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Abstract. We prove that if n ≥ 2 there exists a close-to convex function f in S whose n -th
logarithmic coefficient γn satisfies |γn| > 1/n . Also, we prove some results related to a conjecture
of Milin on the logarithmic coefficients of functions in the class S and give some applications of
them to obtain upper bounds on the integral means of these functions.

1. Introduction and statement of results

Let S be the class of functions f analytic and univalent in the unit disc

∆ = {z ∈ C : |z| < 1}

with f(0) = 0, f ′(0) = 1. Let S? denote the subset of S consisting of those
functions f in S for which f(∆) is starlike with respect to 0. It is well known
(see [6] or [20]) that if f is analytic in ∆, with f(0) = 0, f ′(0) = 1, then f ∈ S? if
and only if Re

(
zf ′(z)/f(z)

)
> 0, for all z in ∆. Finally, we let C denote the set

of those functions f in S for which there exists a real number α and a function
g in S? such that

Re
zf ′(z)
eiαg(z)

> 0, z ∈ ∆.

The elements of C are called close-to-convex functions. Clearly, S? ⊂ C .
Associated with each f in S is a well defined logarithmic function

log
f(z)

z
= 2

∞∑

n=1

γnz
n, z ∈ ∆.

The numbers γn are called the logarithmic coefficients of f . Thus the Koebe
function k(z) = z(1− z)−2 has logarithmic coefficients γn = 1/n .

If f(z) = z+
∑∞
n=2 anz

n ∈ S then γ1 = 1
2a2 . Hence, since |a2| ≤ 2, |γ1| ≤ 1.
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The inequality |γn| ≤ 1/n holds for functions f in S? , but is false for the
full class S , even in order of magnitude. Indeed, (see Theorem 8.4 on p. 242
of [6]) there exists a bounded function f ∈ S with logarithmic coefficients γn 6=
O(n−0.83) .

In a recent paper [7] it is presented that the inequality |γn| ≤ 1/n holds also
for close-to-convex functions. However, it is pointed out in [19] that there are some
errors in the proof and, hence, the result is not substantiated. We will prove that
actually the result is false for n ≥ 2.

Following [10], EC C will denote the set of the extreme points of the closed
convex hull of the class C . Brickman, MacGregor and Wilken proved in [4] (see
also [10, p. 56]) that

(1.1) EC C = {fx,y : x, y ∈ C, |x| = |y| = 1, x 6= y},

where

(1.2) fx,y(z) =
z − 1

2 (x+ y)z2

(1− yz)2
, z ∈ ∆.

Each element of EC C belongs to C and it maps ∆ onto the complement of a
half-line. It is also known that the set EC C coincides with the set of support
points of C [9], [13] (see also [10, p. 98–100]).

Now we can state our first result.

Theorem 1. If n ≥ 2 there exists a function f in EC C (and, hence, f in
C ) with

log
f(z)

z
= 2

∞∑

j=1

γjz
j

such that |γn| > 1/n .

The relevance of the logarithmic coefficients comes from the fact that, by
means of the so called Lebedev–Milin inequalities ([6, p. 142–146], [16, Chapter 2]),
estimates on the logarithmic coefficients γj of f can be transferred to bounds on
the coefficients of f and related functions. Milin conjectured the inequality

(1.3)

n∑

m=1

m∑

k=1

(
k|γk|2 −

1

k

)
≤ 0, n = 1, 2, . . . ,

which implies Robertson’s conjecture and, hence, Bieberbach’s conjecture. L.
de Branges [3] (see also [11]) proved (1.3) and thus established the Bieberbach
conjecture. In Section 2, we shall draw our attention to another conjecture of
Milin relative to the logarithmic coefficients.
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For an arbitrary function g , analytic in ∆, we shall set

(1.4) M(r, g) = max
|z|=r

|g(z)|, 0 < r < 1.

Lebedev [15] (see also [16, p. 55–57]) proved that if f in S has the logarithmic
coefficients {γj}∞j=1 then

(1.5)
∞∑

j=1

j|γj |2r2j ≤ 1

2
log

M(r, f)

r
, 0 < r < 1.

I.M. Milin conjectured in [17] that the right hand side of (1.5) can be changed to
1
2 log(M(r2, f)/r2) , that is, that the inequality

(1.6)

∞∑

j=1

j|γj |2r2j ≤ 1

2
log

M(r2, f)

r2
,

should hold for arbitrary f in S and 0 < r < 1.
Milin [17] proved that (1.6) holds if f ∈ S? and 0 < r < 1 and that given f

in S there exists rf , with 0 < rf < 1, such that (1.6) holds for f and 0 < r < rf .
Using different ideas, Milin proved in [18] that (1.6) also holds for 0 < r < 1 if f
belongs to a certain subclass of those f in S that have real coefficients and are
such that both f and f ′ have a continuous extension to the closed unit disc.

Let D be a domain in C with 0 ∈ D . We shall say that D is circularly
symmetric if, for every R with 0 < R <∞ , D∩{|z| = R} , is either empty, is the
whole circle |z| = R , or is a single arc on |z| = R which contains z = R and is
symmetric with respect to the real axis. Following [14], we shall denote by Y the
class of those functions f in S which map ∆ onto a circularly symmetric domain.
The elements of Y will be called circularly symmetric functions. Our first result
in Section 2 will be observing that the method of Milin [18] can be used to prove
that (1.6) holds for 0 < r < 1 if f belongs to either S? or Y .

Theorem 2. Suppose that f ∈ S?∪Y and that f has logarithmic coefficients
{γj}∞j=1 . Then (1.6) holds for 0 < r < 1 .

We can also prove the following.

Theorem 3. Suppose that f ∈ EC C and that f has logarithmic coefficients
{γj}∞j=1 . Then (1.6) holds for 0 < r < 1 .

In Section 4 we shall prove that the results obtained in Section 3 can be used
to obtain upper bounds on the integral means of f . In particular, we can prove
the following result.
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Theorem 4. Let f belong to any of the classes S? , Y or EC C . Then

(1.7)
1

2π

∫ 2π

0

|f(reiθ)| dθ ≤M(r2, f)1/2, 0 < r < 1.

We remark that, by the distortion theorem, the inequality (1.7) is stronger
than the inequality

1

2π

∫ 2π

0

|f(reiθ)| dθ ≤ r

1− r2
, 0 < r < 1,

which holds for every f in S [2] (see also [6, Chapter 7]).

2. Logarithmic coefficients of close-to-convex functions

Before embarking on the proof of Theorem 1, let us fix some notation. Given
x, y in C with |x| = |y| = 1 and x 6= y , we shall denote the logarithmic coefficients
of fx,y by {γj(x, y)}∞j=1 , that is, we set

(2.1) log
fx,y(z)

z
= 2

∞∑

j=1

γj(x, y)zn, z ∈ ∆.

Also, we shall write γj(x) for γj(x, 1), j = 1, 2, . . . , that is

(2.2) log
fx,1(z)

z
= 2

∞∑

j=1

γj(x)zn, z ∈ ∆.

Notice that if |x| = |y| = 1 and x 6= y , we have that fx,y(z) = y−1fxy−1,1(yz)
and, hence,

(2.3) γj(x, y) = γj(xy
−1)yj , j = 1, 2, . . . .

Proof of Theorem 1. Take x in C with |x| = 1 and x 6= 1 then

fx,1(z) =
z − 1

2 (x+ 1)z2

(1− z)2
, z ∈ ∆.

Then, if we set
b = b(x) = 1

2 (x+ 1),

we have that |b− 1
2 | = 1

2 and b 6= 1. Hence, b can be written in the form

(2.4) b = eiθ cos θ with |θ| ≤ 1
2π, θ 6= 0.
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Now,

log
fx,1(z)

z
= log

1− bz
(1− z)2

= 2
∞∑

j=1

1

j

(
1− 1

2
bj
)
zj .

That is, we have that

(2.5) γj(x) =
1

j

(
1− 1

2
bj
)
, j = 1, 2, . . . .

Then, using (2.4), we obtain

(2.6)

|γj(x)|2 =
1

j2

(
1 +

1

4
|b|2j − Re bj

)

=
1

j2

(
1 +

1

4
cos2j θ − cosj θ cos jθ

)
, j = 1, 2, . . . .

Given n ≥ 2 if, with the above notation, we take x so that θ = π/2n we
have that

|γn(x)|2 =
1

n2

(
1 +

1

4
cos2n π

2n

)

and, hence |γn(x)| > 1/n . This finishes the proof.

Remark 1. Using (2.5) and having in mind that |b − 1
2 | = 1

2 , we easily see
that for every x with |x| = 1 and x 6= 1 we have

|γj(x)| ≤ 3

2

1

j
, j = 1, 2, . . . .

This and (2.3) implies that

|γj(x, y)| ≤ 3

2

1

j
, j = 1, 2, . . . , for every x, y with |x| = |y| = 1 and x 6= y .

That is, we have proved the following result.

Proposition 1. If f ∈ EC C then its logarithmic coefficients γj satisfy

(2.7) |γj | ≤
3

2

1

j
, j = 1, 2, . . . .

Remark 2. Since the functional J defined by J(f) = γn where

log
f(z)

z
= 2

∞∑

j=1

γjz
j

is not linear, Proposition 1 does not imply that (2.7) should hold for arbitrary f
in C . In fact, it is an open question whether or not given f in C its logarithmic
coefficients γj satisfy γj = O(1/j) , as j →∞ .
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3. Some results related to a conjecture of Milin

We start by introducing some notation. Given a function Ψ, analytic in ∆,
we set

(3.1) σ(r,Ψ) =
1

π

∫∫

|z|<r
|Ψ′(z)|2 dx dy, 0 < r < 1.

Notice that if Ψ(z) =
∑∞
n=0 αnz

n then

(3.2) σ(r,Ψ) =

∞∑

n=1

n|αn|2r2n, 0 < r < 1.

Using (3.2), we easily see that if f in S has the logarithmic coefficients {γj}∞j=1

then ∞∑

j=1

j|γj |2r2j =
1

4
σ

(
r, log

f(z)

z

)
, 0 < r < 1.

Hence (1.6) is equivalent to

(3.3) σ

(
r, log

f(z)

z

)
≤ 2 log

M(r2, f)

r2
.

As we mentioned above, Milin proved in [18, Theorem 2] the validity of (1.6)
for 0 < r < 1 if f belongs to a certain subclass of those functions in S with real
coefficients. The following simple lemma was a key ingredient in the proof of this
result.

Lemma A (Milin, [18, p. 136]). Let Ψ be a function which is analytic in
∆ , u = Re Ψ and v = Im Ψ . If r ∈ (0, 1) and r1, r2 ∈ (0, 1) and are such that
r1r2 = r2 then

σ(r,Ψ) =
1

π

∫ 2π

0

u(r1e
iθ)
∂v(r2e

iθ)

∂θ
dθ = − 1

π

∫ 2π

0

v(r1e
iθ)
∂u(r2e

iθ)

∂θ
dθ.

Let us notice that Lemma A can be easily proved writing u and v in terms
of the Taylor series expansion of Ψ. Our proof of Theorem 2 will also be based
on Lemma A. Hence, in a unified way, we shall obtain

(i) a new proof of the validity of (1.6) for 0 < r < 1 if f ∈ S? ,
and,

(ii) an extension of Theorem 2 of [18] to the class Y of circularly symmetric
functions.

In the following lemma we point out a certain property which is satisfied both
for the elements of S? and those of Y and which will play a key role in the proof
of Theorem 2.
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Lemma 1. Suppose that f ∈ S? ∪ Y and that 0 < r1 ≤ r2 < 1 . Then the
curve with parametrization

|f(r1e
iθ)|ei arg f(r2e

iθ), 0 ≤ θ ≤ 2π,

is a Jordan curve.

Proof. Let 0 < r1 ≤ r2 < 1 and f in S? ∪ Y . For simplicity, set

(3.4) Γ(θ) = |f(r1e
iθ)|ei arg f(r2e

iθ), 0 ≤ θ ≤ 2π.

Notice that

Γ(θ) = f(r2e
iθ)
|f(r1e

iθ)|
|f(r2eiθ)|

.

Hence it is clear that Γ is the parametrization of a closed curve. Consequently, it
suffices to prove that Γ is injective in [0, 2π) .

Suppose first that f ∈ S? . Then (see [6, p. 41–42]) arg f(r2e
iθ) is a strictly

increasing function of θ in [0, 2π] and the difference between its value at 2π and

its value at 0 is 2π . Then it is clear that the function θ 7→ ei arg f(r2e
iθ) is injective

in [0, 2π) . Clearly, this implies that Γ is injective in [0, 2π) .
On the other hand, if f ∈ Y then (see [14]), unless f(z) ≡ z in which case

the result is obvious, the function θ 7→ |f(r1e
iθ)| is strictly decreasing in [0, π]

and strictly increasing in [π, 2π] . This implies that Γ is injective in [0, π] and
in [π, 2π] . This and the fact that Im f(z) > 0 if Im z > 0 and Im f(z) < 0 if
Im z < 0 easily imply that Γ is injective in [0, 2π) . This finishes the proof.

Proof of Theorem 2. Suppose that f ∈ S?∪Y and that f has the logarithmic
coefficients {γj}∞j=1 . Let (R,Φ) be the polar coordinates in the w -plane (i.e., in
the image plane). If r ∈ (0, 1) and ε ∈ (0, 1) we set

(3.5) r1 = r2−ε, r2 = rε,

so that r1r2 = r2 . For simplicity, set

(3.6) Rj(θ) = |f(rje
iθ)|, Φ(θ) = arg f(rje

iθ), 0 ≤ θ ≤ 2π, j = 1, 2.

Let Γ be the Jordan curve considered in Lemma 1. Using Lemma A and having

in mind that
∫ 2π

0

(
log(R1(θ)/r1)

)
dθ = 0, we see that

(3.7)

σ

(
r, log

f(z)

z

)
=

1

π

∫ 2π

0

(
log

R1(θ)

r1

)
∂
(
Φ2(θ)− θ

)

∂θ
dθ

=
1

π

∫ 2π

0

(
log

R1(θ)

r1

)
∂Φ2(θ)

∂θ
dθ =

1

π

∫

Γ

log
R

r1
dΦ.
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Let L be the circle |w| = M(r1, f) . Clearly, Γ lives in the closed disc {|w| ≤
M(r1, f)} . Let G be the region bounded by Γ and L . By Green’s theorem, we
have ∫∫

G

dRdΦ

R
=

∫

L

log

(
R

r1

)
dΦ−

∫

Γ

log

(
R

r1

)
dΦ.

Then, using (3.7) and the definition of r1 , we deduce that

σ

(
r, log

f(z)

z

)
= 2 log

M(r1, f)

r1
− 1

π

∫∫

G

dR dΦ

R

≤ 2 log
M(r1, f)

r1
= 2 log

M(r2−ε, f)

r2−ε .

Since ε is arbitrary subject to 0 < ε < 1, letting ε tend to zero we obtain (3.3)
and, hence, (1.6). This finishes the proof.

Remark 3. The argument used in the proof of Theorem 2 can be used to
give a short proof of the above mentioned result of Lebedev which asserts that
(1.5) holds for arbitrary f in S (compare [16, p. 55–57]). Indeed, let f be in S
and 0 < r < 1. Argue as in the proof of Theorem 2 but taking r1 = r2 = r . Then
we obtain ∫∫

G

dRdΦ

R
= 2π log

M(r, f)

r
− πσ

(
r, log

f(z)

z

)

and, hence,

σ

(
r, log

f(z)

z

)
≤ 2 log

M(r, f)

r
.

This gives (1.5).

Proof of Theorem 3. In view of the facts that we stated at the beginning of
the proof of Theorem 1, it is clear that Theorem 3 is equivalent to the following
result.

Proposition 2. Let b belong to C and suppose that |b− 1
2 | = 1

2 and b 6= 1 .
If

f(z) =
z − bz2

(1− z)2
and log

f(z)

z
= 2

∞∑

j=1

γjz
j , z ∈ ∆,

then ∞∑

j=1

j|γj |2r2j ≤ 1

2
log

M(r2, f)

r2
, 0 < r < 1.

Proof. We recall from (2.5) that

γj =
1

j

(
1− 1

2
bj
)
, j = 1, 2, . . . .
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Then, for 0 < r < 1,

(3.8)

∞∑

j=1

j|γj |2r2j =
∞∑

j=1

1

j

(
1− 1

2
bj
)(

1− 1

2
b̄j
)
r2j

=
∞∑

j=1

1

j
r2j +

1

4

∞∑

j=1

1

j
|b|2jr2j − Re

( ∞∑

j=1

1

j
bjr2j

)

= log
1

1− r2
+

1

4
log

1

1− |b|2r2
− log

1

|1− br2| .

We recall from (2.4) that b can be written in the form b = eiθ cos θ with θ ∈ R
and then

|1− br2|2 = 1 + |b|2r4 − 2 Re(br2) = 1 + r4 cos2 θ − 2r2 cos2 θ

≤ 1− r2 cos2 θ = 1− |b|2r2

and, hence

log
1

1− |b|2r2
≤ 2 log

1

|1− br2| ,

which implies

1

4
log

1

1− |b|2r2
− log

1

|1− br2| ≤ −
1

2
log

1

|1− br2| .

Then, using (3.8), we obtain

(3.9)
∞∑

j=1

j|γj |2r2j ≤ log
1

1− r2
− 1

2
log

1

|1− br2| .

On the other hand,

1

2
log

∣∣∣∣
f(r2)

r2

∣∣∣∣ =
1

2
log
|1− br2|
(1− r2)2

= log
1

1− r2
− 1

2
log

1

|1− br2| ,

which, with (3.9), gives

∞∑

j=1

j|γj |2r2j ≤ 1

2
log

∣∣∣∣
f(r2)

r2

∣∣∣∣ ≤
1

2
log

M(r2, f)

r2
.

This finishes the proof of Proposition 2. Hence, Theorem 3 is proved.
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Remark 4. Just as in Remark 2, even though Theorem 3 is true, it is an
open question whether or not (1.6) holds for arbitrary f in C and 0 < r < 1.

Remark 5. There are some other subclasses of S for which Milin’s conjecture
(1.6) can be proved easily. For instance, we can prove the following result.

Proposition 3. Suppose that f ∈ S and that the logarithmic coefficients
{γj} of f are real and satisfy 0 ≤ γj ≤ 1/j for all j . Then (1.6) holds for
0 < r < 1 .

Proof. For simplicity, set g(z) = log
(
f(z)/z

)
. Then

(3.10)

4
∞∑

j=1

j|γj |2r2j =
1

π

∫∫

|z|<r
|g′(z)|2 dx dy

=
1

π

∫ r

0

∫ 2π

0

ρ|g′(ρeiθ)|2 dθ dρ = 2

∫ r

0

ρI2(ρ, g′) dρ,

where, for h analytic in ∆,

I2(ρ, h) =
1

2π

∫ 2π

0

|h(ρeiθ)|2 dθ.

Then, we have

(3.11)

d

dr

(
4
∞∑

j=1

j|γj |2r2j − 2 log
f(r2)

r2

)
=

d

dr

(
4
∞∑

j=1

j|γj |2r2j − 2g(r2)

)

= 2rI2(r, g′)− 4rg′(r2)

= 2r
(
I2(r, g′)− 2g′(r2)

)
.

Since 0 ≤ γj ≤ 1/j , then 0 ≤ j2γ2
j ≤ jγj , which implies

I2(r, g′) = 4
∞∑

j=1

j2γ2
j r

2(j−1) ≤ 4
∞∑

j=1

jγjr
2(j−1) = 2g′(r2).

This and (3.11) show that

d

dr

(
4

∞∑

j=1

j|γj |2r2j − 2 log
f(r2)

r2

)
≤ 0,

whenever r ∈ (0, 1) and, hence the function

r 7→
(

4
∞∑

j=1

j|γj |2r2j − 2 log
f(r2)

r2

)
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is decreasing in [0, 1). Since the value of this function at r = 0 is 0, it follows
that

4
∞∑

j=1

j|γj |2r2j ≤ 2 log
f(r2)

r2

whenever r ∈ (0, 1). Hence, the proposition is proved.

We remark that the author proved in [8] that there exist functions f in Y
and satisfying |γn| > 1/n for some n . Hence, the class Y is not contained in the
class of those f considered in Proposition 3.

4. Bounds for the integral means

In this section we shall show that the estimates on σ
(
r, log

(
f(z)/z

))
obtained

in Section 3 can be applied to obtain upper bounds for the integral means of f .
Our results will be obtained using the following well-known inequality of Lebedev
and Milin (see [6, p. 143] or [16, Theorem 2.3]).

First Lebedev–Milin inequality. Let F (z) =
∑∞
j=1Ajz

j be a function
which is analytic in ∆ with F (0) = 0 and write

G(z) = exp
(
F (z)

)
=
∞∑

k=0

Dkz
k, z ∈ ∆.

Then,

(4.1)
∞∑

k=0

|Dk|2 ≤ exp

( ∞∑

k=1

k|Ak|2
)
.

Notice that the right hand side of (4.1) is

‖G‖2H2 = sup
0<r<1

1

2π

∫ 2π

0

|G(reiθ)|2 dθ,

(see e.g. [5]) and hence (4.1) can be written as

(4.2) ‖G‖2H2 ≤ exp

( ∞∑

k=1

k|Ak|2
)
.

Now we can prove Theorem 4.
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Proof of Theorem 4. Take a function f which belongs to S? ∪ Y ∪ EC C
and let {γj} be its logarithmic coefficients. Take 0 < r < 1. Theorem 2 and
Theorem 3 imply that

(4.3)

∞∑

k=1

k|γk|2r2k ≤ 1

2
log

M(r2, f)

r2
.

Set

F (z) =
1

2
log

f(rz)

rz
=
∞∑

k=1

γkr
kzk, G(z) = exp

(
F (z)

)
=

(
f(rz)

rz

)1/2

, z ∈ ∆.

Then F and G satisfy the conditions of the first Lebedev–Milin inequality. Con-
sequently, writing (4.2) for this choice of F and G , we obtain

(4.4) ‖G‖2H2 ≤ exp

( ∞∑

k=1

k|γk|2r2k

)
.

Now

‖G‖2H2 =
1

2π

∫ 2π

0

|G(eiθ)|2 dθ =
1

2π

∫ 2π

0

∣∣∣∣
f(reiθ)

r

∣∣∣∣ dθ.

Then (4.3) and (4.4) give

1

2π

∫ 2π

0

∣∣∣∣
f(reiθ)

r

∣∣∣∣ dθ ≤ exp

( ∞∑

k=1

k|γk|2r2k

)

≤ exp

(
1

2
log

M(r2, f)

r2

)
=

(
M(r2, f)

r2

)1/2

,

which clearly implies that

1

2π

∫ 2π

0

|f(reiθ)| dθ ≤M(r2, f)1/2.

This finishes the proof.

Remark 6. It is an open question whether or not the inequality

1

2π

∫ 2π

0

|f(reiθ)| dθ ≤M(r2, f)1/2

holds for arbitrary f in S and 0 < r < 1. However, we remark that the proof of
Theorem 4 shows that this is true whenever (1.6) is true.
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Remark 7. If f is an arbitrary element of the class S and 0 < r < 1 then if
we argue as in the proof of Theorem 4 but using Lebedev’s estimate (1.5) instead
of (1.6), we obtain that

1

2π

∫ 2π

0

|f(reiθ)| dθ ≤
(
rM(r, f)

)1/2
, 0 < r < 1, f ∈ S.

Remark 8. Andreev and Duren [1, p. 722] proved as a consequence of de
Branges’ theorem that if f in S has logarithmic coefficients {γj} then

(4.5)

∞∑

j=1

j|γj |2r2j ≤
∞∑

j=1

1

j
r2j = log

1

1− r2
, 0 < r < 1.

Using this inequality and the argument of the proof of Theorem 4 we obtain
Baernstein’s result

(4.6)
1

2π

∫ 2π

0

|f(reiθ)| dθ ≤ r

1− r2
, 0 < r < 1.

We should mention that Holland [12] proved (4.6) as a consequence of the truth
of Robertson’s conjecture.

I wish to thank the referee for his helpful comments, especially for those
relative to the proof of Theorem 2.
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