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Abstract. We give uniform estimates of entire functions of exponential type less than a
numerical constant having sufficiently small logarithmic sums over certain nonsymmetric discrete
subsets of the real line. We thereby generalize earlier results about logarithmic sums over symmetric
sets, in particular the set of integers.

1. Introduction

The set of polynomials p satisfying

∑

n∈Z

log+ |p(n)|
n2 + 1

≤ η

is, for η small enough, a normal family in the whole complex plane. This result
was published by Paul Koosis in 1966 (for even polynomials) and later for general
polynomials. See [2] and [3, Chapter VIII, B]. Recently, other methods of proof,
based on the investigation of so-called least superharmonic majorants, have been
found, see [10], [7] and [6].

In this paper we shall deal with the question of how much the structure of
the set of integers is involved in these results. In [11], an investigation of the
situation where the integers are replaced by so-called h -dense subsets of the real
line was begun. There, the main results in [10] were generalized to symmetric
h -dense subsets. Symmetry of the set played a crucial role. This was mainly
because a deep result, concerning the existence of least superharmonic majorants,
is only available for even functions. However, in [7] and [6], use of that result was
completely dispensed with. That makes it possible for us to generalize the results
of [11] to nonsymmetric h -dense sets. We recall that a discrete subset Λ of the
real line is called h -dense if, outside a bounded subset of the real line, any closed
interval of length h contains at least one element of Λ.

Before stating the main theorem we shall recall the definition of a certain
numerical constant T∗ (from [10]):

T∗ = π/M∗,
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where

M∗ = inf
s>0

{
1

s

∫ π/2

0

exp
(
s(1 + sin θ)

)
dθ

}
.

The theorem is as follows.

Theorem 1.1. Suppose that Λ is an h -dense subset of the real line. For any
A0 < T∗/h and ε > 0 there is η0 > 0 such that for any η ≤ η0 there is a constant
Cη > 0 with the property that

|f(z)| ≤ Cη exp(A|y|+ ε|z|)

for all complex z and all entire functions f of exponential type ≤ A ≤ A0 satis-
fying

∑

λ∈Λ

log+ |f(λ)|
λ2 + 1

≤ η.

The constant T∗ is approximately equal to 0.44. In the situation where Λ is
the set of integers, Theorem 1.1 is true with T∗/h replaced by π . See [7] and [6].

Let us briefly indicate the main steps in the proof of the theorem above and
in particular, the visible differences in comparison to the arguments in [11].

The main work is carried out for entire functions f of exponential type ≤
A ≤ A0 < T∗/h , without zeros in the upper half-plane, satisfying f(0) = 1 and

1 ≤ |f(x)| ≤ Const (|x|+ 1)

for real x . For such functions the logarithmic integral

(1) J (f) =

∫ ∞

−∞

log |f(t)|
t2

dt

exists; see for example Problem 27 in [3], and we shall compare it with the loga-
rithmic sum ∑

λ∈Λ

log |f(λ)|
λ2

of f over Λ. For b > 0 we define

F (z) =
1

π

∫ ∞

−∞

|y| log |f(t)|
|z − t|2 dt− b|y|

and we consider the least superharmonic majorant MF of F and its Riesz mea-
sure % on the real line. The logarithmic sum can, in a weak form, be bounded
from below by an integral involving MF and % , namely

(2)

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x);
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see Theorem 6.2. The main part of this paper consists of finding a good lower
bound for this integral, depending only on the parameter b and the logarithmic
integral of f ; see Theorem 5.1. The main result of this paper follows from these
two theorems; see the remarks following Theorem 6.2.

In Section 2 we give some fundamental properties of the least superharmonic
majorant. We give its Riesz representation (Proposition 2.1) and we show that
the Riesz measure % has bounded Radon–Nikodym derivative (Proposition 2.2).

Section 3 deals with the asymptotic behaviour of % . We prove for example
that the distribution function %(t) is differentiable at the origin. This is based on a
version of Kolmogorov’s theorem on the harmonic conjugate, suitable for functions
u satisfying ∫ ∞

−∞

|u(t)|
t2

dt <∞;

see Theorem 3.2 and Proposition 3.3.
In Sections 4 and 5 the lower bound of the integral (2) is found. The consid-

erations involve energy integrals
∫ ∞

−∞

∫ ∞

−∞
log

1

|x− t| dτ(t) dτ(x)

associated with certain real measures τ satisfying τ(R) = 0. In this setup it is
possible to equip the linear space of potentials

uτ (x) =

∫ ∞

−∞
log

1

|x− t| dτ(t)

with an inner product structure. We shall use the Hilbert space obtained by com-
pleting the inner product space. A weak compactness argument (see Theorem 4.5)
will give us

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x) ≥

∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx.

Section 5 is devoted to estimating the right-hand side of this relation. This is done
by using the second mean value theorem and an integration by parts method.

The integral (2) plays the same role in this paper as the integral
∫ ∞

0

MF (x)−MF (0)

x2
d%(x)

does in the previous papers [10], [11], [7] and [6]. In those papers, |f | is assumed
to be even on the real axis, so that MF is also even on the real line. Its Riesz
measure is thus symmetric and can be represented as a measure % on the half-line
[0,∞) . The general method used to estimate (2) is the same as the method used to
estimate the integral in the even case. However, as we shall see, many difficulties
appear in the present more general situation.

I thank the referee for a careful reading of this work.
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2. The least superharmonic majorant

We fix in this section an entire function f of exponential type less than or
equal to A , with f(0) = 1 and |f(x)| ≥ 1 for all real x . Furthermore, we suppose
that

(3) |f(x)| ≤ Const (1 + |x|)

for real x and that f has no zeros in the upper half-plane.
For b > 0 we construct

(4) F (z) =
1

π

∫ ∞

−∞

|y| log |f(t)|
|z − t|2 dt− b|y|.

This function, defined by an integral over the entire real line, has a finite super-
harmonic majorant in the whole complex plane. Indeed, for a suitable choice of
K > 0, the entire function of exponential type b , φ(z) = K(sin bz)/z satisfies
|φ(x)f(x)| ≤ 1 on the real line. This means that the superharmonic function
− log |φ(z)| , not identically equal to infinity, is a majorant of F in the whole
complex plane. The least superharmonic majorant of F , MF , is thus at our
disposal.

We remark that (3) assures the existence of a non-zero entire function φ of
exponential type ≤ b making fφ bounded on the real axis. Such an entire function
is called a multiplier of type ≤ b associated with f . Such multipliers exist (for any
b > 0) for any entire function f of exponential type satisfying the much weaker
condition ∫ ∞

−∞

log+ |f(t)|
t2 + 1

dt <∞.

This result was published by Beurling and Malliavin in 1962 (see [1]). All results
in this section and in the following two sections are still valid if we drop the
assumption (3) (see again [3, Problem 27]). However, one of the surprising aspects
of the whole approach is that Beurling and Malliavin’s theorem is not needed and
indeed can be obtained as a corollary, see [6] and [7].

We refer to [3, p. 363] for a general introduction to least superharmonic ma-
jorants. We recall some general properties of MF :

It is a continuous function in the whole plane.
It is harmonic where F is harmonic.
It is harmonic where it is > F .
We conclude that F is harmonic in the upper and lower half-planes and

therefore MF is harmonic in the whole plane except the closed set E , defined as

(5) E = {x ∈ R | log |f(x)| = MF (x)}.

Since MF is a majorant of F we must have MF (x) ≥ log |f(x)| for all real x .
In particular MF (x) ≥ 0 for all x ∈ R .
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We turn to representations of MF . First of all,

(6)

∫ ∞

−∞

MF (t)

t2 + 1
dt <∞

and we have the Poisson representation

(7) MF (z) =
1

π

∫ ∞

−∞

|y|MF (t)

|z − t|2 dt− b|y|;

(see for example [4, p. 374]). We also note the following global Riesz representation
of MF .

Proposition 2.1. We have

MF (z) = MF (0)− γx−
∫

|t|≤1

log

∣∣∣∣1−
z

t

∣∣∣∣ d%(t)−
∫

|t|≥1

(
log

∣∣∣∣1−
z

t

∣∣∣∣+
x

t

)
d%(t),

where γ is a real constant and % is a positive measure on the real line satisfying

∫

|t|≤1

∣∣log |t|
∣∣ d%(t) <∞

and %(t)/t ≤ Const for |t| ≥ 1 . Here the distribution function %(t) is normalized
so that %(0) = 0 . Furthermore, % is concentrated on the set E given in (5).

If MF (0) > 0 we must have 0 /∈ E and % must vanish on a small neighbour-
hood of the origin. Therefore one may write the representation of MF as

MF (z) = MF (0)−γ̃x−
∫ ∞

−∞

(
log

∣∣∣∣1−
z

t

∣∣∣∣+
x

t

)
d%(t),

with some other constant γ̃ . A proof of the representation in this situation can
be found in [4, p. 376]. However, when MF (0) = 0, the origin is in E and it is
necessary to split the integral into two parts as in Proposition 2.1. The proof in
this situation is similar to the one given in [4, p. 376] and we shall not give it here;
see also Problem 57 in [4].

We start our investigation of % by giving the following fundamental result.

Proposition 2.2. The Riesz measure % is absolutely continuous and

d%(t) ≤ A+ b

π
dt.

In the proof of this result we shall make use of the Stieltjes representation
of log |f | .
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Lemma 2.3. Let {zk} denote the zeros of f , counting multiplicities, ordered
so that |z1| ≤ |z2| ≤ · · · . For y ≥ 0 we have

log |f(x+ iy)| = a1x− a2y +

∫

|t|≥1

(
log

∣∣∣∣1−
z

t

∣∣∣∣+
x

t

)
dν(t)

+ lim
N→∞

N∑

1

1

π

{∫

|t|≤1

log

∣∣∣∣1−
z

t

∣∣∣∣
−yk
|zk − t|2

dt−
∫

|t|≥1

x

t

−yk
|zk − t|2

dt

}
.

Here a1 , a2 are real constants and

dν(t) =
1

π

( ∞∑

1

−yk
|zk − t|2

)
dt

satisfies
∫∞
−∞
(
1/(t2 + 1)

)
dν(t) <∞ .

Proof. The proof is based on a version of Levinson’s theorem, see for exam-
ple [5]. By that theorem we may write f as

(8) f(z) = eaz lim
N

N∏

1

(
1− z

zk

)
.

The product is not in general absolutely convergent (see [5, p. 39]). Here a =
a1 + ia2 is a complex number. We write zk = xk + iyk with yk < 0. From the
elementary Poisson formula

log

∣∣∣∣1−
z

zk

∣∣∣∣ =
1

π

∫ ∞

−∞
log

∣∣∣∣1−
z

t

∣∣∣∣
−yk
|zk − t|2

dt

we obtain

log |f(x+ iy)| = a1x− a2y + lim
N

N∑

1

1

π

∫ ∞

−∞
log

∣∣∣∣1−
z

t

∣∣∣∣
−yk
|zk − t|2

dt

= a1x− a2y +

∫

|t|≥1

(
log

∣∣∣∣1−
z

t

∣∣∣∣+
x

t

)
dν(t)

+ lim
N→∞

N∑

1

1

π

{∫

|t|≤1

log

∣∣∣∣1−
z

t

∣∣∣∣
−yk
|zk − t|2

dt−
∫

|t|≥1

x

t

−yk
|zk − t|2

dt

}
.

The lemma is proved.
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Proof of Proposition 2.2. In the product representation (8) of f we may
assume that a is real; replacing it by its real part cannot increase the type of f
and at the same time it leaves |f(t)| unchanged for real t . We may thus take
a2 = 0 in Lemma 2.3. We have, furthermore, for y ≥ 0,

log |f(z)| ≤ 1

π

∫ ∞

−∞

y log |f(t)|
|z − t|2 dt+Ay.

This implies

F (z) =
1

π

∫ ∞

−∞

y log |f(t)|
|z − t|2 dt− by ≥ log |f(z)| − (A+ b)y.

When x ∈ E we therefore have

MF (x)− log |f(x)| = 0 ≤MF (x+ iy)− F (x+ iy)

≤MF (x+ iy)− log |f(x+ iy)|+ (A+ b)y.

This is, by Proposition 2.1 and Lemma 2.3, the same as

∫

|t|≥1

log

∣∣∣∣
1− z/t
1− x/t

∣∣∣∣ d(%+ ν)(t) +

∫

|t|≤1

log

∣∣∣∣
1− z/t
1− x/t

∣∣∣∣ d%(t)

+ lim
N→∞

N∑

1

1

π

∫

|t|≤1

log

∣∣∣∣
1− z/t
1− x/t

∣∣∣∣
−yk
|zk − t|2

dt ≤ (A+ b)y.

Since

log

∣∣∣∣
1− z/t
1− x/t

∣∣∣∣ =
1

2
log

(
1 +

(
y2

(t− x)2

))

we obtain
1

2

∫ ∞

−∞
log

(
1 +

(
y2

(t− x)2

))
d(%+ ν)(t) ≤ (A+ b)y,

for x ∈ E . From this relation one finds that % is absolutely continuous and

d%(t) ≤ A+ b

π
dt;

see [4, p. 406].

Corollary 2.4. We have

0 ≤MF (x)−MF (x+ iy) ≤ (A+ b)y.
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The first inequality is evident from the Riesz representation of MF and the
second follows from Proposition 2.2, since

MF (x)−MF (x+ iy) =
1

2

∫ ∞

−∞
log

(
1 +

(
y2

(t− x)2

))
d%(t).

Lemma 2.5. In the situation where MF (0) = 0 we have

0 ≤
∫ ∞

−∞

MF (t)

t2
dt ≤ πb.

Proof. From the Poisson and Riesz representation of MF we find, for y > 0,

1

π

∫ ∞

−∞

MF (t)

t2 + y2
dt− b =

MF (iy)

y
= −1

2

∫ ∞

−∞

log(1 + y2/t2)

y
d%(t) ≤ 0.

As y decreases to zero we get by monotone convergence that the integral
∫ ∞

−∞

MF (t)

t2
dt

converges and that it is less than or equal to πb .

3. Asymptotic behaviour of the Riesz measure

The function MF is in the upper half-plane the real part of the analytic
function

Ψ(z) =
i

π

∫ ∞

−∞

(
1

z − t +
t

t2 + 1

)
MF (t) dt+ ibz.

We see that, by Proposition 2.1, MF is also the real part of

Φ(z) = −
∫

|t|≥1

(
log

(
1− z

t

)
+
z

t

)
d%(t)

−
∫

|t|≤1

log

(
1− z

t

)
d%(t)− γz + MF (0).

The imaginary parts of these two functions must therefore agree up to an additive
constant:

(9)

1

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

t

t2 + 1

)
MF (t) dt+ bx

= −
∫

|t|≥1

(
arg

(
1− z

t

)
+
y

t

)
d%(t)−

∫

|t|≤1

arg

(
1− z

t

)
d%(t)− γy + C.

We shall draw several conclusions from (9). For z = i it implies a relation between
C , γ and % . We shall, however, need another relation in the case of MF (0) = 0:
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Lemma 3.1. If MF (0) = 0 , the constant C in (9) is equal to

− 1

π

∫ ∞

−∞

MF (t)

t(t2 + 1)
dt.

Proof. We put z = iy in (9) and obtain, after integration by parts,

(10)

1

π

∫ ∞

−∞

t(y2 − 1)

(t2 + y2)(t2 + 1)
MF (t) dt

= −γy + C +
(
%(1) + %(−1)

)
y −

∫

|t|≥1

%(t)y3

t2(t2 + y2)
dt+

∫

|t|≤1

%(t)y

t2 + y2
dt.

Then we let y tend to zero. By Proposition 2.2 we have |%(t)| ≤ Const |t| so that

∣∣∣∣
%(t)y

t2 + y2

∣∣∣∣ ≤
Const |t|y
t2 + y2

≤ Const.

By the dominated convergence theorem the integrals on the right-hand side of (10)
tend to zero. The left-hand side tends to

− 1

π

∫ ∞

−∞

MF (t)

t(t2 + 1)
dt,

also by dominated convergence. Indeed,

∣∣∣∣
t(y2 − 1)

(t2 + 1)(t2 + y2)

∣∣∣∣ ≤
1

(t2 + 1)|t| ,

for 0 ≤ y ≤ 1 and
∫∞
−∞(MF (t)/t2) dt <∞ by Lemma 2.5. The lemma follows.

The next result describes the asymptotic behaviour of %(t)/t and it plays an
important role in what follows.

Theorem 3.2. In the situation where MF (0) > 0 ,

%(t)

t
→ b

π
as t→ ±∞,

and % is zero close to the origin. In the situation where MF (0) = 0 we have

%(t)

t
→ b

π
as t→ ±∞,

%(t)

t
→ b

π
− 1

π2

∫ ∞

−∞

MF (t)

t2
dt as t→ 0.
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The proof of Theorem 3.2 is based on Lemma 3.5 below and suitable versions
of Kolmogorov’s theorem on the harmonic conjugate.

For a real-valued function u satisfying
∫∞
−∞ |u(t)|/(t2 + 1) dt < ∞ , the har-

monic conjugate is defined a.e. on the real axis by

ũ(x) = lim
y→0+

1

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

t

t2 + 1

)
u(t) dt.

Kolmogorov’s theorem on the harmonic conjugate states that, for λ > 0,

∫

{x||ũ(x)|>λ}

dx

x2 + 1
≤ 4

λ

∫ ∞

−∞

|u(t)|
t2 + 1

dt.

This result, or rather a corollary to it, asserting that the integral on the left-hand
side is o(1/λ) as λ tends to infinity, can be used to find the asymptotic behaviour
at ±∞ of %(t)/t . We need another version of Kolmogorov’s theorem in order to
describe the behaviour near the origin.

We suppose that u is a real-valued function satisfying

∫ ∞

−∞

|u(t)|
t2

dt <∞.

In this situation we define

H(u)(x) = lim
y→0+

1

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

1

t

)
u(t) dt.

This function exists a.e. on the real line and we have

(11) H(u)(x) = ũ(x) +
1

π

∫ ∞

−∞

u(t)

t(t2 + 1)
dt.

In Appendix A we give a proof of the following version of Kolmogorov’s theorem.

Proposition 3.3. We have

∫

{x||H(u)(x)|>λ}

dx

x2
≤ 4

λ

∫ ∞

−∞

|u(t)|
t2

dt.

We shall also need to know the asymptotic behaviour of H(u) near zero if u
is known to vanish near the origin:

Lemma 3.4. If u(t) = 0 when |t| ≤ δ then

∣∣∣∣H(u)(x) +
x

π

∫ ∞

−∞

u(t)

t2
dt

∣∣∣∣ ≤
2x2

πδ

∫ ∞

−∞

|u(t)|
t2

dt

for |x| ≤ 1
2δ .
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Proof. Assume |x| ≤ 1
2δ . We have

πH(u)(x) = lim
y→0+

∫

|t−x|≥δ/2

(
x− t

(x− t)2 + y2
+

1

t

)
u(t) dt

=

∫

|x−t|≥δ/2

(
1

x− t +
1

t

)
u(t) dt

=

∫

|x−t|≥δ/2

(
1

x− t +
1

t
+
x

t2

)
u(t) dt− x

∫

|x−t|≥δ/2

u(t)

t2
dt

= x2

∫

|x−t|≥δ/2

u(t)

t2(x− t) dt− x
∫

|x−t|≥δ/2

u(t)

t2
dt.

The lemma follows.

The relation between the harmonic conjugate of MF and the Riesz measure
% is given in the next lemma.

Lemma 3.5. We have, for real x ,

π%(x) = M̃F (x) + bx− C,

where C is the constant in the relation (9).

The lemma follows from (9) by letting y tend to zero. We shall not give the
proof.

Proof of Theorem 3.2. A proof in the case where MF (0) > 0 can be found
in [4, p. 376]. There, a version of Levinson’s theorem is used; one may also follow
the arguments below, based directly on Kolmogorov’s theorem.

We thus only consider the case where MF (0) = 0. From Lemma 3.5 we have

π
%(x)

x
= b+

M̃F (x)

x
− C

x
.

We find the asserted asymptotic behaviour of %(x)/x as x→ ±∞ since M̃F (x)/x
tends to zero as x tends to ±∞ . That this is the case follows from the elementary
arguments in [3, p. 68]. One should take a number λ > 1, very close to 1.
Then one should use the corollary to Kolmogorov’s theorem on the harmonic
conjugate already mentioned to obtain, for given ε , xn ∈ [λn, λn+1] such that

|M̃F (xn)| ≤ ελn for all large n and finally use the monotoneity of % ; see [3,
p. 68].

Proposition 3.3 allows us to argue similarly when x is very close to zero.
Lemma 3.5, Lemma 3.1 and (11) give us

(12) π
%(x)

x
=
H(MF )(x)

x
+ b.
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We show that

lim
x→0

%(x)

x
=
b

π
− 1

π2

∫ ∞

−∞

MF (t)

t2
dt

by obtaining
H(MF )(x)

x
→ − 1

π

∫ ∞

−∞

MF (t)

t2
dt

as x→ 0. We shall only consider the case where x > 0; the case where x < 0
may be treated similarly. To ease notation in this proof we put

I(h) =
1

π

∫ ∞

−∞

h(t)

t2
dt

for functions h making this integral absolutely convergent.
Let ε > 0 be given. Choose λ ∈ (0, 1) so close to 1 that

(13) b
1− λ2

λ2
≤ ε

2
.

Then choose ε1 > 0 such that

(14) ε1 <
1− λ

8λ

and δ > 0 such that ∫

|t|≤δ

MF (t)

t2
dt ≤ ε2

1.

(This is possible by Lemma 2.5.) We put ϕ(t) = MF (t)χ(t) , where χ is the
characteristic function of the set {|t| > δ} , and we consider the two sets

An = {x ∈ [λn+1, λn] | |H(MF )(x) + I(ϕ)x| < ε1λ
n}

and
Bn = {x ∈ [λn+1, λn] | |H(MF )(x)−H(ϕ)(x)| < ε1λ

n/2}.
If x ∈ Bn then

|H(MF )(x) + I(ϕ)x| < ε1λ
n

2
+ |H(ϕ)(x) + I(ϕ)x|

≤ ε1λ
n

2
+

2

πδ

∫ ∞

−∞

ϕ(t)

t2
dt x2

≤ ε1λ
n

2
+

2

πδ

∫ ∞

−∞

ϕ(t)

t2
dt λ2n

≤ ε1λ
n,
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for all sufficiently large n . We can use Lemma 3.4 on ϕ since, by construction,
ϕ ≡ 0 on [−δ, δ] . Thus Bn ⊆ An for all sufficiently large n .

We claim that An is non-empty for n sufficiently large. Indeed, if it were
empty then

1− λ
λn+1

=

∫ λn

λn+1

dx

x2
=

∫

[λn+1,λn]\An

dx

x2

≤
∫

[λn+1,λn]\Bn

dx

x2
≤
∫

{x||H(MF−ϕ)(x)|≥ε1λn/2}

dx

x2
.

Thus, by Proposition 3.3,

1− λ
λn+1

≤ 8

ε1λn

∫

|t|≤δ

MF (t)

t2
dt ≤ 8ε1

λn
.

This contradicts (14). Therefore, when n is sufficiently large, there is xn ∈
[λn+1, λn] such that

|H(MF )(xn) + I(ϕ)xn| < ε1λ
n.

From (12) we see that H(MF )(x) + bx is increasing. The idea is now to estimate
H(MF )(x)/x when λn+1 ≤ x ≤ λn , using the points xn+1 and xn−1 . When
λn+1 ≤ x ≤ λn ,

H(MF )(xn+1) + bxn+1 ≤ H(MF )(x) + bx ≤ H(MF )(xn−1) + bxn−1.

Therefore

H(MF )(xn+1) + I(ϕ)xn+1 − b(x− xn+1) ≤ H(MF )(x) + I(ϕ)x

≤ H(MF )(xn−1) + I(ϕ)xn−1 + b(xn−1 − x).

We thus get

H(MF )(x) + I(ϕ)x ≤ ε1λ
n−1 + b(λn−1 − λn+1),

so that
H(MF )(x)

x
+ I(ϕ) ≤ λ−2

(
ε1 + b(1− λ2)

)
.

Similarly we find that

H(MF )(x)

x
+ I(ϕ) ≥ −

(
ε1 + b(1− λ2)/λ

)
.
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Therefore, and by (13) and since we may assume ε1/λ
2 ≤ ε/2,

∣∣∣∣
H(MF )(x)

x
+ I(ϕ)

∣∣∣∣ ≤ ε1
1

λ2
+ b

1− λ2

λ2
≤ ε

2
+
ε

2
= ε.

This finally implies that, since we can also assume ε2
1/π ≤ ε ,

∣∣∣∣
H(MF )(x)

x
+ I(MF )

∣∣∣∣ ≤
∣∣∣∣
H(MF )(x)

x
+ I(ϕ)

∣∣∣∣+ |I(MF )− I(ϕ)|

≤ ε+ ε2
1/π ≤ 2ε,

for all x ∈ [λn+1, λn] and for all large n . The claim follows and the theorem is
proved.

We shall need some relations involving the measure % and the real constant
γ in the Riesz representation of MF . After division by y , (10) reads

1

π

∫ ∞

−∞

t(y2 − 1)

y(t2 + y2)(t2 + 1)
MF (t) dt = −γ +

C

y
+
(
%(1) + %(−1)

)

−
∫

|t|≥1

%(t)y2

t2(t2 + y2)
dt+

∫

|t|≤1

%(t)

t2 + y2
dt.

We then let y tend to infinity. The integral on the left-hand side tends, by domi-
nated convergence, to zero and so does the last term on the right-hand side. We
therefore obtain

∫

|t|≥1

%(t)y2

t2(t2 + y2)
dt→ −γ +

(
%(1) + %(−1)

)
as y →∞.

From this relation it follows that

(15)

∫

1≤|t|≤y

%(t)

t2
dt→ −γ +

(
%(1) + %(−1)

)
as y →∞.

Indeed,

∫

1≤|t|≤y

%(t)

t2
dt−

∫

|t|≥1

%(t)y2

t2(t2 + y2)
dt =

∫

1≤|t|≤y

%(t)

t2 + y2
dt+

∫

|t|≥y

%(t)y2

t2(t2 + y2)
dt

=

∫

1/y≤|s|≤1

%(sy)

sy

s

s2 + 1
ds

+

∫

|s|≥1

%(sy)

sy

1

s(s2 + 1)
ds.
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By Theorem 3.2 and the dominated convergence theorem (recalling that |%(t)| ≤
Const |t|), these two integrals tend to

∫

|s|≤1

b

π

s

s2 + 1
ds+

∫

|s|≥1

b

π

1

s(s2 + 1)
ds = 0.

Lemma 3.6. In the situation where MF (0) = 0 ,

∫

y≤|t|≤1

%(t)

t2
dt→ γ −

(
%(1) + %(−1)

)
as y → 0.

Proof. We substitute the value of C , given by Lemma 3.1, into relation (10)
and add it to the left-hand side. We divide by y and obtain

1

π

∫ ∞

−∞

MF (t)

t2
yt

t2 + y2
dt = −γ +

(
%(1) + %(−1)

)
+

∫

|t|≤1

%(t)

t2 + y2
dt

−
∫

|t|≥1

%(t)y2

t2(t2 + y2)
dt.

The integral on the left-hand side of this relation tends to zero as y tends to zero.
This is true by dominated convergence since the function MF (t)/t2 can be used
as an integrable majorant in view of Lemma 2.5. The last integral on the right-
hand side of the relation tends to zero as well; here one may simply use |%(t)/t4| ,
|t| ≥ 1, as an integrable majorant. We thus obtain

∫

|t|≤1

%(t)

t2 + y2
dt→ γ −

(
%(1) + %(−1)

)
as y → 0.

Furthermore,

∫

y≤|t|≤1

%(t)

t2
dt−

∫

|t|≤1

%(t)

t2 + y2
dt =

∫

y≤|t|≤1

%(t)y2

t2(t2 + y2)
dt−

∫

|t|≤y

%(t)

t2 + y2
dt

=

∫

1≤|s|≤1/y

%(sy)

sy

1

s(s2 + 1)
ds−

∫

|s|≤1

%(sy)

sy

s

s2 + 1
ds.

By Theorem 3.2 and dominated convergence we see that the above expression
tends to

(
lim
t→0

%(t)

t

)(∫

|s|≥1

1

s(s2 + 1)
ds−

∫

|s|≤1

s

s2 + 1
ds

)
= 0.

Therefore, ∫

y≤|t|≤1

%(t)

t2
dt→ γ −

(
%(1) + %(−1)

)
as y → 0

and the lemma is proved.
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Corollary 3.7. In the situation where MF (0) = 0 ,

∫ R

r

%(t) + %(−t)
t2

dt→ 0

as r → 0 and R→∞ .

The corollary follows by combining the lemma above with relation (15). In
the situation where MF (0) 6= 0, and thus % is zero in a neighbourhood of the
origin, the integral in the corollary converges to

(
%(1) + %(−1)

)
− γ +

∫

|t|≤1

%(t)

t2
dt.

The linear term γx in the Riesz representation of MF makes MF (x)/x2 inte-
grable on the real line. It is there to compensate for the inbalance of % . The
corollary expresses that, when MF (0) = 0, the overall inbalance of % , measured
by the integral in the corollary, is zero and thus does not involve γ .

4. Energy

In this section we shall find a good lower bound on the integral

∫ ∞

−∞

MF (t)−MF (0)

t2
d%(t).

We recall that this integral is convergent: the measure % is concentrated on the
set E where MF (t) = log |f(t)| (see (5)) so the integral is the same as

∫ ∞

−∞

log |f(t)| −MF (0)

t2
d%(t).

This integral is convergent in view of Proposition 2.2, relation (1) and the obser-
vation that % is zero in a neighbourhood of the origin if MF (0) 6= 0.

The lower bound is found by following a procedure involving a certain energy
integral. We begin by giving a short introduction to these integrals. We define L
as the set of real measures σ on the real line satisfying σ(R) = 0 and making the
double integral ∫ ∞

−∞

∫ ∞

−∞
log

1

|x− t| dσ(t) dσ(x)

absolutely convergent. This double integral is called the energy associated with
the measure σ . For such a measure we put

(16) uσ(x) =

∫ ∞

−∞
log

1

|x− t| dσ(t).
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In the recent paper [9] it is proved that one can define an inner product on the
space of uσ ’s by putting

〈uσ1 , uσ2〉 =

∫ ∞

−∞

∫ ∞

−∞
log

1

|x− t| dσ1(t) dσ2(x);

see Corollary 2.5 and Example 3.3 of [9]. The norm of uσ (considered as an element
of this inner product space) is thus the square root of the energy associated with σ .
We shall denote the Hilbert space, obtained by completion of this inner product
space, by H .

When σ has compact support, this inner product structure is mentioned in
some books on potential theory; see for example [8], but the assumption of compact
support is too restrictive for us.

We remark that an inner product space result, general enough for our purpose,
may be obtained in quite an elementary fashion. One could consider the space of
real-valued measurable functions ψ on the real line satisfying

|ψ(x)| ≤ Const

x2 + 1
a.e. on R,

and
∫∞
−∞ ψ(t) dt = 0. One may now show that 〈uψ1 dt, uψ2 dt〉 defines a semi inner

product on the uψ dt ’s. This can be done by bringing in the Riesz kernels (see for
example [8, p. 80])

kε(x) = |x|−ε, ε > 0,

known to be positive definite. Thus

0 ≤ 1

ε

∫ ∞

−∞

∫ ∞

−∞

1

|x− t|εψ(t)ψ(x) dt dx =

∫ ∞

−∞

∫ ∞

−∞

|x− t|−ε − 1

ε
ψ(t)ψ(x) dt dx.

We split this integral into one over the set where |x− t| ≤ 1 and one over the set
where |x− t| ≥ 1. In the first of these integrals we use, for ε < 1

2 ,

(|x− t|−ε − 1)/ε ≤ (− log |x− t|)|x− t|−1/2

and in the second we use
∣∣(|x− t|−ε − 1)/ε

∣∣ ≤ log |x− t|.

By letting ε→ 0, we obtain, by the dominated convergence theorem,
∫ ∞

−∞

∫ ∞

−∞
log

1

|x− t|ψ(t)ψ(x) dt dx ≥ 0.

The measures to which we shall apply these Hilbert space results are of the form
d(%n(t)/t) , where %n is the restriction of % to 1/n ≤ |t| ≤ n . Such restrictions
have all the properties mentioned above.
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For a positive measure µ on the real line satisfying dµ(t) ≤ Const dt and
normalized so that µ(0) = 0 we have

(17)

x

∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣d
(
µ(t)

t

)
=

∫

|t|≤r
log
∣∣∣1− x

t

∣∣∣ dµ(t)

+
µ(r)

r
x log

∣∣∣1− r

x

∣∣∣+
µ(−r)
r

x log
∣∣∣1 +

r

x

∣∣∣

− µ(r) log
∣∣∣1− x

r

∣∣∣+ µ(−r) log
∣∣∣1 +

x

r

∣∣∣

and

(18)

x

∫

|t|≥r
log
∣∣∣1− x

t

∣∣∣d
(
µ(t)

t

)
=

∫

|t|≥r

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
dµ(t)

+ µ(r)x

(
1

x
− 1

r

)
log
∣∣∣1− x

r

∣∣∣

− µ(−r)x
(

1

x
+

1

r

)
log
∣∣∣1 +

x

r

∣∣∣

+
µ(r) + µ(−r)

r
x.

These relations are found by partial integration. As an example

x

∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣d
(
µ(t)

t

)
= x

{∫

|t|≤r

1

t
log
∣∣∣1− t

x

∣∣∣ dµ(t)

−
∫

|t|≤r

µ(t)

t2
log
∣∣∣1− t

x

∣∣∣ dt
}
,

and here one should perform integration by parts on the second term, using

∫
1

t2
log
∣∣∣1− t

x

∣∣∣ dt =
1

x
log
∣∣∣1− x

t

∣∣∣− 1

t
log
∣∣∣1− t

x

∣∣∣.

Relation (17) follows. To obtain (18) one should proceed in the same way, using

∫
1

t2
log
∣∣∣1− x

t

∣∣∣ dt =

(
1

x
− 1

t

)
log
∣∣∣1− x

t

∣∣∣+
1

t
.

We shall now return to the investigation of the least superharmonic majorant.
It is convenient to define

(19) ∆(x) =
%(x) + %(−x)

x
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and

(20) Γ(r,R) =

∫

r≤|t|≤R

%(t)

t2
dt.

The Riesz representation of MF can be written as

(21)

MF (x) = MF (0)−
∫

|t|≤r
log
∣∣∣1− x

t

∣∣∣ d%(t)

−
∫

|t|≥r

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
d%(t) + x

(∫

r≤|t|≤1

1

t
d%(t)− γ

)
,

and, since

(22)

∫

r≤|t|≤R

1

t
d%(t) = Γ(r,R) + ∆(R)−∆(r),

we obtain from (17) and (18) the following corollary.

Corollary 4.1. For x ∈ R and r < 1 we have

MF (x) = MF (0)− x
∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)
− x

∫

|t|≥r
log
∣∣∣1− x

t

∣∣∣ d
(
%(t)

t

)

+ x

(
∆(r) log

r

|x| + ∆(1) + Γ(r, 1)− γ
)
.

We put

%n(t) =





%(−n)− %(−1/n), t ≤ −n,
%(t)− %(−1/n), −n ≤ t ≤ −1/n,
0, −1/n ≤ t ≤ 1/n,
%(t)− %(1/n), 1/n ≤ t ≤ n,
%(n)− %(1/n), n ≤ t,

and

un(x) =

∫ ∞

−∞
log

1

|x− t| d
(
%n(t)

t

)
.

It is not hard to see that un belongs to the Hilbert space H . Our aim is to show
(and then use) the property that some subsequence of the un ’s converges weakly
in H . The key to this is the following lemma. We denote by En the energy
associated with the measure d(%n(t)/t) ,

(23) En =

∫ ∞

−∞

∫ ∞

−∞
log

1

|x− t| d
(
%n(t)

t

)
d

(
%n(x)

x

)
.

The norm of un in H is the square root of this quantity En .
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Lemma 4.2. The energy En remains bounded as n tends to infinity.

Proof. First we rewrite un . We have, by definition and (18), with r = 1/n ,

(24)

un(x) = −
∫ ∞

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
%n(t)

t

)
−
∫ ∞

−∞
log |t| d

(
%n(t)

t

)

= − 1

x

∫ ∞

−∞

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
d%n(t)−

∫ ∞

−∞
log |t| d

(
%n(t)

t

)
.

According to (21) this implies

un(x) = − 1

x

{
−
∫

|t|≤1/n

log
∣∣∣1− x

t

∣∣∣ d%(t) + x

∫

1/n≤|t|≤1

1

t
d%(t)

−
∫

|t|≥n

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
d%(t)−

(
MF (x)−MF (0)

)
− γx

}

−
∫ ∞

−∞
log |t| d

(
%n(t)

t

)
.

Therefore, by relation (22),

(25)

un(x) =
MF (x)−MF (0)

x
+

1

x

∫

|t|≤1/n

log
∣∣∣1− x

t

∣∣∣ d%(t)

+
1

x

∫

|t|≥n

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
d%(t) + Γ(1, n) + ∆(n)−∆(1) + γ.

We have also used

(26)

∫ ∞

−∞
log |t| d

(
%n(t)

t

)
= −Γ(1/n, n) + ∆(1/n)−∆(n).

From (25) we first of all see that

(27) un(x)→ MF (x)−MF (0)

x

as n tends to infinity. This is because ∆(n) → 0 and Γ(1, n) → ∆(1) − γ as n
tends to infinity (see Theorem 3.2 and (15)). Furthermore, since a 7→ a+log |1−a|
is non-positive for |a| ≤ 1, we obtain

un(x)

x
≤ MF (x)−MF (0)

x2
+

1

x2

∫

|t|≤1/n

log
∣∣∣1− x

t

∣∣∣ d%(t)

+
1

x

(
Γ(1, n) + ∆(n)−∆(1) + γ

)
,
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for |x| ≤ n .
We now rewrite the energy En (in (23)) as

(28) En =

∫ ∞

−∞

un(x)

x
d%n(x)−

∫ ∞

−∞
un(x)

%n(x)

x2
dx.

The first term is equal to

∫

1/n≤|x|≤n

un(x)

x
d%(x)

and is therefore bounded from above by

(29)

∫

1/n≤|x|≤n

MF (x)−MF (0)

x2
d%(x)

+

∫

1/n≤|x|≤n

1

x2

∫

|t|≤1/n

log
∣∣∣1− x

t

∣∣∣ d%(t) d%(x)

+
(
Γ(1, n) + ∆(n)−∆(1) + γ

) ∫

1/n≤|x|≤n

1

x
d%(x).

The last term remains bounded as n tends to infinity; in fact it tends, by (15),
(22), Theorem 3.2 and the remarks following Corollary 3.7, to zero. Since log+ |1−
x/t| ≤ log(1 + |x/t|) , we find by Proposition 2.2 that the double integral in (29)

is less than or equal to 4
(
(A+ b)/π

)2
times

∫ n

1/n

1

x2

∫ 1/n

0

log

(
1 +

x

t

)
dt dx.

This integral can be estimated:

∫ n

1/n

1

x2

∫ 1/n

0

log

(
1 +

x

t

)
dt dx =

∫ n

1/n

∫ 1/nx

0

log

(
1 +

1

s

)
ds
dx

x

=

∫ 1

1/n2

∫ y

0

log

(
1 +

1

s

)
ds
dy

y

≤
∫ 1

0

∫ y

0

log

(
1 +

1

s

)
ds
dy

y

=

∫ 1

0

∫ 1

s

dy

y
log

(
1 +

1

s

)
ds

=

∫ 1

0

(− log s) log

(
1 +

1

s

)
ds,
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a finite quantity.
The first term in (29),

∫

1/n≤|x|≤n

MF (x)−MF (0)

x2
d%(x)

is bounded as n tends to infinity: indeed, since % is concentrated on the set E ,
where MF is equal to log |f | , it is equal to

∫

1/n≤|x|≤n

log |f(x)|
x2

d%(x)−
∫

1/n≤|x|≤n

MF (0)

x2
d%(x).

By Proposition 2.2 the first term is bounded by

A+ b

π

∫ ∞

−∞

log |f(x)|
x2

dx <∞.

The second term is non-positive since MF (0) ≥ 0 (it is bounded anyway). We
thus see that the first term in (28) remains bounded from above as n tends to
infinity.

We consider the second term in (28):

−
∫ ∞

−∞
un(x)

%n(x)

x2
dx =

∫ ∞

−∞

∫ ∞

−∞
log |x− t| d

(
%n(t)

t

)
%n(x)

x2
dx

=

∫ ∞

−∞

∫ ∞

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
%n(t)

t

)
%n(x)

x2
dx

+

∫ ∞

−∞
log |t| d

(
%n(t)

t

)∫ ∞

−∞

%n(x)

x2
dx.

The first term in the last member of this relation can be computed using the
corollary in Appendix B. Since, as already used in (26),

∫ ∞

−∞

%n(t)

t2
dt = Γ(1/n, n) + ∆(n)−∆(1/n),

we therefore get
∫ ∞

−∞

∫ ∞

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
%n(t)

t

)
%n(x)

x2
dx = 1

2

(
Γ(1/n, n) + ∆(n)−∆(1/n)

)2
.

Therefore

−
∫ ∞

−∞
un(x)

%n(x)

x2
dx = 1

2

(
Γ(1/n, n) + ∆(n)−∆(1/n)

)2

−
(
Γ(1/n, n) + ∆(n)−∆(1/n)

)2

= − 1
2

(
Γ(1/n, n) + ∆(n)−∆(1/n)

)2
,

a non-positive quantity (it is even bounded as n tends to infinity). We conclude
that the energy En remains bounded as n tends to infinity. The lemma follows.
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The lemma is used in the theorem below. There we shall also need an estimate
of the size of un . This is furnished by the following two lemmas.

Lemma 4.3. We have
∫

|t|≥r

∣∣∣∣log
∣∣∣1−x

t

∣∣∣+x

t

∣∣∣∣ dt ≤
(

Const+
(

1+
r

|x|
)

log
(

1+
|x|
r

)
+
(

1− r

|x|
)

log
∣∣∣1−|x|

r

∣∣∣
)
|x|,

where the constant is independent of r and x .

Proof. After a substitution s = t/x , the integral we wish to estimate is |x|
times

(30)

∫

|s|≥r/|x|

∣∣∣∣log
∣∣∣1− 1

s

∣∣∣+
1

s

∣∣∣∣ ds.

The function s 7→ 1/s + log |1 − 1/s| is negative for s < 0 and decreases there
from 0 to −∞ . On (0, 1) it is also decreasing from ∞ to −∞ and there is a
unique s0 ∈ (0, 1) such that 1/s0 + log |1− 1/s0| = 0. For s > 1, the function is
increasing and increases from −∞ to 0. Furthermore

(
(1− s) log

∣∣∣1− 1

s

∣∣∣
)′

= −
(

log
∣∣∣1− 1

s

∣∣∣+
1

s

)
.

A routine calculation of (30) yields, when |x| ≥ r/s0 ,
∫

|s|≥r/|x|

∣∣∣∣log
∣∣∣1− 1

s

∣∣∣+
1

s

∣∣∣∣ ds = −2 log
∣∣∣1− 1

s0

∣∣∣(1− s0)

+
(

1 +
r

|x|
)

log
(

1 +
|x|
r

)
+
(

1− r

|x|
)

log
∣∣∣1− |x|

r

∣∣∣.

When r ≤ |x| < r/s0 or when |x| < r we perform similar computations and the
lemma follows with a suitable choice of the constant.

Lemma 4.4.
∫

|t|≤1

∣∣∣∣log
∣∣∣1− x

t

∣∣∣
∣∣∣∣ dt ≤ Const + 2 log(1 + |x|).

Proof. We may assume that x is positive. The integral in question is equal
to ∫ 1

0

∣∣∣∣log
∣∣∣1− x

t

∣∣∣
∣∣∣∣ dt+

∫ 1

0

log
∣∣∣1 +

x

t

∣∣∣ dt.

The second integral in this expression equals (x+1) log(x+1)−x log x . To calculate
the first integral one should consider three different cases, namely x > 2, 1 < x < 2
and 0 < x < 1. If x > 2, the first integral equals x log x− (x− 1) log(x− 1). For
1 < x < 2 it has the value (x− 1) log(x− 1)−x log x+ 2x log 2, and for 0 < x < 1
the value −(1− x) log(1− x)− x log x+ 2x log 2. The lemma follows.
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Theorem 4.5. The following estimate holds
∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x) ≥

∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx.

Proof. We resort to a weak compactness argument in the Hilbert space H .
By Lemma 4.2, ‖un‖ remains bounded as n tends to infinity and hence a subse-
quence {unk} converges weakly to some element u of H . Therefore

‖u‖2 = lim
k
〈u, unk〉,

and also, for each k ,

〈u, unk〉 = lim
l
〈unl , unk〉 = lim

l

∫ ∞

−∞
unl(x) d

(
%nk(x)

x

)
.

We now claim that

lim
l
〈unl , unk〉 = lim

l

∫ ∞

−∞
unl(x) d

(
%nk(x)

x

)
=

∫ ∞

−∞

MF (x)−MF (0)

x
d

(
%nk(x)

x

)
.

This is true by dominated convergence. Indeed, as noted in (27), un(x) tends
pointwise a.e. to

(
MF (x) −MF (0)

)
/x . By (24), (22), (26) and Lemmas 4.3

and 4.4 we see that

|un(x)| =
∣∣∣∣
1

x

∫

1≤|t|≤n

(
log
∣∣∣1− x

t

∣∣∣+
x

t

)
d%(t) +

1

x

∫

1/n≤|t|≤1

log
∣∣∣1− x

t

∣∣∣ d%(t)

+

∫

1/n≤|t|≤1

1

t
d%(t) +

∫ ∞

−∞
log |t| d

(
%n(t)

t

)∣∣∣∣

≤ 1

|x|

∫

1≤|t|≤n

∣∣∣∣log
∣∣∣1− x

t

∣∣∣+
x

t

∣∣∣∣ d%(t) +
1

|x|

∫

1/n≤|t|≤1

∣∣∣∣log
∣∣∣1− x

t

∣∣∣
∣∣∣∣ d%(t)

+ |Γ(1, n) + ∆(n)−∆(1)|

≤ A+ b

π

{
Const +

(
1 +

1

|x|
)

log(1 + |x|)

+
(

1− 1

|x|
)

log
∣∣1− |x|

∣∣+
Const

|x| +
2 log(1 + |x|)

|x|

}
+ Const,

for all n , with constants independent of n . This may be used as a majorant of
|unl(x)| , integrable with respect to the measure |d(%nk(x)/x)| . The claim follows.
We have, furthermore,

∫ ∞

−∞

MF (x)−MF (0)

x2
d%nk(x) =

∫ ∞

−∞

MF (x)−MF (0)

x
d

(
%nk(x)

x

)

+

∫ ∞

−∞

MF (x)−MF (0)

x2

%nk(x)

x
dx.



Entire functions and logarithmic sums 375

As k tends to infinity, the integral on the left-hand side tends to

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x)

by dominated convergence. The first integral on the right-hand side tends to ‖u‖2 ,
which of course is non-negative, and the second to

∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx,

again by dominated convergence. The theorem is proved.

5. Computation of a certain integral

We wish to estimate the (convergent) integral

(31)

∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx

from below. We recall that it is convergent by Lemma 2.5, Proposition 2.2 and
the fact that % is zero close to the origin if MF (0) 6= 0. In this section we shall
compute (31). We use a procedure based on the second mean value theorem (see
for example [13, Section 12.3]) and the integration by parts method of Appendix B.

From Corollary 4.1 we have

MF (x)−MF (0)

x
= −

∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)
−
∫

|t|≥r
log
∣∣∣1− x

t

∣∣∣ d
(
%(t)

t

)

+ ∆(r) log

(
r

|x|

)
+ ∆(1) + Γ(r, 1)− γ.

The integral (31) is thus equal to

(32)

−
∫

r≤|x|≤R

%(x)

x2

∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)
dx

−
∫

r≤|x|≤R

%(x)

x2

∫

r≤|t|≤R
log
∣∣∣1− x

t

∣∣∣ d
(
%(t)

t

)
dx

−
∫

r≤|x|≤R

%(x)

x2

∫

|t|≥R
log
∣∣∣1− x

t

∣∣∣ d
(
%(t)

t

)
dx

+ ∆(r)

∫

r≤|x|≤R

%(x)

x2
log
( r

|x|
)
dx

+ Γ(r,R)
(
Γ(r, 1) + ∆(1)− γ

)
+ ε(r,R),
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where ε(r,R)→ 0 as r → 0, R→∞ . The first and the third term above tend to
zero in absolute value as r → 0, R→∞ . This is seen by using the second mean
value theorem: for δ < r we have a ξ ∈ [δ, r] , depending on δ , r and x ( |x| ≥ r ),
such that
∫ r

δ

log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)
= log

∣∣∣1− δ

x

∣∣∣
(
%(ξ)

ξ
− %(δ)

δ

)
+ log

∣∣∣1− r

x

∣∣∣
(
%(r)

r
− %(ξ)

ξ

)
.

Letting δ tend to zero, we get
∣∣∣∣
∫ r

0

log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)∣∣∣∣ ≤
∣∣∣∣log

∣∣∣1− r

x

∣∣∣
∣∣∣∣D(r),

where

D(r) = sup
|s|,|t|≤r

∣∣∣∣
%(s)

s
− %(t)

t

∣∣∣∣.

Since % is differentiable at 0 (by Theorem 3.2), D(r)→ 0 as r → 0. Similarly
∣∣∣∣
∫ 0

−r
log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)∣∣∣∣ ≤
∣∣∣∣log

∣∣∣1 +
r

x

∣∣∣
∣∣∣∣D(r),

and therefore
∣∣∣∣
∫

r≤|x|≤R

%(x)

x2

∫

|t|≤r
log
∣∣∣1− t

x

∣∣∣ d
(
%(t)

t

)
dx

∣∣∣∣

≤
(∫

r≤|x|≤R

∣∣∣∣
%(x)

x2

∣∣∣∣
∣∣∣∣log

∣∣∣1− r

x

∣∣∣
∣∣∣∣ dx+

∫

r≤|x|≤R

∣∣∣∣
%(x)

x2

∣∣∣∣
∣∣∣∣log

∣∣∣1 +
r

x

∣∣∣
∣∣∣∣ dx

)
D(r)

=

∫

r≤|x|≤R

%(x)

x2
log
∣∣∣1 + r/x

1− r/x
∣∣∣ dxD(r),

taking into account the sign of %(x)/x2 and of log |1±r/x| . We have, furthermore,
%(x)/x ≤ (A+ b)/π so

∫

r≤|x|≤R

%(x)

x2
log
∣∣∣1 + r/x

1− r/x
∣∣∣ dx ≤ A+ b

π

∫

|s|≥1

log
∣∣∣1 + s

1− s
∣∣∣ ds
s

=
A+ b

π

π2

2
,

where we have used the value

(33)

∫ 1

0

log

∣∣∣∣
1 + s

1− s

∣∣∣∣
ds

s
=
π2

4
,

and therefore the first term in (32) tends to zero. A similar argument shows that
the third term tends to zero as well. The second term is, by Proposition B.2 in
Appendix B, equal to

−
[
%(x)

x

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1− t

x

∣∣∣ dt
]

r≤|x|≤R
− 1

2
Γ(r,R)2.
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(Here [G(x)]r≤|x|≤R is short for
(
G(R)−G(r)

)
+
(
G(−r)−G(−R)

)
). We therefore

find∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx

= −%(R)

R

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1− t

R

∣∣∣ dt− %(−R)

R

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1 +

t

R

∣∣∣ dt

+
%(r)

r

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1− t

r

∣∣∣ dt+
%(−r)
r

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1 +

t

r

∣∣∣ dt

+ ∆(r)

∫

r≤|t|≤R

%(t)

t2
log

(
r

|t|

)
dt

+ Γ(r,R)
(
Γ(r, 1) + ∆(1)− γ

)
− 1

2Γ(r,R)2 + ε(r,R)

= −%(R)

R

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1− t

R

∣∣∣ dt− %(−R)

R

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1 +

t

R

∣∣∣ dt

+
%(r)

r

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1− r

t

∣∣∣ dt+
%(−r)
r

∫

r≤|t|≤R

%(t)

t2
log
∣∣∣1 +

r

t

∣∣∣ dt

+ Γ(r,R)
(

1
2Γ(r, 1) + ∆(1)− γ − 1

2Γ(1, R)
)

+ ε(r,R).

As r → 0, R → ∞ we find, by using substitutions of the form s = t/R , s = t/r
and by the dominated convergence theorem, that∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx

=

(
lim

t→±∞
%(t)

t

)2{∫

|s|≤1

log |1 + s| ds
s
−
∫

|s|≤1

log |1− s| ds
s

}

−
(

lim
t→0

%(t)

t

)2{∫

|s|≥1

log
∣∣∣1 +

1

s

∣∣∣ ds
s
−
∫

|s|≥1

log
∣∣∣1− 1

s

∣∣∣ ds
s

}

+ lim
r,R

Γ(r,R)
{

1
2Γ(r, 1) + ∆(1)− γ − 1

2Γ(1, R)
}
.

If MF (0) = 0 then Γ(r,R)→ 0 as r → 0, R→∞ (Corollary 3.7) and also
1
2Γ(r, 1) + ∆(1)− γ − 1

2Γ(1, R)→ 0

((15) and Lemma 3.6). If MF (0) > 0, the limit in the last line in the equation
above is equal to(∫

|t|≤1

%(t)

t2
dt+ ∆(1)− γ

)(
1

2

∫

|t|≤1

%(t)

t2
dt+

1

2
∆(1)− 1

2
γ

)
,

a non-negative quantity (see again (15)). Therefore
∫ ∞

−∞

MF (x)−MF (0)

x2

%(x)

x
dx ≥ π2

2

{(
lim

t→±∞
%(t)

t

)2

−
(

lim
t→0

%(t)

t

)2}
,

where we have again used (33), leading to the following theorem.
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Theorem 5.1. If MF (0) > 0 then

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x) ≥ b2

2
.

If MF (0) = 0 then

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x) ≥ b

2π

∫ ∞

−∞

log |f(t)|
t2

dt.

Proof. This follows from Theorem 4.5 and, in the case of MF (0) = 0,

(
lim

t→±∞
%(t)

t

)2

−
(

lim
t→0

%(t)

t

)2

=

(
b

π

)2

−
(
b

π
− 1

π2

∫ ∞

−∞

MF (t)

t2
dt

)2

=
1

π3

(
2b− 1

π

∫ ∞

−∞

MF (t)

t2
dt

)∫ ∞

−∞

MF (t)

t2
dt.

The quantity inside the parentheses is, by Lemma 2.5, ≥ b , and the integral
involving MF is, since MF is a majorant of log |f | , greater than or equal to the
logarithmic integral of f . The theorem is proved.

6. Obtaining the main result

We shall describe how to obtain the main results of this paper, based on
the properties of the least superharmonic majorant in the previous sections. In
this situation, the technical differences when comparing to [11] and to the two
papers [7] and [6] are relatively small and therefore we shall not give complete
proofs.

We let Λ denote an h -dense subset of the real line, having no finite accumu-
lation point. We shall furthermore suppose that 0 /∈ Λ and that Λ = {λn} (in
increasing order) is separated in the sense that

(34) λn+2 − λn ≥ h

for all n . For an entire function f of exponential type < π , the assumption

∑

λ∈Λ

log+ |f(λ)|
λ2

<∞

implies that f is of zero exponential growth on the real line; see [11].
Knowing this, we may reduce the problem to entire functions that are bounded

on the real axis, but of slightly larger exponential type, see [10, Section 7]. This is
based on a result about weighted approximation by sums of imaginary exponen-
tials, going back to de Branges; see for example [3, p. 215].

A further reduction can be made, based on the following lemma.
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Lemma 6.1. To any given α there is M > 0 such that for any g: Λ → C
satisfying

∑

λ∈Λ

log+ |g(λ)|
λ2

≤ α

we have ∑

λ∈Λ

log
(
1 + λ2|g(λ)|2/M

)

λ2
≤ 6α.

Taking now any entire function g , with logarithmic sum less than or equal to
some α and bounded on the real axis, we choose an entire function f of the same
type as g , with no zeros in the upper half-plane, and satisfying

f(z)f(z) = 1 + z2g(z)g(z)/M.

Here M is the number from the lemma above. We note that (after multiplication
by a suitable complex number) f has the properties

f(0) = 1, 1 ≤ |f(x)| ≤ Const (|x|+ 1),

mentioned and used in the previous sections.
For these functions f one can give a lower bound on the logarithmic sum in

terms of an integral involving the least superharmonic majorant of

F (z) =
1

π

∫ ∞

−∞

|y| log |f(t)|
|z − t|2 dt− b|y|.

As in [11] one has:

Theorem 6.2. Let A < T∗/h and f of exponential type ≤ A satisfy the
conditions above. If the parameter b is sufficiently small we have

∑

λ∈Λ, |λ|≥m

log |f(λ)|
λ2

≥ −Const
∑

λ∈Λ, |λ|≥m

1

λ2
+ Const

∫

|x|≥m

MF (x)

x2
d%(x).

Here the constants are positive and depend only on A , b and h .

The ideas of the proof are basically the same as in [11] and we shall not give
the proof here.

The integral in the above theorem can be estimated from below:
∫

|x|≥m

MF (x)

x2
d%(x) ≥

∫

|x|≥m

MF (x)−MF (0)

x2
d%(x)

=

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x)−

∫

|x|≤m

MF (x)−MF (0)

x2
d%(x)

≥
∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x)− A+ b

π

∫

|x|≤m

log |f(x)|
x2

dx.



380 Henrik L. Pedersen

The fact that MF (0) ≥ 0 is used in both the first and the last inequality. The
last inequality then follows since MF is equal to log |f | on the support of % and
since, by Proposition 2.2, d%(t) ≤

(
(A+ b)/π

)
dt . We thus see that for A < T∗/h

and b small enough we have, for certain constants,
∑

λ∈Λ

log |f(λ)|
λ2

≥ −Const
∑

λ∈Λ, |λ|≥m

1

λ2

+ Const

∫ ∞

−∞

MF (x)−MF (0)

x2
d%(x)

− Const
A+ b

π

∫

|x|≤m

log |f(x)|
x2

dx.

Here one should invoke Theorem 5.1 and one may now obtain the following compar-
ison result: if {fk} is any sequence of functions of exponential type ≤ A0 < T∗/h
satisfying the conditions above for which

∑

λ∈Λ

log |fk(λ)|
λ2

→ 0

then ∫ ∞

−∞

log |fk(x)|
x2

dx→ 0.

This is seen as in [6] and [7] (see also 11]). Once we have that, the main result,
Theorem 1.1, follows; see [10]. We may also prove:

Theorem 6.3. Any entire function f of exponential type less than T∗/h ,
having finite logarithmic sum over Λ , belongs to the Cartwright class.

7. Applications

In this section we describe a few applications of Theorem 1.1. They are
connected with weighted approximation theory and with the classical moment
problem on the real line.

We let Λ denote an h -dense sequence of the real line and suppose that we
are presented with a function W : Λ → [1,∞) , called a weight. We consider the
Banach space

CW = {ϕ : Λ→ C | |ϕ(λ)|/W (λ)→ 0 as |λ| → ∞}
with norm ‖ϕ‖ = supλ |ϕ(λ)|/W (λ) .

We denote by EA the set of entire functions of exponential type ≤ A and
bounded on the real axis. If W (λ) → ∞ as |λ| → ∞ then EA ⊆ CW for any
A > 0 and we put

WA(z) = sup{|h(z)| | h ∈ EA and ‖h‖ ≤ 1}.
We may think of WA as a lower regularization of W in terms of entire functions.
We have the following theorem.
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Theorem 7.1. Suppose that Λ is relatively h -dense and separated in the
sense of (34). For A < T∗/h , the space EA is dense in CW if and only if

(35)
∑

λ∈Λ

logWA(λ)

λ2 + 1
=∞.

The proof of this theorem follows the same lines as the proof of [10, Theo-
rem 9.1]. For the readers’ convenience we sketch the proof. That (35) is sufficient
for denseness of EA in CW is seen as in [3, p. 523]: if EA is not dense in CW then,
by the second theorem in [3, p. 174],

∫ ∞

−∞

logWA(x)

x2 + 1
dx <∞

(continuity of W plays no role in that part of the theorem). Therefore, as in [10,
p. 522],

logWA(λ) ≤ 2A+
1

π

∫ ∞

−∞

2

(λ− t)2 + 4
logWA(t) dt

so that

∑

λ∈Λ

logWA(λ)

λ2 + 1
≤
∑

λ∈Λ

2A

λ2 + 1
+

1

π

∫ ∞

−∞

∑

λ∈Λ

(
2

(λ− t)2 + 4

1

λ2 + 1

)
logWA(t) dt.

We have, furthermore,

∑

λ∈Λ

1

(λ− t)2 + 1

1

λ2 + 1
≤ Const

t2 + 1
.

This relation follows by replacing the sum by a suitable integral as indicated in the
proof of [10, Proposition 1.4] (one could estimate the sum over Λ by the sum over
all integers by choosing, for each λ , an integer nλ such that |λ− nλ| ≤ some c ,
where c does only depend on Λ and not on the particular λ . Separation of Λ is
needed in order to avoid too many repetitions among the integers nλ ). We thus
obtain that the sum in (35) converges. Theorem 1.1 is needed for the necessity
of (35). We suppose that the sum in (35) converges. We pick λ0 ∈ Λ set out to
show that the function δλ0 , 1 at λ0 and 0 elsewhere, cannot be approximated
in CW by functions from EA . Indeed, if fn ∈ EA and fn → δλ0 in CW then by
dominated convergence

∑

λ∈Λ

log+ |fn(λ)|
λ2 + 1

→
∑

λ∈Λ

log+ |δλ0(λ)|
λ2 + 1

= 0.
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(This is where convergence of the sum in (35) is used.) By Theorem 1.1, {fn} forms
a normal family and furthermore, to any given ε > 0, a certain subsequence {fnk}
converges u.c.c. to some entire function f of exponential type ≤ A + ε < π/h .
Since

f(λ) = lim
k
fnk(λ) = δλ0(λ), λ ∈ Λ,

we see that f is zero at all points of Λ except at λ0 where it takes the value 1.
This is a contradiction by [11, Lemma 4.2]. The theorem follows.

We give a similar application in the theory of the classical moment problem on
the real line. A positive Borel measure σ on the real line is said to have moments
of all orders if any polynomial is integrable with respect to σ . The set of such
measures we denote by M . The moments of σ ∈M is the sequence {sn} given
by

sn =

∫ ∞

−∞
xn dσ(x), n ≥ 0.

A measure σ is called indeterminate if there is another measure in M , different
from σ , having the same moments as σ . The following theorem is a discrete
analogue of a classical result of Krein.

Theorem 7.2. Suppose that Λ is relatively h -dense, for some h > 0 , and
that σ =

∑
Λ bλελ belongs to M . If

∑

λ∈Λ

log bλ
λ2 + 1

> −∞

then σ is indeterminate.

We may, almost exactly as above, prove that δλ0 is not in the closure of the
polynomials in any Lp(σ) space. The polynomials are therefore not dense in L1(σ)
and hence σ must be indeterminate; in fact it is not even an extreme point in the
convex set of positive measures having the same moments as σ . The theorem
generalizes earlier results on symmetric h -dense sequences, see [12].

Appendix A. A version of Kolmogorov’s theorem
on the harmonic conjugate

We suppose that u is a real-valued function satisfying

∫ ∞

−∞

|u(t)|
t2

dt <∞.

We put

H(u)(x) = lim
y→0+

1

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

1

t

)
u(t) dt
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and we set out to verify the inequality

(36)

∫

{|H(u)(x)|>λ}

dx

x2
≤ 4

λ

∫ ∞

−∞

|u(t)|
t2

dt

for λ > 0.
Let us first assume that u ≥ 0 on R . We consider the analytic function

F (z) =
i

π

∫ ∞

−∞

(
1

z − t +
1

t

)
u(t) dt

in the upper half-plane. We find

ReF (x+ iy) =
1

π

∫ ∞

−∞

y

(x− t)2 + y2
u(t) dt,(37)

and

ImF (x+ iy) =
1

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

1

t

)
u(t) dt.(38)

First of all, ReF is non-negative. This is the main reason for assuming u ≥ 0.
For fixed λ > 0 we consider the auxiliary function

f(z) = 1 +
F (z)− λ
F (z) + λ

.

This function is again analytic in the upper half-plane and it is bounded by 2
there. Therefore we have the Poisson representation

f(z) =
1

π

∫ ∞

−∞

yf(t)

|z − t|2 dt,

involving the boundary values of f (see for example [3, p. 59]). In particular,

(39)
1

π

∫ ∞

−∞

f(t)

t2 + y2
dt =

f(iy)

y
=

2F (iy)

y

1

F (iy) + λ
.

In view of the relations (37) and (38) we find

ReF (iy)

y
=

1

π

∫ ∞

−∞

u(t)

t2 + y2
dt→ 1

π

∫ ∞

−∞

u(t)

t2
dt

as y → 0+ , by dominated (or, for that matter, monotone) convergence, and

ImF (iy)

y
=

1

π

∫ ∞

−∞

u(t)y

t(t2 + y2)
dt→ 0
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as y → 0+ . Here we have again used dominated convergence, since the integrand
is bounded by 2|u(t)|/t2 . From relation (39) we thus find

(40)
1

π

∫ ∞

−∞

Re f(t)

t2 + y2
dt→ 2

πλ

∫ ∞

−∞

u(t)

t2
dt,

as y → 0+ .
The linear fractional transformation

T : w 7→ 1 +
w − λ
w + λ

maps the right half-plane onto the disk of radius 1 centered at 1. It takes the
points of the closed right half-plane of absolute value ≥ λ onto those points of the
closed disk that have real part ≥ 1. For almost all t ∈ R ,

ReF (t+ iy)→ u(t)

and

ImF (t+ iy)→ H(u)(t)

as y → 0+ . So, since f(z) = T
(
F (z)

)
, we must have Re f(t) ≥ 0 for almost all

real t , and furthermore

(41) {t | |H(u)(t)| ≥ λ} ⊆ {t | |u(t) + iH(u)(t)| ≥ λ} ⊆ {t | Re f(t) ≥ 1}.
By monotone convergence,

∫ ∞

−∞

Re f(t)

t2 + y2
dt→

∫ ∞

−∞

Re f(t)

t2
dt,

as y → 0, so that by (40),
∫ ∞

−∞

Re f(t)

t2
dt =

2

λ

∫ ∞

−∞

u(t)

t2
dt.

Finally, by (41) we see that
∫

{|H(u)(t)|≥λ}

dt

t2
≤
∫

{Re f(t)≥1}

dt

t2
≤
∫ ∞

−∞

Re f(t)

t2
dt

and we have thus verified the inequality (36), with 2 in place of 4, for non-negative
functions u .

When u is real-valued, we split it into positive and negative parts, u =
u+ − u− , and observe that H(u) = H(u+)−H(u−) . Therefore

{t | |H(u)(t)| ≥ λ} ⊆ {t | |H(u+)(t)| ≥ 1
2λ} ∪ {t | |H(u−)(t)| ≥ 1

2λ}
and we now use the inequality that we obtained for non-negative functions. The
inequality (36) is now verified since |u| = u+ + u− .
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Appendix B. An integration by parts formula

We are given a positive measure µ on the real line satisfying

(42) dµ(t) ≤ Cdt

everywhere. The distribution function µ(t) is normalized so as to have µ(0) = 0.
For given positive numbers r and R (r < R) we define

H(t) =

∫

r≤|x|≤R

µ(x)

x2
log |t− x| dx,

h(t) =
1

t

∫

r≤|x|≤R
log

∣∣∣∣1−
t

x

∣∣∣∣d
(
µ(x)

x

)
.

Lemma B.1. The function h is locally integrable on the real line and

∫ t

0

h(s) ds = H(t)−H(0) + ψ(t),

where

ψ(t) =

[
µ(x)

x

∫ t

0

1

s
log

∣∣∣∣1−
s

x

∣∣∣∣ ds
]

r≤|x|≤R
.

The square brackets mean that we evaluate the differences of the function
inside at the endpoints of each of the indicated intervals and then add these differ-
ences. The proof of this lemma is a simple application of Fubini’s theorem followed
by partial integration and we shall not give it here.

Proposition B.2. We have
∫

r≤|x|≤R

∫

r≤|t|≤R
log

∣∣∣∣1−
x

t

∣∣∣∣d
(
µ(t)

t

)
µ(x)

x2
dx

=

[
µ(x)

x

∫

r≤|t|≤R

µ(t)

t2
log

∣∣∣∣1−
t

x

∣∣∣∣ dt
]

r≤|x|≤R
+

1

2

(∫

r≤|t|≤R

µ(t)

t2
dt

)2

.

Proof. By Fubini’s theorem followed by Lemma B.1,
∫

r≤|x|≤R

∫

r≤|t|≤R
log

∣∣∣∣1−
x

t

∣∣∣∣d
(
µ(t)

t

)
µ(x)

x2
dx

=

∫

r≤|t|≤R
H(t) d

(
µ(t)

t

)
−
∫

r≤|t|≤R
log |t| d

(
µ(t)

t

)∫

r≤|x|≤R

µ(x)

x2
dx

=

∫

r≤|t|≤R

∫ t

0

h(s) ds d

(
µ(t)

t

)
+H(0)

∫

r≤|t|≤R
d

(
µ(t)

t

)

−
∫

r≤|t|≤R
ψ(t) d

(
µ(t)

t

)
−
∫

r≤|t|≤R
log |t| d

(
µ(t)

t

)∫

r≤|x|≤R

µ(x)

x2
dx.
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Integration by parts gives us

∫

r≤|t|≤R

∫ t

0

h(s) ds d

(
µ(t)

t

)
=

[
µ(t)

t

(
H(t)−H(0) + ψ(t)

)]

r≤|t|≤R

−
∫

r≤|t|≤R

µ(t)

t2

∫

r≤|x|≤R
log

∣∣∣∣1−
t

x

∣∣∣∣d
(
µ(x)

x

)
dt.

The last term on the right-hand side of this equation is the same integral as the
one we started to compute. We therefore find that

2

∫

r≤|x|≤R

∫

r≤|t|≤R
log

∣∣∣∣1−
x

t

∣∣∣∣d
(
µ(t)

t

)
µ(x)

x2
dx

=

[
µ(t)

t

(
H(t)−H(0) + ψ(t)

)]

r≤|t|≤R
+H(0)

∫

r≤|t|≤R
d

(
µ(t)

t

)

−
∫

r≤|t|≤R
ψ(t) d

(
µ(t)

t

)
−
∫

r≤|t|≤R
log |t| d

(
µ(t)

t

)∫

r≤|x|≤R

µ(x)

x2
dx

=

[
µ(t)

t
H(t)

]

r≤|t|≤R
+

∫

r≤|t|≤R
ψ′(t)

µ(t)

t
dt

−
∫

r≤|x|≤R

µ(x)

x2
dx

{[
(log |t|)µ(t)

t

]

r≤|t|≤R
−
∫

r≤|t|≤R

µ(t)

t2
dt

}

=

[
µ(x)

x

(∫

r≤|t|≤R

µ(t)

t2
log

∣∣∣∣1−
t

x

∣∣∣∣ dt+H(x)

)]

r≤|x|≤R

−
∫

r≤|x|≤R

µ(x)

x2
dx

{[
(log |t|)µ(t)

t

]

r≤|t|≤R
−
∫

r≤|t|≤R

µ(t)

t2
dt

}

= 2

[
µ(x)

x

∫

r≤|t|≤R

µ(t)

t2
log

∣∣∣∣1−
t

x

∣∣∣∣ dt
]

r≤|x|≤R
+

(∫

r≤|x|≤R

µ(x)

x2
dx

)2

.

The result follows.

This proposition is used in both Section 4 and 5. We give a corollary suitable
for the use in Section 4.

Corollary B.3. If µ satisfies the condition (42) and if, furthermore, µ is
zero close to the origin and µ(t) is constant for |t| large enough then

x 7→
∫ ∞

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)
µ(x)

x2

is integrable on the real line and

∫ ∞

−∞

∫ ∞

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)
µ(x)

x2
dx =

1

2

(∫ ∞

−∞

µ(x)

x2
dx

)2

.
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Proof. The assumptions on µ assure integrability on the real line and thus
that the double integral in question equals

(43)

ε(R) +

∫

|x|≤R

∫

|t|≤R
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)
µ(x)

x2
dx

+

∫

|x|≤R

∫

|t|≥R
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)
µ(x)

x2
dx,

where ε(R)→ 0 as R→∞ . To estimate the second integral in this relation, one
should use the second mean value theorem (see for example [13, Section 12.3]). By
that theorem one obtains, for |x| ≤ R ,

∣∣∣∣
∫ ∞

R

log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)∣∣∣∣ ≤
∣∣∣∣log

∣∣∣1− x

R

∣∣∣
∣∣∣∣δ(R),

where δ(R) is the supremum of |µ(t)/t− µ(s)/s| when |s|, |t| ≥ R . Similarly,
∣∣∣∣
∫ −R

−∞
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)∣∣∣∣ ≤
∣∣∣∣log

∣∣∣1 +
x

R

∣∣∣
∣∣∣∣δ(R),

so that∣∣∣∣
∫

|x|≤R

∫

|t|≥R
log
∣∣∣1− x

t

∣∣∣ d
(
µ(t)

t

)
µ(x)

x2
dx

∣∣∣∣ ≤ δ(R)

∫

|x|≤R
log

∣∣∣∣
1 + x/R

1− x/R

∣∣∣∣
µ(x)

x2
dx.

The integral on the right-hand side remains bounded as R→∞ because of (42).
Since µ(t) is constant for |t| large, δ(R) tends to zero. The second double integral
in (43) tends to zero. The first double integral in (43) is, by Proposition B.2, equal
to [

µ(x)

x

∫

|t|≤R

µ(t)

t2
log

∣∣∣∣1−
t

x

∣∣∣∣ dt
]

|x|≤R
+

1

2

(∫

|t|≤R

µ(t)

t2
dt

)2

.

(One may take r = 0 there since µ is supposed to vanish close to the origin.) As
R tends to infinity, the second term tends to

1

2

(∫ ∞

−∞

µ(t)

t2
dt

)2

,

again by the assumptions on µ . The first term is equal to

µ(R)

R

∫

|t|≤R

µ(t)

t2
log

∣∣∣∣1−
t

R

∣∣∣∣ dt+
µ(−R)

R

∫

|t|≤R

µ(t)

t2
log

∣∣∣∣1 +
t

R

∣∣∣∣ dt,

and this tends to zero as well. Indeed, µ(±R)/R→ 0 and
∫

|t|≤R

µ(t)

t2
log

∣∣∣∣1±
t

R

∣∣∣∣ dt =

∫

|s|≤1

µ(sR)

sR
log |1± s| ds

s
→ 0

by (42) and dominated convergence. The corollary follows.
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