An is the initial vector for some positive integer n ,

(iii) A′ ⊆ A is the set of final states.

The forest T (A) recognized by A consists of all trees p ∈ TΣ(Ξn) for which
p(a) ∈ A′ .

Classical recognizers are special tree recognizers. Namely, if in the above
definition Σ = Σ1 and n = 1, then A is a finite state recognizer and every finite
state recognizer can be obtained this way.

Let R be a rank type and take the algebras Ai = (Ai,Σ
(i)) (i = 1, . . . , k > 0)

with rank type R , and let

ϕ = {ϕm : (A1 × . . .×Ak)m × Σm → Σ(1)
m × · · · × Σ(k)

m | σ ∈ Σm, m ∈ R}

be a family of mappings, where Σ is an arbitrary ranked alphabet of rank type R .
Then by the product of A1, . . . ,Ak with respect to Σ and ϕ we mean the algebra
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A = (A,Σ) with A = A1× · · · ×Ak such that for arbitrary σ ∈ Σm (m ∈ R) and
(a11, . . . , a1k), . . . , (am1, . . . , amk) ∈ A ,

σA
(
(a11, . . . , a1k), . . . ,(am1, . . . , amk)

)

=
(
σA1

1 (a11, . . . , am1), . . . , σAk
k (a1k, . . . , amk)

)
,

where (σ1, . . . , σk) = ϕm
(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)
(see [13]).

For this product we use the notation A = (A1×· · ·×Ak)[Σ, ϕ] . If A1 = · · · =
Ak = B then we speak of a power of B and write A = (Bn)[Σ, ϕ] .

Obviously, in the above definition of the product, and in its generalizations
to be considered in this paper, ϕm can be given in the form

ϕm
(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)

=
(
ϕ(1)
m

(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)
, . . . ,

ϕ(k)
m ((a11, . . . , a1k), . . . , (am1, . . . , amk), σ

))
,

where ϕ
(i)
m : A1 × · · · × Ak × Σm → Σ

(i)
m (i = 1, . . . , k ) are suitable functions. If

for each i (1 ≤ i ≤ k ), every ϕ
(i)
m may depend only on elements from algebras

A1, . . . ,Ai−1 , then we speak of a cascade product. In this case sometimes we shall

indicate only those arguments of ϕ
(i)
m on which it may depend, i.e. we write

ϕ(i)
m (a11, . . . , a1i−1, . . . , am1, . . . , ami−1, σ)

for
ϕ(i)
m

(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)
.

The concept of the product can be generalized in such a way that the inputs
of the component algebras are trees. For this we use the name generalized product.

Let Ai = (Ai,Σi) (i = 1, . . . , k > 0) be arbitrary algebras, and

ϕ = {ϕm: (A1 × · · · ×Ak)m × Σm →
TΣ1(Ξm)× · · · × TΣk(Ξm) | σ ∈ Σm, m ∈ R}

a family of mappings, where Σ is an arbitrary ranked alphabet. Then by the
generalized product of A1, . . . ,Ak with respect to Σ and ϕ we mean the algebra
A = (A,Σ) with A = A1× · · · ×Ak such that for arbitrary σ ∈ Σm (m ∈ R) and
(a11, . . . , a1k), . . . , (am1, . . . , amk) ∈ A ,

σA
(
(a11, . . . , a1k), . . . , (am1, . . . , amk)

)

=
(
pA1

1 (a11, . . . , am1), . . . , pAk
k (a1k, . . . , amk)

)
,
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where (p1, . . . , pk) = ϕm
(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)
.

For the generalized product we shall use the same notation as for the product.
Moreover, the generalized power, the generalized cascade product and the general-
ized cascade power together with their notations are given in a natural way.

It has been shown that a special type of the generalized product, the so called
quasi-product is powerful enough to represent algebras. A generalized product
A = (A1 × · · · × Ak)[Σ, ϕ] is a quasi-product if in

(p1, . . . , pk) = ϕm
(
(a11, . . . , a1k), . . . , (am1, . . . , amk), σ

)

every pj (1 ≤ j ≤ k ) is of the form σj(ξj1 , . . . , ξjtj ) (1 ≤ j1, . . . , jtj ≤ m).

Therefore, the quasi-product is that slight generalization of the product when in
the inputs of the component algebras permutations and identifications of variables
are allowed.

Again, the quasi-power, the quasi-cascade-product, the quasi-cascade-power,
and the corresponding notations are given in an obvious way.

The aim of the structure theory of tree automata is to represent tree recog-
nizers by means of compositions of algebras. Among the representations homo-
morphism and isomorphism are most frequently used. It has been shown (see [3])
that we can confine ourselves to the homomorphic and isomorphic representations
of the underlying algebras of recognizers.

Let composition mean any of the products introduced in this paper. Moreover,
let K1 and K2 be two classes of algebras. We say that K1 is homomorphically
(isomorphically) complete for K2 with respect to the composition if every algebra
from K2 can be given as a homomorphic (isomorphic) image of a subalgebra of a
composition of algebras from K1 .

Finally, we introduce some operators on classes of algebras. If K is a class
of algebras, then

– S(K ) is the class of all subalgebras of algebras from K ,
– H(K ) is the class of all homomorphic images of algebras from K ,
– Q(K ) is the class of all quasi-cascade-products of algebras from K .

For notions and notations not defined here, see [5].

2. Nilpotent automata

A unary algebra A = (A,Σ) is said to be nilpotent if there are an element a ∈
A , the absorbent element of A , and a nonnegative integer k such that p(b) = a for
all b ∈ A and p ∈ TΣ(Ξ1) with h(p) ≥ k . Moreover, an automaton A = (A, a0, A

′)
is nilpotent if A is nilpotent. Finally, a language T ⊆ TΣ(Ξ1) is nilpotent if
T = T (A) for a nilpotent automaton A.

The following result gives a characterization of nilpotent automata by means
of Boolean operations.
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Theorem 1. A language is nilpotent if and only if it can be obtained from
the empty language and one-element languages by forming union and complemen-
tation.

There is also a set theoretic characterization of nilpotent languages.

Theorem 2. A language T is nilpotent if and only if T or the complement
of T is finite.

Finally, we recall a semigroup theoretic characterization of nilpotent lan-
guages.

Theorem 3. A language is nilpotent if and only if its syntactic semigroup is
nilpotent.

The concept of nilpotent automata has been generalized to tree automata in
a natural way (see [4]).

A Σ-algebra A = (A,Σ) is nilpotent if there are an a ∈ A and a nonnegative
integer k such that p(a) = a for all p ∈ TΣ(Ξn) , n > 0, and a ∈ An , whenever
h(p) ≥ k . Moreover, a tree automaton A = (A,a, A′) is nilpotent if A is nilpotent.
Finally, a tree language T ⊆ TΣ(Ξn) is nilpotent if T = T (A) for a nilpotent tree
automaton A .

A result analogous to Theorem 2 can be easily obtained for tree automata.
Here we give a structural characterization of the class of nilpotent algebras by
means of quasi-cascade-products of unary algebras. For this, let N1 denote the
class of all nilpotent unary algebras.

Theorem 4. A Σ -algebra A = (A,Σ) is nilpotent if and only if

A ∈ H
(
S
(
Q(N1)

))
.

Proof. It is easy to see that any quasi-product of nilpotent algebras is nilpo-
tent. Moreover, the formation of subalgebras and homomorphic images preserves
nilpotency. Therefore, the conditions of Theorem 4 are sufficient.

To prove the necessity, take a nilpotent Σ-algebra A = (A,Σ) with n el-
ements. The case n = 1 being trivial, let n > 1. We may assume that A =
{1, . . . , n} . Moreover, since A is finite, we may suppose that σA(i1, . . . , im) ≥
i1, . . . , im for all σ ∈ Σm , m > 0, and i1, . . . , im ∈ A . (Observe, that i ≤
p(i1, . . . , ij−1, i, ij+1, . . . , im) (i1, . . . , ij−1, i, ij+1, . . . , im ∈ A , m > 0, 1 ≤ i ≤ m ,

p ∈ T̂Σ(Ξm)) is a partial ordering on A .) Thus, n is the absorbent element of A .
Take a (unary) algebra B = (B,Σ) from N1 with B = {1, . . . , n} such that for ev-
ery pair (i, j) satisfying 1 ≤ i < j ≤ n there is a σ(i,j) ∈ Σ such that σ(i,j)(i) = j .
Furthermore, suppose that there is a symbol σ(n) ∈ Σ for which σ(n)(i) = n for
all i (= 1, . . . , n). Let us define the quasi-power C = (C,Σ) = (Bn)[Σ, ϕ] in the
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following way. First of all, for each i (1 ≤ i ≤ n) let ci = (ci1, . . . , cin) be the
element of C for which

cij =

{
n, if 1 ≤ j < i,
i, if j = i, . . . , n.

Denote by C ′ the set of all such elements ci (i = 1, . . . , n). Now for all m > 0,

σ ∈ Σm , and ci1 , . . . , cim ∈ C ′ , let ϕ
(1)
m (σ) = σ(n)(ξ1) . Moreover, if 1 < j ≤ n ,

then ϕ
(j)
m (ci1 , . . . , cim , σ) is given as follows:

ϕ(j)
m (ci1 , . . . , cim , σ) =

{
σ(n)(ξ1), if σA(ci1j−1, . . . , cimj−1) = u and j < u,
σci1j−1,u(ξ1), if σA(ci1j−1, . . . , cimj−1) = u and j ≥ u.

In all other cases ϕ is given arbitrarily in accordance with the definition of the
quasi-cascade-product. It is obvious that C is a quasi-cascade-power of B .

We show that if σA(i1, . . . , im) = u , then we have for σC(ci1 , . . . , cim) = c =
(c1, . . . , cn)

cj =

{
n, if 1 ≤ j < u,
u, if u ≤ j ≤ n.

Clearly, u > 1. If u = n and max(i1, . . . , im) = n then c1 = · · · = cn = n
obviously holds. If u = n and max(i1, . . . , im) = it < n (1 ≤ t ≤ m), then

(I) c1 = · · · = cit = n since cit1 = · · · = citit−1 = n whenever it > 1; thus,

ϕ
(j)
m (ci1 , . . . , cim , σ) = σ(n)(ξ1) for all j = 1, . . . , it .

(II) cit+1 = · · · = cn−1 = n since for every t (it ≤ t < n−1), ci1t = i1, . . . , cimt =

im , σA(i1, . . . , im) = n ; thus, ϕ
(j)
m (ci1 , . . . , cim , σ) = σ(n)(ξ1) for all j (it <

j < n).
(III) cn = n since ci1n−1 = i1, . . . , cimn−1 = im , σA(i1, . . . , im) = n ; thus,

ϕn(ci1 , . . . , cim , σ) = σ(i1,n)(ξ1) .

Next assume that u < n . Again, let max(i1, . . . , im) = it . Obviously, it < u .
Then

(i) c1 = · · · = cit = n since if it > 1 then cit1 = · · · = citit−1 = n ; thus,

ϕ
(j)
m (ci1 , . . . , cim , σ) = σ(n)(ξ1) for all j = 1, . . . , n .

(ii) cit+1 = · · · = cu−1 = n since for every r (it ≤ r < u−1), ci1r = i1, . . . , cimr =

im , σA(i1, . . . , im) = u ; thus, ϕ
(j)
m (ci1 , . . . , cim , σ) = σ(n)(ξ1) for all j (v <

j < u).
(iii) cu = · · · = cn = u since for every r (u − 1 ≤ r ≤ n), ci1r = i1, . . . , cimr =

im , σA(i1, . . . , im) = u ; thus, ϕ
(j)
m (ci1 , . . . , cim , σ) = σ(i1,u)(ξ1) for all j =

u, . . . , n .

Thus, we have proved that C ′ forms a subalgebra of C which is isomorphic
to A under the mapping τ : C ′ → A given by τ(ci) = i (i = 1, . . . , n).
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From the proof of the necessity of Theorem 4 we obtain

Corollary 1. Every nilpotent algebra can be represented isomorphically by
a quasi-cascade-product of unary nilpotent algebras.

3. Definite automata

A unary algebra A = (A,Σ) is definite if there is a nonnegative integer
k such that for arbitrary p ∈ TΣ(Ξ1) with h(p) ≥ k and a, b ∈ A we have
p(a) = p(b) . Moreover, an automaton A = (A, a0, A

′) is definite if A is definite.
Finally, a language T ⊆ TΣ(Ξ1) is definite if there is a definite automaton A with
T = T (A) .

The following result holds.

Theorem 5. A language T ⊆ TΣ(Ξ1) is definite if and only if there is an
integer k ≥ 0 such that for arbitrary two words p, q ∈ TΣ(X1) with h(p), h(q) ≥ k
and the same suffix of length k we have p ∈ T ⇔ q ∈ T .

Definite automata and definite languages have been generalized to trees (see
[7]). Before giving the definition of definite tree automata and definite tree lan-
guages, we recall the concept of the cut-off of a tree at a given height.

For every nonnegative integer k , take the binary relations ∼k on TΣ(Ξn)
given in the following way:

(i) If k = 0, then p ∼0 q for all p, q ∈ TΣ(Ξn) .
(ii) Suppose that ∼k has been defined. Then for all p, q ∈ TΣ(Ξn) , p ∼k+1 q if

and only if there are a σ ∈ Σm , p1, . . . , pm, q1, . . . , qm ∈ TΣ(Ξn) such that
p = σ(p1, . . . , pm) , q = σ(q1, . . . , qm) and pi ∼k qi for all i = 1, . . . , k .

It is said that two trees p, q ∈ TΣ(Ξn) have the same cut-off at height k if p ∼k q .
A Σ-algebra A = (A,Σ) is definite if there is a nonnegative integer k such

that for arbitrary n > 0, a ∈ An and p, q ∈ TΣ(Ξn) with h(p), h(q) ≥ k we have
p(a) = q(a) , whenever p and q have the same cut-off at height k . Moreover, a
tree automaton A = (A,a, A′) is definite if A is definite. Finally, a tree language
is definite if it can be recognized by a definite tree automaton.

The following result, which is a generalization of Theorem 5 to trees, is
from [7].

Theorem 6. A tree language T ⊆ TΣ(Ξn) is definite if and only if there is an
integer k ≥ 0 such that for arbitrary two trees p, q ∈ TΣ(Ξn) with h(p), h(q) ≥ k
and the same cut-off at height k we have p ∈ T ⇔ q ∈ T .

Take a rank type R . Let Σ be a ranked alphabet having two symbols
σ1
m, σ

2
m ∈ Σm for every m ∈ R . Define the Σ-algebra AR = ({1, 2},Σ) in the

following way: σim(i1, . . . , im) = i (i = 1, 2) for all m ∈ R and i1, . . . , im ∈ {1, 2} .
It is easy to see that AR is definite under k = 1.

In [2] Ésik gives the following structural characterization of definite algebras.
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Theorem 7. For an algebra A of rank type R the next statements are
equivalent.

(i) A is definite.

(ii) A can be embedded isomorphically into a cascade power of AR .

(iii) A is a homomorphic image of a subalgebra of a cascade power of AR .

It is not hard to see that AR is isomorphic to a quasi-cascade-product of A{1}
with a single factor. Moreover, since the quasi-cascade-product is a special case
of the generalized cascade composition, by Corollary 5 in [2], any quasi-cascade-
product of definite algebras is definite. Furthermore, subalgebras and homomor-
phic images preserve definiteness. Finally, the formation of quasi-cascade-products
is transitive. Therefore, from Theorem 7 we obtain

Theorem 8. For an algebra A the next statements are equivalent.

(i) A is definite.

(ii) A can be embedded isomorphically into a quasi-cascade-power of A{1} .

(iii) A is a homomorphic image of a subalgebra of a quasi-cascade-power of A{1} .

4. Monotone automata

Monotone automata play a distinguished role in the structure theory of finite
state automata. At the same time no characterization of languages recognized
by monotone automata is known. Here we introduce the concept of monotone
algebras and give some structural characterization for them.

An algebra A = (A,Σ) is monotone if a partial ordering ≤ can be given on A
such that for any m > 0, σ ∈ Σm , and a1, . . . , am ∈ A we have σ(a1, . . . , am) ≥
a1, . . . , am . Observe, that every nilpotent algebra is monotone. Theorem 9, the
proof of which is trivial, shows that monotonicity can be reduced to unary algebras.

Let A = (A,Σ) be an algebra. Moreover, let Ā = (A,Σ(A)) be the algebra

where Σ(A) = Σ
(A)
1 consists of all σ(a1, . . . , ai−1, ξ1, ai+1, . . . , am) (m > 0, 1 ≤

i ≤ m , σ ∈ Σm , a1, . . . , ai−1, ai+1, . . . , am ∈ A), and for each a ∈ A ,

σ̄Ā(a) = σA(a1, . . . , ai−1, a, ai+1, . . . , am)

if σ̄ = σ(a1, . . . , ai−1, ξi, ai+1, . . . , am) . In other words, the operations of A are
all the elementary translations of A .

Theorem 9. An algebra A = (A,Σ) is monotone if and only if the unary
algebra A = (A,Σ(A)) is monotone.

We shall need the following result, too.

Lemma 1. Homomorphism preserves monotonicity of algebras.
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Proof. Let A = (A,Σ) and B = (B,Σ) be algebras and τ : A → B a homo-
morphism of A onto B . Assume that A is monotone under the partial ordering ≤ .

Let us define the relation %A on A by a%Ap
A(a) (a ∈ A , p ∈ TΣ(A)(Ξ1)). It is

clear that %A is reflexive and transitive. Moreover, %A ⊆≤ . Therefore, %A is a
partial ordering and A is monotone under %A . Assume that the corresponding
binary relation %B is not a partial ordering on B . Then there are an element

b ∈ B and two words p̄, q̄ ∈ TΣ(A)(Ξ1) such that q̄B(b) 6= b and ( p̄ (q̄ ))B(b) = b .

Let p̄ (ξ1) = p(b11, . . . , b1m−1, ξ1) and q̄(ξ1) = q(b21, . . . , b2n−1, ξ1) (p ∈ T̂Σ(Ξm) ,

q ∈ T̂Σ(Ξn) , b11, . . . , b1m−1, b21, . . . , b2n−1 ∈ B ). Let a11, . . . , a1m−1, a21, . . . ,
a2n−1 be counter images of b11, . . . , b1m−1, b21, . . . , b2n−1 , respectively. Moreover,
let p (ξ1) = p(a11, . . . , a1m−1, ξ1) and q (ξ1) = q(a21, . . . , a2n−1, ξ1) . For an arbi-
trary tree t(ξ1) ∈ TΣ(A)(Ξ1) let t0 = ξ1 and ti = t

(
ti−1(ξ1)

)
if i > 0. Let a be

a counter image of b under τ . Since τ is a homomorphism,
(
p (q )

)i
(a) = b for

every i(= 0, 1, . . .) . Moreover, due to the finiteness of A , there are integers i and

j such that i < j and
(
p (q )

)i
(a) =

(
p (q )

)j
(a) . Furthermore, since q̄ (b) 6= b ,

q
(
(p (q )

)i
)(a) 6=

(
p (q )

)i
(a) . Therefore, %A is not a partial ordering on A , which

is a contradiction. Thus, we have obtained that %B is a partial ordering on B
and B is a monotone unary algebra under %B which, by Theorem 9, implies that
B is a monotone algebra.

Let R be a rank type and let Σ be a ranked alphabet of rank type R . An
algebra A = (A,Σ) with A = {1, 2} is a two-state full monotone algebra of rank
type R if for all integers m ∈ R and mappings τ : Am → A with τ(a1, . . . , am) ≥
a1, . . . , am (a1, . . . , am ∈ A), there is a σ ∈ Σm such that σA = τ .

We have

Theorem 10. An algebra A = (A,Σ) of rank type R is monotone if and
only if it can be given as a homomorphic image of a subalgebra of a cascade power
of a two-state full monotone algebra of rank type R .

Proof. It is obvious that products and subalgebras of monotone algebras are
monotone. Moreover, by Lemma 1, homomorphism preserves monotonicity.

Conversely, let A = (A,Σ) be a monotone algebra of rank type R under a
partial ordering ≤ . Since A is finite, we may assume that ≤ is a linear ordering.
For the sake of simplicity, suppose that A = {1, . . . , n} and ≤ is the natural
ordering on A . Let B = ({1, 2},Σ′) be a two-state full monotone algebra of
rank type R . If n = 2 then A is obviously isomorphic to a cascade power of
B with a single factor. Assume that n > 2. We shall show that there is an
algebra A′ = (A′,Σ) with n − 1 states 1, . . . , n − 1 such that A′ is monotone
under the natural ordering on A′ and A is a homomorphic image of a subalgebra
of a cascade product C = (C,Σ) = (A′×B)[Σ, ϕ] . For arbitrary m ∈ R , σ ∈ Σm ,
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and i1, . . . , im ∈ A′ , let

σA′(i1, . . . , im) =

{
σA(i1, . . . , im), if σA(i1, . . . , im) < n,
n− 1 otherwise.

For every m ∈ R , let σ′m1 ∈ Σ′m be the symbol satisfying σ′Bm1(1, . . . , 1) = 1.

Moreover, σ′m2 ∈ Σ′m will denote a symbol such that σ′Bm2(i1, . . . , im) = 2 for
arbitrary i1, . . . , im ∈ {1, 2} . Now we are ready to define the feed-back function

ϕ of C . For every σ ∈ Σm , let ϕ
(1)
m (σ) = σ . Furthermore, for all σ ∈ Σm and

i1, . . . , im ∈ {1, . . . , n− 1} , let

ϕ(2)
m (i1, . . . , im, σ) =

{
σm1, if σ(i1, . . . , im) < n,
σm2 otherwise.

Denote by C ′ the subset {(1, 1), . . . , (n− 1, 1), (n− 1, 2)} of C . It is not hard to
show that C ′ forms a subalgebra of C and the mapping τ : C ′ → A given by

τ
(
(i, j)

)
=

{
i, if j = 1,
n, if j = 2

((i, j) ∈ C ′ ) is an isomorphism. Since the formation of the cascade product is
transitive, this ends the proof of Theorem 10.

From the proof of Theorem 10 we obtain

Corollary 2. An algebra of rank type R is monotone if and only if it is
isomorphic to a subalgebra of a cascade power of a two-state full monotone algebra
of rank type R .

Let A = (A,Σ′) be the algebra with A = {1, 2} and Σ = Σ1 = {σ1, σ2} ,
where σ1(1) = 1, σ1(2) = 2 and σ2(1) = σ2(2) = 2. The algebra A is a two-
state full monotone algebra of rank type R = {1} . This, by Theorem 10, means
that every unary monotone algebra can be given as a homomorphic image of a
subalgebra of a cascade power of A . We shall give a two-state monotone algebra
which cannot be represented homomorphically by a quasi-cascade-power of A .
Therefore, since the formation of the quasi-cascade-product is transitive, this will
imply that not every monotone algebra can be given as a homomorphic image of
a subalgebra of a quasi-cascade-product of unary monotone algebras.

Consider the algebra B = (B,Σ), where B = {1, 2} , Σ = Σ2 = {σ} ,
σ(1, 1) = 1 and σ(1, 2) = σ(2, 1) = σ(2, 2) = 2. This B is a monotone alge-
bra.

Take a quasi-cascade-power C = (C,Σ) = (An)[Σ, ϕ] . Assume that a subalge-
bra C′ = (C ′,Σ) of C can be mapped homomorphically onto B under a mapping
τ : C ′ → B . Let N denote the set of all elements c from C ′ for which τ(c) = 1
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and σ(c, c) = c . Then N is nonvoid since C′ is monotone and σB(1, 1) = 1.
Furthermore, let N2 be the set of all counter images of 2 under τ . Finally, let i
(1 ≤ i ≤ n) denote the maximal index for which there is a pair (a,b) ,

a = (j11, . . . , j1i−1, j1i, j1i+1, . . . , j1n) ∈ N
and

b = (j21, . . . , j2i−1, j2i, j2i+1, . . . , j2n) ∈ N2 ,
such that j11 = j21, . . . , j1i−1 = j2i−1 and j1i 6= j2i . Let us distinguish the
following two cases.

(1) j1i = 1 and j2i = 2. Then ϕ
(i)
2 (j11, . . . , j1i−1, j11, . . . , j1i−1, σ) = σ1(ξ1)

or σ1(ξ2) since σ(a,a) = a . In the first case the ith component of σ(a,b) is 1
and σ(a,b) ∈ N2 . This contradicts either the maximality of i , or the assumption
that τ is a homomorphism if i = n . In the second case, taking σ(b,a) , we arrive
at the same conclusion.

(2) j1i = 2 and j2i = 1. Now for ϕ
(i)
2 (j11, . . . , j1i−1, j11, . . . , j1i−1, σ) we may

have all four cases: ϕ
(i)
2 (j11, . . . , j1i−1, j11, . . . , j1i−1, σ) = σ1(ξ1) , or σ1(ξ2) , or

σ2(ξ1) , or σ2(ξ2) . Taking σ(a,b) in the first case and σ(b,a) in the remaining
three cases, we have the same contradiction as previously.

Let M1 denote the class of all monotone unary algebras and M the class of
all monotone algebras. We can summarize the above result in

Theorem 11. M1 is not homomorphically complete for M with respect to
the quasi-cascade-product.

Finally, we remark that M and H
(
S
(
Q(M1)

))
are incomparable.
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