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Abstract. We show that if D C R"™ is open, f: D — R"™ is continuous, open and discrete
such that for some h > 0 the linear dilatation satisfies h(z, f) < h for every x € D, then f is
K (h,n)-quasiregular. Here “lim inf” is used in the definition for h(z, f). A removability result on
quasiregular mappings is obtained, and we enlarge the notion of the discrete modulus introduced
by J. Heinonen and P. Koskela in [7]. We also give some bounds for the discrete modulus.

1. Introduction

In a recent paper [7], J. Heinonen and P. Koskela showed that if f: R” — R"
is a homeomorphism such that for some h > 0, h(z,f) < h holds for every
x € R", then f is K(h,n)-quasiconformal. Here

L(th?'r) = Ssup ’f(y) - f(SC)|,

ly—al=r

l(a:,f,r) = inf ’f(y)_f(x”a

ly—z|=r

h(z, f) = li£nj61f %,

H(w, f) = lim sup 257

r—0 l(a:,f,r) ‘

This generalizes the classical result which says that f is quasiconformal if H (z, f)
is uniformly bounded. In [3] we introduced the inferior linear dilatation h(z, f)
for mappings f: D — R™, D C R" open, f continuous, open and discrete, and
we studied some properties of such mappings. We show now that if D C R" is
open, n > 2, f: D — R™ is continuous, open and discrete such that there exists
h > 0 such that h(z, f) < h for every € D, then f is K(h,n)-quasiregular and
H(z, f) = h(z, f) a.e.in D. In this way, the problem of finding the best constant
of quasiregularity K (h,n) is reduced to the classical case when H(z, f) < H for
every x € D.

A removability result of J. Heinonen and P. Koskela [7] shows that if n > 2,
f: R™ — R" is a homeomorphism such that there exists a closed set H C R"™ such
that f is K-quasiconformal on R™\ H and a > 1 such that for every = € H there
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exists a sequence r; — 0 depending on z such that (B(z,ar;)\B (z,r;))NH =0
for every 7 € N, then it follows that f is K -quasiconformal. We shall show that if
D Cc R™isopen, n > 2, f: D — R" is continuous such that there exists H C D
closed in D such that f is K-quasiregular on D\ H and there exists 0 < a < 1
and # = (B;)ien an a-porous base of H, then, if f is open and discrete or if
int f(H) = 0, it follows that f is K-quasiregular on D. Here, if D C R™ is open,
n>2 ACD,0<a<1,and # = (B;)ieN is a covering of A, we say that &
is an a-porous covering of A if (B;\ aB;)N A = { for every i € N and we say
that Z is an a-porous base of A if % is an a-porous covering of A and for every
r € A and U € V(x), there exists i € N such that x € B; C U.

We showed in [5] that if D C R™ is open, n > 2, f: D — R™ is con-
tinuous, open and discrete such that there exists 0 < a < 1 and H > 0 with
limsupr_@d(f(B(a:,ar)))n/,un(f(B(x,r))) < H for every © € D, then f is
K(H,n,a)-quasiregular. We shall partially generalize this result, giving at the
same time a generalization of the removability result of J. Heinonen and P. Koskela
from [7]. We show that if D C R™ is open, n > 2, f: D — R" is continuous,
open and discrete, there exists K C D and h,t > 0 such that for every z € D\ K,
liminf, g d(f(B(x,r)))n/un(f(B(x,r))) < h, and there exists 0 < a < 1 and
% = (B;)ien an a-porous base of K such that d(f(aB;))"/un(f(B;)) <t for
every i € N, then it follows that f is K (h,t,n)-quasiregular and Ko(f) <V,,-H,
where H = max{h,t}.

As in [7], the principal instrument used in proving such theorems is the new
discrete modulus introduced by J. Heinonen and P. Koskela. We give a slightly
modified version of this notion, and obtain bounds for this class of discrete mod-
ulus. For these bounds we modify some covering theorems from [10] and, for the
sake of completeness, we give a detailed proof of one of them (Theorem 3).

We use the notation from [15], [9] and [12]. If f: D — R"™ is a map, D C R"”
is open, x € D, U(x, f,r) is the component of f_l(B(f(x),r)) containing x.
For D C R™ open and f: D — R™ a map, we say that f is discrete if f~!(y)
is isolated for every y € R™, and we say that f is light if f~!(y) is a set of
topological dimension zero for every y € R"™.

For z € R" we denote by |z| = (31, x?)l/Q, and if A,B C R"™, we
denote by d(A) = sup, ,cal|r —y| and by d(A,B) = infyca yeplr —y|. If
A€ LR",R"), let [A| = sup,_; |[A(h)], and I(A) = inf =1 |A(h)].

If DcC R" is a domain, n > 2, and f: D — R" is a map, we say that f is
quasiregular if f is ACL"™ and there exists K > 1 such that |f'(z)|" < K - J¢(z)
a.e. in D. For a quasiregular map we also have Jf(z) < K’ - l(f’(x))n a.e. in
D for some K’ > 1, and we denote by Ky(f) the smallest K > 1 such that
|f'(x)|" < K- Jg(z) ae in D, and by K;(f) the smallest K > 1 such that
Ji(x) < K- l(f’(ac))n a.e. in D. We say that a quasiregular map f: D — R",
n > 2, is K-quasiregular if Ko(f) < K, K;(f) < K.
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If T is a path family, we denote by
F() = {p: R" — [0, 00] a Borel map : /pds > 1 for every v € I'}
2l

and by M(I') = inf ,c p(ry [gn P (2) dz.

If E,F ¢ R", D C R" is open such that EUF C D, let A(E,F,D)
be those paths, open or not, which join F with FF in D. If f: D — R" is a
map, we let N(f, D) = sup,cgn Card f~'(y). A domain A C R" is a ring if
C'A has exactly two components, Cy and C;, and we denote A = R(Cy,C1),
Co being bounded, and I'y = A(Cy,Cq,A). For r > 0, let ®,,(r) be the set of
all rings A = R(Cp,C1) in R" such that 0 € Cy and there exists a € Cy with
la| = 1 and such that co € C7, and there exists b € C; with |b] = r, and we let
€ (r) =inf M (T 4), the infimum being taken over all rings A € ®,,(r). We denote
by V., the volume of the unit ball in R™, by u, the Lebesgue measure in R™ and
by w,_1 the area of the unit sphere from R™. For 0 < a < XA < 1, we write
N(a,\) =2K - (4/X-(A—a))", where K = [log $(1 —a)/log\]+1. For £ > 0 we
let N(g) = (3+&)"-(2(2+¢))". In[10, p. 29] the following lemma is proved: There
exists a positive integer B(n) such that if aq,...,ax € R, r1,...,7% € (0,00),
a; ¢ B(aj,r;) for i # 3, 4,5 =1,...,k and ﬂle B(a;,r;) # 0, then it follows
that & < B(n). Throughout this paper we shall denote by B(n) the number from
this lemma.

2. Preliminaries

Theorem 1. Let D C R"™ be open, A C D closed in D and such that A is
bounded or A = D, % a collection of balls from D such that every ball from %
is of the form B(x,r) with z € A and r € I, C R with

(a) 0 € I, for every x € A,

(b) if z, € A, 7, € I, for k€N, 2, — x, 7,, — 7 and B(z,r) C D,

then r € I,.
Then there exists an at most countable collection of balls (B;);en such that B; =
B(xi, 1) € B fori e N, AC ;o Bi, 1 > 41 and xy, ¢ U;’ilﬂ.#k B; fork>1.
Hence every point from A belongs to at most B(n) balls and %Bi N %Bj = () for
i, jEN, i#j.

Theorem 2. Let D C R™ be open, A C D such that either A is bounded
or A = D, % a collection of balls from D such that every ball B € £ is
of the form B = B(z,r) with x € A and r € I, C R, such that 0 € I
for every x € A. Then, for every ¢ > 0 there exists an at most countable
collection of balls (B;);en such that B; = B(z;,1;) € # fori € N, A C |J;2, Bi,
Bi/(24+¢e)NB;/(2+¢) =0 for i,j € N, i # j and every point from A belongs
to at most N(g)- B(n) balls B;.
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Theorem 3. Let D C R™ beopen, AC D, 0 <a <1 and # = (B;)ien
an a-porous covering of A. Then, if A is bounded or if A = D and % is an
a-porous base of A, for every 0 < a < A < 1 we can find € = (B;,)keN a
subcovering of A such that every point from A belongs to at most N(a,\) balls
B;, and 1(A—a)B;, N1(A—a)B;, = 0 for k,l € N, k # |, where N(a,)\) =

k- (4/AX(X\—a))™, with k = [log 1(1 — a)/logA] + 1.

Proof. We suppose first that A is bounded. Hence we can suppose that
M = sup;cn i < 00, where B; = B(x;,1;) for i € N. Let 0 <a <A <1 and

Ay ={z € A |there exists i € N and A\M <r; <M
such that B(z;,r;) € # and x € B(z;,r;)}.

If Ay # 0, we take 217 € D and AM < p1; < M such that B(x11,p11) € @
and AﬂB(IH,pH) 7& @ If A1 ¢ B(QL‘ll,p11>, we take T12 € D and A\M <
P12 S M such that B(l‘lg,plg) S % and (Al \ B($11,p11)) N B(.Tlg,plg) % @
If Ay ¢ B(x11,p11) U B(212, p12), we continue the process and we show that this
process must end in a finite number of steps. Indeed, let B(x;,7;), B(x;,7;)
be two balls which cover A; obtained as before. Then there exists a point x €
A such that = € B(z;,7;) \ B(zi,r;), hence |z — z;| < ar; < aM (because
(B(zj,7j) \ B(zj,ar;)) NA=0) and |z — z;| > r; > AM, which implies that

|z; — x| > |z — 23] — |x — 25| > (A —a)M.

Let p = 5(A — a) and suppose that there exists a point z € B(xz;, pr;)NB(z;, pr;) .
Then 2pM > prj + priy > |x; — 2| + |z; — 2| > |x; — x| > (A — a)M , which rep-
resents a contradiction. It follows that B(z;, 3(A —a)r;) N B(zj, 2(A — a)r;) =
0. Using the boundedness of A we can find m(1) € N,z11,...,Z1,0) € D,
real numbers pi1,...,p1m) € (AM,M] such that B(xy,py) € % for [ =

1,...,m(1), (A \UZ B(zu,pu)) N Bz, p1r) # 0 for k= 2,...,m(1) and
A C U;Z(ll)B(xll,pll). Also, a point from A; may belong to at most m =
(4/A(X — a))n balls B(z1, p1;). Indeed, let B(x14, p1;) be a fixed ball of this type

and suppose that it is intersected by m balls B(z1j,7r1;), j € C C {1,...,m(1)}.
Then every such ball is contained in B(z1;,2M); hence

Vo - (2M)" = pn (B(21:,2M)) Z“”(( I”’%(A_a)plj)>

jecC

2Vn-m-2in(()\—a)-)\M))n

and this implies that m < (4/ (X — a))n. We have completed the first step of our
inductive process.
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At step j, we take

j—1m(k)
A= {x € A\ U U B(zi,p1)| there exists i € N
k=1 1=1

and MM < r; < M~ M such that B(x;,7;) € % and € B(xi,ri)}.

If A; #0, wetake zj; € Aj and M-M < pj1 < M ~1-M such that B(z;1,pj1) € B
and A; N B(z;1,pj1) #0. If A; ¢ B(z1,pj1), we continue the process from step
j,and if A; ¢ Ué:ll B(zji,pj1), we take xjp € D and M - M < pjp < M1 M
such that B(zjx, pjr) € % and (4;\ U;:ll B(zji, pj1)) N B(xjk, pjr) # 0.

Using the boundedness of A;, we see as in step 1 that this process must
end in a finite number of steps. Hence we find m(j) € N, z;1,.. :ij(J) €D,
Pits- s Pim() € (M - M, N1 M] such that B(xji, pji) € %’ l=1,...,m(y),

(47U Blagom) ) 0 Blase, o) £9

for k=1,...,m(j) and A, C Um(a) B(zj1, pj1)-

The process will have an infinite number of steps. We show that A C
U= 1Um(])B(:1:]l,pjl). Indeed, if this is not true, we can find a point = €
A\ U‘7 1 Um(J B(zji, pji). Since (B;)ien is a covering of A, we can find i € N

such that z € B; and j € N with M - M < r; < M~!. M. Using the def-
inition of A;, we obtain that x € A;, which represents a contradiction, since

z ¢ " (1]) B(xj,pj1) and we proved that A; C Umm B(zji, pj1). It follows that

AcC UJ 1 Um(‘7 B(xji, pji) -

Let now k € N be such that a < —2\¥+1. We show that two balls B(x;;, pi1),
B(zjq,piq), 1 € {1,...,m()}, ¢ € {1,...,m(j)} with j —i —1 > k cannot
have a common point from A. Indeed, suppose that this is not true and pick
two balls as before, B(zi;, pi), B(xjq,pjq), with j —i —1 > k such that there
exists a point x € AN Bz, pa) N B(xjq, pjq). From the construction of the
balls B(zk, pri) we can find a point z € (A \ B(xil,pu)) N B(xjq, pjq), and since
AN (B(a:il,pil) \E(xil,a-pil)) = (), we see that the point z € B(z;,a-p;;). Then
2M - N7 > 2p > v — 2| > (1 —a)puy > (1 —a)M - X, and hence (1 —a) <
N7 < 2F e, a > —2X\F 4+ 1, which contradicts the way we chose k. It follows
that if j —i—1 > k, then any two balls B(x, pit), B(zjq,pjq) With j—i—1>k
cannot have a common point with A. Since we showed that any point from A;
can belong to at most (4/)\()\ - a))n balls B(zji,pj), 7 € N, I =1,...,m(j),
it follows that any point from A can belong to at most 2k - (4/A(X — a))n balls
B(zi,pu), i € N, 1 € {1,...,m(i)}, where k = [log 3(1 —a)/logA] + 1. As in
step 1, we show that 1(A —a)- B(ziy, pu) N 3(A —a) - B(zjq, pjq) = 0, for i # j,
le{l,...,m(i)}, ¢€{1,...,m(j)} and the theorem is proved if A is bounded.

If A= D and &% is an a-porous base of A, we leave the proof to the reader.
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3. Discrete modulus. Bounds for discrete modulus

We shall use, now in a slightly enlarged form, the concept of the discrete
modulus introduced by J. Heinonen and P. Koskela in [7]. If D C R™ is open and
PB = (B;)ieN is a covering with balls of D, we say that % is a (A, p)-covering
of D if every point of D belongs to at most A balls B; and uB; N uB; = 0 for
i,j € N, i # j and 0 < g < 1. From Theorem 1, we always have (B(n), %)
coverings of an open set D C R"™; hence we always have (\, u)-coverings of an
openset D CR" if A> B(n), 0 <pu < %, and we denote by F(\, u, D) all the
(X, p)-coverings of the open set D from R™. If = %' U---U%B™ is a covering
with balls of D, 0 < < 1, D open in R*, #* = (BF);en, k=1,...,m, such
that every point from D belongs to at most A balls BF for k = 1,...,m, and
for every k € {1,...,m}, we have uBF ﬂ/VLBJ’-c =0, i,7 € N, 1 # j, we say that
A is a (m, A\, p)-covering of D and we denote by E(m, A, u, D) all the (m, A, pu)-
coverings of D. In this definition it is possible that some families of balls %°,
7 are the same. If T is a path family such that Im~ C D for every v € I' and
P = (B;)ien is a collection of balls from D, a subcollection o/ = (B;);e; with
I ¢ N will be called a chain of balls from the collection % along the path ~ if
ImyNB; #0 for every i € I and Im~ C {J;; Bi-

Let now m,A € N, 0 < u<1, B=B'U---B™ B c E(m,\,u,D) and
v B* — [0,00) be set functions which assign to each ball B¥ € #* a positive
number for kK =1,...,m. We say that v = (v1,...,0,) is (m, A, u, D)-admissible
for the (m, A, u) covering of D,

%:(Bi%eNa %=%1U"'U%m, %k:(Bi)iejk, kzl,...,m
and for the path family I' such that Im~ C D for every v € T, if
> > w(B)=1,
k=1liclnI

for every &/ = (B;)icr chain of balls along some path v € I'. We denote by
Fnau,p)(#,T) the class of all (m, A, p, D)-admissible m-tuples of set functions
v = (v1,...,0y) for the collection B € E(m,\, u, D) and the path family I". For
0 > 0 we denote by

§ = Mod( p(T) =inf Y > > (B,
BEE(m,\,1,D) v=(v1,...;0m ) EF (s x u,p)(B,T) k=11i€I})
where the infimum is taken along all the collections
%€ E(m,\u,D), B=B"0---UB™, B=(Biien, B =(Biicr,

k=1,...,m, and all the (m, A, u, D)-admissible m-tuples of set functions v =
(V1,3 Vm) € Flnau,p)(%,T), D being any open set in R™ such that Imy C D
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for every v € I' and d(B;) < 6 for i € N. The function 6 — 6 —Mod,;, » ) (%, T)
is clearly decreasing; hence it has a limit in 0 and we denote by Mod ,, x ) (') =
lims .o 0—Mod 1 ) (I') and call the number Mod, » ,,)(I') the (m, A, u) discrete
modulus of the path family I". Of course, this notion has sense if E(m, \, u, D) #
f. For A > B(n) and 0 < p < 1, m € N, the (m,\, p) discrete modulus
is defined. For m = 1 we note Mody ,)(I') instead of Mod x ,)(I') and by
Fiau,0)(#,T) instead of F(q 5, p)(%,1') for Z € E(\ p, D).

Using the method from [7], we can prove the following relation between the
classical modulus and the (m, A, u) discrete modulus:

Theorem 4. Let I' be a path family in R™. Then there exists a constant
R(n,m,u) such that M(T') < R(n,m,u) - Modm ) ('), where R(n,m,u) =

V, -2 (37/(u(n—1))" -m- n)n_l

Theorem 5. Let n>2, D C R"™ beopen, K C D, f: D — R"™ continuous
such that there exists h > 0 with

lim inf d(f(B(.r,r)))n
r—0 ,Un(f(B(xar)))

for every x € D\ K and N(f,D) <oc. If K =10, for E,F CD , we have
un(f(D)
d(f(E), f(F))"

If K+#0, D is bounded and there exists t > 0 and 0 < a < 1 such that for an
a-porous base of K, % = (B(x;, Ti))ieN the inequality

d(f(a - B(x, ri)))n
Hn (f(B(xu Tz)))

holds for © € N, then, for every ¢ >0 and 0 < a < A < 1 it follows that

tin (£(D))
d(f(E), f(F))"

<h

Mod (g (n),1/2) (A(E, F, D)) < h- N(f,D)- B(n) -

Mod(s,11,p) (A(E, F, D)) <2H - N(f,D) - M -

where

1 A—
24¢ 2

P = min{ }, H = max{h,t}, M =max{B(n) - N(g),N(a,\)}.

Proof. Suppose first that K = (). We may assume that r = d(f(E), f(F)) >
0, since otherwise the theorem is clear. If x € D, let

d(f(B(z,m)))"
i (f(B@)) h}

Im:{?“ERJr
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Then 0 € I, and let B' = U, cp ,c;, Bz, 7). We define for B € #" a set func-
tion v by v(B) =d(f(B))/d(f(E), f(F)). Now %" satisfies the conditions from
Theorem 1, hence, if § > 0 is fixed, we can find & € E(B(n), %, D),%’ = (Bi)ieN,
a subcollection of %! such that d(B;) <, B; C D, d(f(Bi))n/un (f(By) <h
for i € N.

Let v € A(E,F,D) and o/ = (B,);c; be a chain of balls from the collection
% along the path . Then (J,.; f(B;) is a connected set which covers the path
I'= fo~, hence Y, ., d(f(B;)) = () > d(f(E), f(F)), and this implies that
> icr V(Bi) > 1 for every o/ = (B;)ies chain of balls from the collection % along
every path v € A(E, F, D), i.e., v € F(p(n),1/2,D) (QE,A(E,F, D))

We have

x < d(f(B)"
(1) 6 — Mod n),1/2 A(EaF7 D) < U(Bi)n < n:
(B(n)1/2) ( ) ; ;d(f(E)’ﬂF))

Now every point y € f(D) has at most N(f, D) points zp € D such that
f(zr) = y, and since such a point z; may belong to at most B(n) balls B;, it

follows that every point y € f(D) belongs to at most B(n) - N(f, D) sets f(B;).
This implies that

;#n(f(Bi)) = ;/f@) 2By (@) d =/f

< / B(n) - N(f, D) dzx = B(n) - N(f, D) - i (f(D)),
f(D)

(i %f(Bi)) (z) dx

(D) \;1

and using (1), we have

0 — Mod(p(n),1/2) (A(E’ F, D)) = Z d

Letting 0 tend to zero, we obtain that

1in (f(D)) |
d(f(E), f(F))"

Suppose now that K # () and let 0 < @ < A < 1 and ¢ > 0 and let
0 > 0. Applying Theorem 2 to the base of balls ¥ = UxGD\K,TGIz B(z,r), we

Mod(p(n),1/2)(A(E, F, D)) < h-B(n)- N(f,D)-
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can consider #' = (B});en a subcovering of 2 which covers D\ K such that
d(B}) < ¢, Bil CcD, d(f(le))n//in(f(le)) < h for ¢ € N and every point from
D\ K belongs to at most N(e)- B(n) balls B} and B}/(2+¢)NBj/(2+¢) =10
for i # 7, 4,5 € N.

Applying Theorem 3 to the a-porous covering of K, € = (B (x4, rl)) e

gy W
ieEN
can consider %2 = (B?);en a subcollection of 4 which covers K such that

d(f(aB}))" _.

d(B%) <6, B-cD,
(BD) < “ 1in (f(B2))

7

for i € N, and every point from K belongs to at most N(a,\) balls B? and

%(A—a)-B?ﬂ%()\—a)~B? = ( for i # j, i,j € N. Since (Bf—agf)ﬂ

K = () for i € N, we see that (aB?);eNn is also a covering of K; hence & =
B UaPB? € E(2,M,P,D). We define set functions vj, on the balls BF, k =
1,2, i € N by v (B}) = d(f(B}))/d(f(E), f(F)) for i € N and vy(aB?) =
d(f(aB2))/d(f(E), f(F)) for i € N. Let us show that

vV = ('Ul,'UQ) € F(Q,M,P,D) (%,A(E,F,D))

Indeed, let v € A(E,F,D) and let &/ = (B;);en be a chain of balls from %
along the path v, where I = I; Ul and B; € %" for i € I, B; € a%? for
i € Iy. Then J;c;, f(Bi)UU;ep, f(aBi) is a connected set which covers the path
['=foy, hence 3,cp, d(f(BY)) +Xicy, d(f(aBf)) = UT) = d(f(E), f(F)) and
this implies that v = (vi,v2) € F2,m,p,D) (%, A(E,F, D)) We have

d — Mod 2, a1, p) (A(E, F, D)) < Z vy (BH)™ + Z vo(aBF)™

i€l 1€y
_ d(f(Bh)" d(f(aB?))"
o d(f(B), f(F)" i Ef: d(f(E), f(F))"

pn (F(BY)) + Zun(f(Bf)))

i€l icls

<Gt aer (-5 )) + (4, )
9. D

IA
=
g
&>
«}\m
=
=
N

Letting 0 tend to zero, we complete the proof.
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4. Conditions of quasiregularity and a removability result
We shall first prove the following theorem.

Theorem 6. Let D C R" beopen, n > 2, a>1, z € D and r > 0
such that B(z,a.r) C D and f: D — R™ continuous, open and discrete. If f is
K -quasiregular on B(x,a.r)\ B(x,r), then it follows that

d(f(B(x,1)))"
i (f(B(z,a.r)))

where C(a,K) =1/L(a,K) and

Vi —2K n - wy—
L(a, K) = minqg — - exp 0 n-t ,
2n ¢n - (loga)n—1

Vo -n K- -wp_1 —2K -n-wp_1
- ex :
2" - ¢, - (loga)n—1 P ¢ - (loga)n—1t

< C(a, K),

Proof. Suppose first that un(f(S(x,a.r))) = 0. Let s = L(z, f,r),6 =
K - w,_1/(loga)®1 and let a > 0 be such that 26 = ¢, - log(1/a), where ¢, is
the constant from Theorem 10.12, [15, p. 31].

Now a = exp(—2K - wy—1/cy - (loga)" 1) ; hence 0 < o < 1.

un(f(B(x,a.r))) - ,un(f(B(:C,a.r)))
d(f(B(m,r)))n - 2. L(x, f,r)"

l(mafﬂ") >V -a—ZL(a,K),

> Vn : n
2n . L(x, f,r)™ — 2n

if L(x, f,r)/l(x, f,r) < 1/a. Suppose that L(zx, f,r)/l(z, f,r) > 1/a. If Q =
f(S(a:,r)), then QﬂS(f(:z:),t) # () for every t € [as, s] and let Q,,p € P be the
components of Cf(B(z,a.r)) which intersect B(f(z),s) \ B(f(z),as). Since
S(z,7) C Int B(x,ar) and f is open, it follows that Q N 9Q, = 0 for p € P,
and let B, = {t € (as,s) | S(f(z),t)NQ, # 0}, pe P, E = Upep @p and
B = {t € (as,s) | S(f(z),t) NE # 0}. Since B is open, B = |J;,(as,bi),
I € N and (ai,b;) N (aj,b;) =0 for 4,5 € I, i # j. When i € I, we denote
D; = B(f(a:),bi) \ B (f(:c),ai) and

J; = {j € P | there exists ¢ € (a;,b;) such that S(f(z),t) NQ; # 0}

and let U; = UjeJi 0Q);. Let now i € I and ¢ € (a;,b;). Then there exists j € J;
such that S(f(z),t) NQ; # 0. Since S(f(z),t) NQ # 0 and Q C f(B(z,ar)) C
CQ;j, we see that S’(f(ac),t) NCQ; # 0; hence S(f(ac),t) NoQ; # 0. If A; is the
family of all paths 7: [0,1] — R™ which joins @ with U; in D;, then D;NU; and
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D;NQ are nonempty, disjoint sets which intersect S ( f(x), t) for every t € (a;, b;).
Using Theorem 10.12, [15, p. 31], we obtain M(A;) > ¢, - log(b;/a;). Let now
v € A; be such that v(0) € Q, v(1) € U;. We can find b, a subpath of v, such
that there exists a path ay: [ay,8,] — R™ with 0 < o, < 3, < 1, ay(ay) €
S(z,r), ay(B,) € S(z,ar), ay(a,,B,) C B(z,ar)\ B(z,r) and foa, =b,. If
I ={ay |y €A}, T, ={b, | v € A;}, then I', = f(I';) and the paths from I
are shorter than the paths from A;, and let IV = | J,.; I';, I' = ;c; I's and A be
the spherical ring B(z,ar) \ B (x,7).
Then I'" = f(I') and

K cWn—1 ’ /
= =K -M(ITy)>K-MT)>MTI") > M(T
S () (©)2 M(T) 2 3 M(T)
> . il
g M(A;) > E ¢ - log o
i€l iel

We used here a path inequality of Poleckii [11]. Let now J C I be finite and
suppose that a;, < b;; < a;, < b, < -+ < a3, < b;, is an ordering of the
endpoints of the intervals counted by J. We take b;, = as, a;,,, = s, and since

1
Cn, - Zlog—+cn Zlog i 223 = ¢, -log = = 26,
a

it follows that
p w
i
Cn - E log #“ > 4,
=0 J

and let A; = J;_ P o (B(f(x),ai,,,) \ B(f(2),bi,)). We take 6; € (b;,,a;,,,) such
that log(a;,,,/bi;) = (as, ., —b;;)-1/8; for 7 =0,1,...,p. Then

p p n—1
V(Ay) =V Z Qijyr — Vi Z @ijyr ~ bi (Z aZ+If 1 bk)

p
>n-V,-a" st Z(aiﬁl —b;;)

P @
_ n—1 n—1 1i+1
=n-V, « .S g 8; log

>n. Zloga““z”'v’”"é'an °

C
zJ n



400 M. Cristea

Let A = (),.;As, J C I being finite. Then A is Lebesgue measurable and
V(A Zn-Vy,-6-a"s"/cpn and A= (Vyc(ns. 0\ B S(f(z),t), and we have

V(e)=V(a) > W0

Cn

it C = ﬂte(ass)\BS(f( z),t). Since S(f(z),t)NE =0 for every ¢ € (as, s)\ B, it

follows that S(f(z),t) C f(B(z,ar)) for t € (as,s)\ B; hence C C f(B (z,ar)).
We have now that

pn(f (Bl ar))) un( (B(w,ar)))

d(f(B(w,ar)))" — 2" Lz, f.r)" 2" 8"
n . .n g _ n
>n-Vy-a"-s m—nvna 'Cn~2n2L(a,K)’

ie., d(f(B(z,1)))" /pn(f(B(z,ar))) < C(a, K).

Finally, if g, (f(S(z,ar))) # 0, we let £ > 0. Since f is K-quasiregular
on B(z,ar)\ B(z,r), we have p,(f(S(z,(a —¢)r)) = 0 and this implies that
d(f(B(x,7)))" /pn(f(B(z,(a—¢)r))) < Cla—e,K). Letting ¢ tend to zero, we
complete the proof.

Theorem 7. Let D C R™ be open, n > 2, f: D — R™ continuous, open
and discrete such that there exists K C D, and h,t > 0 such that

lim inf d(f(B(x,r)))n
r—0 ,un(f(B(xvr)))

for every x € D\ K, and there exists 0 < a < 1 and # = (B;);en an a-porous
base of K with d(f(aBi))n/Mn(f(Bi)) <t for i € N. Then f is quasiregular
and Ko(f) <V, - H where H = max{h,t}.

Proof. Let g: (1,00) — (1,00) be defined by g¢(t) = (" —1)/(t—1)" for
t € (1,00). Then ¢'(t) <0 for ¢t > 1, lim;_,; g(t) = oo, lim;_,~ g(t) = 1, hence g
is a bijection of (1,00) onto (1,00). Let x € D be fixed. We can find U € V(x),
Ve V(f(:v)) such that f | U: U — V is a proper map, f(0U) = 9V, U is
compact and N(f,U) = |i(f,z)|. Let r > 0 be small enough such that B (z,r) U
U(z,f,Lo) CU,0<a<1and L, =L(z, f,ar), l =1(x, f,r) and suppose that
Lo/l >1. Let A= B(f(z),La) \ B(f(z),l) and B=U(x, f,La)\ U (z, f,1).

From [15, p. 9], for » > 0 small enough, B is also a ring of components
Co = Uz, f,1), C, = CU(z, f,L,) and f(B) = A. Also, the component Cj
contains the point x and a point a such that |z —a| = r and the component C;
contains oo and a point b such that |:L' —b| = ar, hence from [15, p. 36] it follows
that M (T'g) > 7, (|x — b|/|z — a|) = 74, (). Let e>0and 0 <a< A<1 and
let M =max{B(n)-N(e),N(a,\)}, P=min{l/(2+¢€), (A —a)/2}.

<h
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Using Theorem 4 and Theorem 5, we obtain

%(a) S M(FB) S R(”? 27 P) : MOd(Q,M,P) (FB)

<2.-R(n,2,P)-H-N(f,B) M-
<2-R(n,2,P) (f, B) 1oz

—2.R(n,2,P)-H-M-N(f,U) -V, - g(La/l).
Since lim,—,¢ 7%, (a) = oo, we can find 0 < a < 1 small enough such that

H(a)>2-R(n,2,P)-H-M-N(f,U)-V,.

Then
£< -1 ()
i =7 \2 Rn,2,P)-H-M -N(f,U) -V, )’
We denote
- I (a)
— 1 n
C’(n,h,t,a,)\,a,U)—max{l,g (2-R(n,2,P)-H~M-N(f,U)-Vn)}'

It follows that
L(z, f,ar)

Iz, f,r)
for every r > 0 such that B (x,r)UU(x, f, L,) C U. This yields that

< C(n,h,t,a,\e,U)

Ha(:l:?f) - limsup M

< C(n,h,t,a,\eU).
r—0 l(aj‘,f,T) N ( )

This inequality is also valid for every point z € U; hence from Theorem 1 [4] it
follows that f is quasiregular on U. We have therefore proved that f is locally
quasiregular on D; hence f is ACL" on D and f is a.e. differentiable on D and
Ji(x) #0 ae in D.

Let us now fix a point x € D\ K such that f is differentiable in z and
Je(x) #0 and let 0 < e < |f'(x)| be fixed. Then there exists r. > 0 such that
|f(z) = f(x) = f(x)(z—2)| <e-|z—x| for |z — x| <r.. Then

(2) (If' ()| —¢) -r < Lz, f,7) for 0 < r < r..

Since Jy(z) # 0, we have I(f'(z)) > 0, and let s = (I(f'(z)) +¢)/l(f'(z))
and ¢: R™ — R" be defined by ¢(z) = f(z) + f'(x)(z — z) for z € R".



402 M. Cristea

We show that f(B(z,r)) C ¢(B(z,rs)) for 0 <r <r.. Indeed, let 0 < r <
re be fixed and y € f(B(x,r)). Then there exists a € B(z,r) such that y = f(a),

and since p: R™ — R"™ is a bijection, we can find z € R™ such that y = ¢(2).
We have

|z —a| <|f'(2)(2 — a) |/l( ) = lo(2) — e(a)|/1(f (x))
= [f(a) = (f(z) = f'(@)(z — a) [/1(f'(x))
<e |z —al/l(f(z) <e-r/l(f'(z));

hence |z — z| < |z —a| + |z —a] < r+re/l(f(z)) = rs, and this shows that

H

z € B(z,rs). We proved that y = f(a) = ¢(2) € (B(ac rs)), and since
y was arbitrary in f(B(z,r)), it follows that f(B 7)) C ( x TS)) hence
(7 (B2 7)) < (B, 5))) = (') (Bla r5))) = ()]
From (2) we have

WS ()" (1 (@) =¢)" fl@)—e)"

_ {
(@) +€)" Vo [ Tp(@)] - Vo (rs)™ - |Jp (@)

(rs)
< L fryr A (Bl))
T (f(B(z,7))) T pa(f(B(z,7)))

for 0 < r <r. and we obtain that

(If' (@) —¢)" (U @) e\ d(f(Ba,r))"
3) T@] S ( (@) ) i (f (B(z.1))

for 0 <7 <r.. Since liminf, o d(f(B(z,7)))"/un(f(B(z,7))) < h, we can find
r, — 0 such that d(f(B(x,rp)))n/un (f(B(z,rp))) < h for every p € N; hence
replacing r by 7, in (3) and letting p tend to infinite, we obtain that

(F@I=9)" . (@) +e\"
G ( (7)) ) ’

and letting now e tend to zero, we find that |f'(z)|"/|J¢(z)| < Vi, - h. Since
tn(K) =0 (no point of K can be a point of density of K), f is a.e. differentiable
in D and Jy(x) # 0 a.e. in D, it follows that |f'(z)|" <V, -h-|Js(x)| a.e. in D
and since f is ACL", it follows from [9, p. 9] that f is quasiregular on D and

Corollary 1. Let D C R™ beopen, K C D, n>2, f: D — R" continuous,
open and discrete such that there exists h > 0 such that h(x, f) < h for every
x € D\ K, and there exists t >0, 0 < a <1 and # = (B,;)ieNn an a-porous base
of K with d(f(aB;))"/un(f(B;)) <t for every i € N. Then f is quasiregular
and H(z, f) =h(x,f) <h ae. in D.
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Proof. From Theorem 10 it follows that f is quasiregular; hence f is a.e.
differentiable and J¢(z) > 0 a.e. in D. Let = € D be fixed such that f is differ-
entiable in = and Jy(z) > 0 and let 0 < & < I(f’(x)). Since f is differentiable
in x, there exists r. > 0 such that |f(z) — f(z) — f'(z)(z — )| < €|z — x| for

|z — x| <r.. Then
@) —e _ L fir) _ |f'(2)|+e
@ (F@) te = U fir) S1(F(@) —<

for 0 < r <r.. We can find r, — 0 such that L(z, f,r,)/l(x, f,rp) — h(z, f),
and let p. € N be such that 0 < r, <r. for p > p.. From (4) we have for p > p.

that , .

|f (.T)| — € < L(Z’,f,?“p) < |f (I)| +e

Lf'(x) +e = U, forp) ~ U(f'(z)) —€
and letting first p tend to oo and then letting £ tend to zero, we obtain that
|/ (@)|/L(f'(z)) = h(z, f). Using (4) again, we see that

[f'(@)| -« [f' ()| + €
l(f’(ac))~|—€S Sl(f’(a:))—s’

and letting € tend to zero we obtain that H(z,f) = [f'(2)|/l(f'(z)); hence
H(z, f) = h(z, f). We have therefore proved that H(x, f) = h(x, f) a.e. in D.

H(z, f)

Remark. In 1994, at a seminar held in Helsinki, J. Vaisala raised the follow-
ing problem:

It is known that if f: R” — R" is a homeomorphism such that there exists
h > 0 such that h(x, f) < h for every z € R™, then f is K(h,n)-quasiconformal
(it is the result of J. Heinonen and P. Koskela from [7]). Find the best estima-
tion of the constant of quasiconformality K (h,n). Corollary 1 shows that this
problem is reduced to the classical problem when the inferior linear dilatation
h(z, f) is replaced by the classical linear dilatation H(x, f). Indeed, we proved
that H(x, f) = h(zx, f) a.e. in D. Since f is ACL", hence a.e. differentiable in
D, the problem of finding the best constant of quasiregularity K = K(h,n) is
reduced in this way to the known case when we have that H(x, f) < H for every
x € D. For interesting estimations of this kind, see the papers of M. Vuorinen [1],
2], [13], [14]

As an open problem, we raise the following question: If D C R™ is open,
n>2, f: D — R" is continuous, open and discrete such that there exists A > 0
with h(z, f) < h for every =z € D, does it follow that H(zx, f) < h for every
x € D7 We can now prove the following generalization of a removability result of
J. Heinonen and P. Koskela from [7]:

Theorem 8. Let D C R™ be open, n > 2, f: D — R"™ continuous, such
that there exists H C D closed in D such that f is K -quasiregular on D\ H and
there exists 0 < a < 1, and # = (B;)ieN, an a-porous base of H. Then, if f is
open and discrete, or if int f(H) = (), it follows that f is K -quasiregular on D.
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Proof. We see that p,(H) =0 and dim(H) = 0, hence f is a light map. Sup-
pose that int f(H) = 0. Using the fact that f is quasiregular on D\ H, it follows
that f is differentiable on D\ H and Js(xz) > 0 in D\ H, and since int f(H) =0,
we apply Theorem 10 [6] to obtain that f is open and discrete on D. Using Theo-
rem 6, we can find a constant C(a, K) such that d(f(aBi))n//,Ln (f(By) <C(a,K)
for every ¢ € N. We apply now Theorem 7 to see that f is quasiregular on D.
Since p,(H) = 0 and f is K-quasiregular on D \ H, it follows that f is K-
quasiregular on D.

Another generalization of the removability result from [7] may be found in [8].

Acknowledgement. 1 wish to thank the referee for his comments.
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