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Abstract. We show that if D ⊂ Rn is open, f : D → Rn is continuous, open and discrete
such that for some h > 0 the linear dilatation satisfies h(x, f) < h for every x ∈ D , then f is
K(h, n) -quasiregular. Here “lim inf” is used in the definition for h(x, f) . A removability result on
quasiregular mappings is obtained, and we enlarge the notion of the discrete modulus introduced
by J. Heinonen and P. Koskela in [7]. We also give some bounds for the discrete modulus.

1. Introduction

In a recent paper [7], J. Heinonen and P. Koskela showed that if f : Rn → Rn

is a homeomorphism such that for some h > 0, h(x, f) < h holds for every
x ∈ Rn , then f is K(h, n)-quasiconformal. Here

L(x, f, r) = sup
|y−x|=r

|f(y)− f(x)|,

l(x, f, r) = inf
|y−x|=r

|f(y)− f(x)|,

h(x, f) = lim inf
r→0

L(x, f, r)

l(x, f, r)
,

H(x, f) = lim sup
r→0

L(x, f, r)

l(x, f, r)
.

This generalizes the classical result which says that f is quasiconformal if H(x, f)
is uniformly bounded. In [3] we introduced the inferior linear dilatation h(x, f)
for mappings f : D → Rn , D ⊂ Rn open, f continuous, open and discrete, and
we studied some properties of such mappings. We show now that if D ⊂ Rn is
open, n ≥ 2, f : D → Rn is continuous, open and discrete such that there exists
h > 0 such that h(x, f) < h for every x ∈ D , then f is K(h, n)-quasiregular and
H(x, f) = h(x, f) a.e. in D . In this way, the problem of finding the best constant
of quasiregularity K(h, n) is reduced to the classical case when H(x, f) < H for
every x ∈ D .

A removability result of J. Heinonen and P. Koskela [7] shows that if n ≥ 2,
f : Rn → Rn is a homeomorphism such that there exists a closed set H ⊂ Rn such
that f is K -quasiconformal on Rn\H and a > 1 such that for every x ∈ H there
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exists a sequence rj → 0 depending on x such that
(
B(x, arj)\B (x, rj)

)
∩H = ∅

for every j ∈ N , then it follows that f is K -quasiconformal. We shall show that if
D ⊂ Rn is open, n ≥ 2, f : D → Rn is continuous such that there exists H ⊂ D
closed in D such that f is K -quasiregular on D \H and there exists 0 < a < 1
and B = (Bi)i∈N an a -porous base of H , then, if f is open and discrete or if
int f(H) = ∅ , it follows that f is K -quasiregular on D . Here, if D ⊂ Rn is open,
n ≥ 2, A ⊂ D , 0 < a < 1, and B = (Bi)i∈N is a covering of A , we say that B
is an a -porous covering of A if (Bi \ aB i) ∩ A = ∅ for every i ∈ N and we say
that B is an a -porous base of A if B is an a -porous covering of A and for every
x ∈ A and U ∈ V (x) , there exists i ∈ N such that x ∈ Bi ⊂ U .

We showed in [5] that if D ⊂ Rn is open, n ≥ 2, f : D → Rn is con-
tinuous, open and discrete such that there exists 0 < a ≤ 1 and H > 0 with
lim supr→0 d

(
f
(
B(x, ar)

))n
/µn

(
f
(
B(x, r)

))
≤ H for every x ∈ D , then f is

K(H,n, a)-quasiregular. We shall partially generalize this result, giving at the
same time a generalization of the removability result of J. Heinonen and P. Koskela
from [7]. We show that if D ⊂ Rn is open, n ≥ 2, f : D → Rn is continuous,
open and discrete, there exists K ⊂ D and h, t > 0 such that for every x ∈ D\K ,
lim infr→0 d

(
f
(
B(x, r)

))n
/µn

(
f
(
B(x, r)

))
< h , and there exists 0 < a < 1 and

B = (Bi)i∈N an a -porous base of K such that d
(
f(aBi)

)n
/µn

(
f(Bi)

)
< t for

every i ∈ N , then it follows that f is K(h, t, n)-quasiregular and K0(f) < Vn ·H ,
where H = max{h, t} .

As in [7], the principal instrument used in proving such theorems is the new
discrete modulus introduced by J. Heinonen and P. Koskela. We give a slightly
modified version of this notion, and obtain bounds for this class of discrete mod-
ulus. For these bounds we modify some covering theorems from [10] and, for the
sake of completeness, we give a detailed proof of one of them (Theorem 3).

We use the notation from [15], [9] and [12]. If f : D → Rn is a map, D ⊂ Rn

is open, x ∈ D , U(x, f, r) is the component of f−1
(
B
(
f(x), r

))
containing x .

For D ⊂ Rn open and f : D → Rn a map, we say that f is discrete if f−1(y)
is isolated for every y ∈ Rn , and we say that f is light if f−1(y) is a set of
topological dimension zero for every y ∈ Rn .

For x ∈ Rn we denote by |x| =
(∑n

i=1 x2
i

)1/2
, and if A,B ⊂ Rn , we

denote by d(A) = supx,y∈A |x − y| and by d(A,B) = infx∈A, y∈B |x − y| . If
A ∈ L(Rn, Rn) , let |A| = sup|h|=1 |A(h)| , and l(A) = inf |h|=1 |A(h)| .

If D ⊂ Rn is a domain, n ≥ 2, and f : D → Rn is a map, we say that f is
quasiregular if f is ACLn and there exists K ≥ 1 such that |f ′(x)|n ≤ K · Jf (x)
a.e. in D . For a quasiregular map we also have Jf (x) ≤ K ′ · l

(
f ′(x)

)n
a.e. in

D for some K ′ ≥ 1, and we denote by K0(f) the smallest K ≥ 1 such that
|f ′(x)|n ≤ K · Jf (x) a.e. in D , and by KI(f) the smallest K ≥ 1 such that
Jf (x) ≤ K · l

(
f ′(x)

)n
a.e. in D . We say that a quasiregular map f : D → Rn ,

n ≥ 2, is K -quasiregular if K0(f) ≤ K , KI(f) ≤ K .
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If Γ is a path family, we denote by

F (Γ) =

{
ρ: R

n → [0,∞] a Borel map :

∫

γ

ρ ds ≥ 1 for every γ ∈ Γ}

and by M(Γ) = infρ∈F (Γ)

∫
Rn ρn(x) dx .

If E,F ⊂ Rn , D ⊂ Rn is open such that E ∪ F ⊂ D , let ∆(E,F,D)
be those paths, open or not, which join E with F in D . If f : D → Rn is a
map, we let N(f,D) = supy∈Rn Card f−1(y) . A domain A ⊂ R

n
is a ring if

CA has exactly two components, C0 and C1 , and we denote A = R(C0, C1) ,
C0 being bounded, and ΓA = ∆(C0, C1, A) . For r > 0, let Φn(r) be the set of
all rings A = R(C0, C1) in R

n
such that 0 ∈ C0 and there exists a ∈ C0 with

|a| = 1 and such that ∞ ∈ C1 , and there exists b ∈ C1 with |b| = r , and we let
H (r) = inf M(ΓA) , the infimum being taken over all rings A ∈ Φn(r) . We denote
by Vn the volume of the unit ball in Rn , by µn the Lebesgue measure in Rn and
by ωn−1 the area of the unit sphere from Rn . For 0 < a < λ < 1, we write
N(a, λ) = 2K ·

(
4/λ · (λ−a)

)n
, where K = [log 1

2 (1− a)/ log λ]+1. For ε > 0 we

let N(ε) = (3+ε)n·
(

1
2 (2 + ε)

)n
. In [10, p. 29] the following lemma is proved: There

exists a positive integer B(n) such that if a1, . . . , ak ∈ Rn , r1, . . . , rk ∈ (0,∞) ,

ai /∈ B(aj , rj) for i 6= j , i, j = 1, . . . , k and
⋂k
i=1 B(ai, ri) 6= ∅ , then it follows

that k ≤ B(n) . Throughout this paper we shall denote by B(n) the number from
this lemma.

2. Preliminaries

Theorem 1. Let D ⊂ Rn be open, A ⊂ D closed in D and such that A is
bounded or A = D , B a collection of balls from D such that every ball from B
is of the form B(x, r) with x ∈ A and r ∈ Ix ⊂ R with

(a) 0 ∈ I ′x for every x ∈ A ,
(b) if xk ∈ A , rxk ∈ Ixk for k ∈ N , xk → x , rxk → r and B (x, r) ⊂ D ,

then r ∈ Ix .

Then there exists an at most countable collection of balls (Bi)i∈N such that Bi =
B(xi, ri) ∈ B for i ∈ N , A ⊂ ⋃∞i=1 Bi , rk ≥ rk+1 and xk /∈ ⋃∞i=1,i 6=k Bi for k ≥ 1 .

Hence every point from A belongs to at most B(n) balls and 1
2Bi ∩ 1

2Bj = ∅ for
i, j ∈ N , i 6= j .

Theorem 2. Let D ⊂ Rn be open, A ⊂ D such that either A is bounded
or A = D , B a collection of balls from D such that every ball B ∈ B is
of the form B = B(x, r) with x ∈ A and r ∈ Ix ⊂ R+ such that 0 ∈ I ′x
for every x ∈ A . Then, for every ε > 0 there exists an at most countable
collection of balls (Bi)i∈N such that Bi = B(xi, ri) ∈ B for i ∈ N , A ⊂ ⋃∞i=1 Bi ,
Bi/(2 + ε) ∩ Bj/(2 + ε) = ∅ for i, j ∈ N , i 6= j and every point from A belongs
to at most N(ε) ·B(n) balls Bi .
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Theorem 3. Let D ⊂ Rn be open, A ⊂ D , 0 < a < 1 and B = (Bi)i∈N

an a -porous covering of A . Then, if A is bounded or if A = D and B is an
a -porous base of A , for every 0 < a < λ < 1 we can find C = (Bik)k∈N a
subcovering of A such that every point from A belongs to at most N(a, λ) balls
Bik and 1

2 (λ− a)Bik ∩ 1
2 (λ− a)Bil = ∅ for k, l ∈ N , k 6= l , where N(a, λ) =

2k · (4/λ(λ− a))n , with k = [log 1
2 (1− a)/ log λ] + 1 .

Proof. We suppose first that A is bounded. Hence we can suppose that
M = supi∈N ri <∞ , where Bi = B(xi, ri) for i ∈ N . Let 0 < a < λ < 1 and

A1 = {x ∈ A |there exists i ∈ N and λM < ri ≤M

such that B(xi, ri) ∈ B and x ∈ B(xi, ri)}.

If A1 6= ∅ , we take x11 ∈ D and λM < ρ11 ≤ M such that B(x11, ρ11) ∈ B
and A ∩ B(x11, ρ11) 6= ∅ . If A1 6⊂ B(x11, ρ11) , we take x12 ∈ D and λM <
ρ12 ≤ M such that B(x12, ρ12) ∈ B and

(
A1 \ B(x11, ρ11)

)
∩ B(x12, ρ12) 6= ∅ .

If A1 6⊂ B(x11, ρ11) ∪B(x12, ρ12) , we continue the process and we show that this
process must end in a finite number of steps. Indeed, let B(xi, ri) , B(xj , rj)
be two balls which cover A1 obtained as before. Then there exists a point x ∈
A such that x ∈ B(xj , rj) \ B(xi, ri) , hence |x − xj | ≤ arj ≤ aM (because(
B(xj , rj) \B (xj , arj)

)
∩A = ∅) and |x− xi| > ri ≥ λM , which implies that

|xi − xj | ≥ |x− xi| − |x− xj | > (λ− a)M.

Let ρ = 1
2 (λ− a) and suppose that there exists a point z ∈ B(xj , ρrj)∩B(xi, ρri) .

Then 2ρM ≥ ρrj + ρri ≥ |xj − z| + |xi − z| ≥ |xi − xj | > (λ − a)M , which rep-
resents a contradiction. It follows that B

(
xi,

1
2 (λ− a)ri

)
∩ B

(
xj ,

1
2 (λ− a)rj) =

∅ . Using the boundedness of A we can find m(1) ∈ N, x11, . . . , x1m(1) ∈ D ,
real numbers ρ11, . . . , ρ1m(1) ∈ (λM,M ] such that B(x1l, ρ1l) ∈ B for l =

1, . . . ,m(1),
(
A1 \

⋃k−1
l=1 B(x1l, ρ1l)

)
∩ B(x1k, ρ1k) 6= ∅ for k = 2, . . . ,m(1) and

A1 ⊂
⋃m(1)
l=1 B(x1l, ρ1l) . Also, a point from A1 may belong to at most m =(

4/λ(λ− a)
)n

balls B(x1l, ρ1l) . Indeed, let B(x1i, ρ1i) be a fixed ball of this type
and suppose that it is intersected by m balls B(x1j , r1j) , j ∈ C ⊂ {1, . . . ,m(1)} .
Then every such ball is contained in B(x1i, 2M) ; hence

Vn · (2M)n = µn
(
B(x1i, 2M)

)
≥
∑

j∈C
µn

((
B(x1j ,

1

2
(λ− a)ρ1j

))

≥ Vn ·m ·
1

2n
(
(λ− a) · λM)

)n

and this implies that m ≤
(
4/λ(λ− a)

)n
. We have completed the first step of our

inductive process.
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At step j , we take

Aj =

{
x ∈ A \

j−1⋃
k=1

m(k)⋃
l=1

B(x1l, ρ1l) | there exists i ∈ N

and λjM < ri ≤ λj−1 ·M such that B(xi, ri) ∈ B and x ∈ B(xi, ri)

}
.

If Aj 6= ∅ , we take xj1 ∈ Aj and λj ·M < ρj1 ≤ λj−1·M such that B(xj1, ρj1) ∈ B
and Aj ∩B(xj1, ρj1) 6= ∅ . If Aj 6⊂ B(xj1, ρj1) , we continue the process from step

j , and if Aj 6⊂
⋃k−1
l=1 B(xjl, ρjl) , we take xjk ∈ D and λj ·M < ρjk ≤ λj−1 ·M

such that B(xjk, ρjk) ∈ B and
(
Aj \

⋃k−1
l=1 B(xjl, ρjl)

)
∩B(xjk, ρjk) 6= ∅ .

Using the boundedness of Aj , we see as in step 1 that this process must
end in a finite number of steps. Hence we find m(j) ∈ N , xj1, . . . , xjm(j) ∈ D ,
ρj1, . . . , ρjm(j) ∈ (λj ·M,λj−1 ·M ] such that B(xjl, ρjl) ∈ B , l = 1, . . . ,m(j) ,

(
Aj \

k−1⋃
l=1

B(xjl, ρjl)

)
∩B(xjk, ρjk) 6= ∅

for k = 1, . . . ,m(j) and Aj ⊂
⋃m(j)
l=1 B(xjl, ρjl) .

The process will have an infinite number of steps. We show that A ⊂⋃∞
j=1

⋃m(j)
l=1 B(xjl, ρjl) . Indeed, if this is not true, we can find a point x ∈

A \⋃∞j=1

⋃m(j)
l=1 B(xjl, ρjl) . Since (Bi)i∈N is a covering of A , we can find i ∈ N

such that x ∈ Bi and j ∈ N with λj · M < ri ≤ λj−1 · M . Using the def-
inition of Aj , we obtain that x ∈ Aj , which represents a contradiction, since

x /∈ ⋃m(j)
l=1 B(xjl, ρjl) and we proved that Aj ⊂

⋃m(j)
l=1 B(xjl, ρjl) . It follows that

A ⊂ ⋃∞j=1

⋃m(j)
l=1 B(xjl, ρjl) .

Let now k ∈ N be such that a ≤ −2λk+1. We show that two balls B(xil, ρil) ,
B(xjq, ρjq) , l ∈ {1, . . . ,m(i)} , q ∈ {1, . . . ,m(j)} with j − i − 1 ≥ k cannot
have a common point from A . Indeed, suppose that this is not true and pick
two balls as before, B(xil, ρil), B(xjq, ρjq) , with j − i − 1 ≥ k such that there
exists a point x ∈ A ∩ B(xil, ρil) ∩ B(xjq, ρjq) . From the construction of the
balls B(xkl, ρkl) we can find a point z ∈

(
A \B(xil, ρil)

)
∩B(xjq, ρjq) , and since

A∩
(
B(xil, ρil)\B (xil, a ·ρil)

)
= ∅ , we see that the point x ∈ B(xil, a ·ρil) . Then

2M · λj−1 ≥ 2ρjq ≥ |x − z| ≥ (1 − a)ρil > (1 − a)M · λi , and hence 1
2 (1− a) <

λj−i−1 < λk , i.e., a > −2λk+1, which contradicts the way we chose k . It follows
that if j− i− 1 ≥ k , then any two balls B(xil, ρil) , B(xjq, ρjq) with j− i− 1 ≥ k
cannot have a common point with A . Since we showed that any point from Aj

can belong to at most
(
4/λ(λ − a)

)n
balls B(xjl, ρjl) , j ∈ N , l = 1, . . . ,m(j) ,

it follows that any point from A can belong to at most 2k ·
(
4/λ(λ − a)

)n
balls

B(xil, ρil) , i ∈ N , l ∈ {1, . . . ,m(i)} , where k = [log 1
2 (1− a)/ log λ] + 1. As in

step 1, we show that 1
2 (λ− a) · B(xil, ρil) ∩ 1

2 (λ− a) · B(xjq, ρjq) = ∅ , for i 6= j ,
l ∈ {1, . . . ,m(i)} , q ∈ {1, . . . ,m(j)} and the theorem is proved if A is bounded.

If A = D and B is an a -porous base of A , we leave the proof to the reader.
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3. Discrete modulus. Bounds for discrete modulus

We shall use, now in a slightly enlarged form, the concept of the discrete
modulus introduced by J. Heinonen and P. Koskela in [7]. If D ⊂ Rn is open and
B = (Bi)i∈N is a covering with balls of D , we say that B is a (λ, µ)-covering
of D if every point of D belongs to at most λ balls Bi and µBi ∩ µBj = ∅ for
i, j ∈ N , i 6= j and 0 < µ < 1. From Theorem 1, we always have (B(n), 1

2 )
coverings of an open set D ⊂ Rn ; hence we always have (λ, µ)-coverings of an
open set D ⊂ Rn if λ ≥ B(n) , 0 < µ ≤ 1

2 , and we denote by E(λ, µ,D) all the
(λ, µ)-coverings of the open set D from Rn . If B = B1 ∪ · · · ∪Bm is a covering
with balls of D , 0 < µ < 1, D open in Rn , Bk = (Bk

i )i∈N , k = 1, . . . ,m , such
that every point from D belongs to at most λ balls Bk

i for k = 1, . . . ,m , and
for every k ∈ {1, . . . ,m} , we have µBk

i ∩ µBk
j = ∅ , i, j ∈ N , i 6= j , we say that

B is a (m,λ, µ)-covering of D and we denote by E(m,λ, µ,D) all the (m,λ, µ)-
coverings of D . In this definition it is possible that some families of balls Bi ,
Bj are the same. If Γ is a path family such that Im γ ⊂ D for every γ ∈ Γ and
B = (Bi)i∈N is a collection of balls from D , a subcollection A = (Bi)i∈I with
I ⊂ N will be called a chain of balls from the collection B along the path γ if
Im γ ∩Bi 6= ∅ for every i ∈ I and Im γ ⊂ ⋃i∈I Bi .

Let now m,λ ∈ N , 0 < µ < 1, B = B1 ∪ · · ·Bm,B ∈ E(m,λ, µ,D) and
vk: Bk → [0,∞) be set functions which assign to each ball Bk

i ∈ Bk a positive
number for k = 1, . . . ,m . We say that v = (v1, . . . , vm) is (m,λ, µ,D)-admissible
for the (m,λ, µ) covering of D ,

B = (Bi)i∈N, B = B1 ∪ · · · ∪Bm, Bk = (Bi)i∈Ik , k = 1, . . . ,m

and for the path family Γ such that Im γ ⊂ D for every γ ∈ Γ, if

m∑

k=1

∑

i∈Ik∩I
vk(Bi) ≥ 1,

for every A = (Bi)i∈I chain of balls along some path γ ∈ Γ. We denote by
F(m,λ,µ,D)(B,Γ) the class of all (m,λ, µ,D)-admissible m -tuples of set functions
v = (v1, . . . , vm) for the collection B ∈ E(m,λ, µ,D) and the path family Γ. For
δ > 0 we denote by

δ −Mod(m,λ,µ)(Γ) = inf
∑

B∈E(m,λ,µ,D)

∑

v=(v1,...,vm)∈F(m,λ,µ,D)(B,Γ)

m∑

k=1

∑

i∈Ik
vk(Bi)

n,

where the infimum is taken along all the collections

B ∈ E(m,λ, µ,D), B = B1 ∪ · · · ∪Bm, B = (Bi)i∈N, Bk = (Bi)i∈Ik ,

k = 1, . . . ,m , and all the (m,λ, µ,D)-admissible m -tuples of set functions v =
(v1, . . . , vm) ∈ F(m,λ,µ,D)(B,Γ), D being any open set in Rn such that Im γ ⊂ D
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for every γ ∈ Γ and d(Bi) < δ for i ∈ N . The function δ → δ−Mod(m,λ,µ)(B,Γ)
is clearly decreasing; hence it has a limit in 0 and we denote by Mod(m,λ,µ)(Γ) =
limδ→0 δ−Mod(m,λ,µ)(Γ) and call the number Mod(m,λ,µ)(Γ) the (m,λ, µ) discrete
modulus of the path family Γ. Of course, this notion has sense if E(m,λ, µ,D) 6=
∅ . For λ ≥ B(n) and 0 < µ ≤ 1

2 , m ∈ N , the (m,λ, µ) discrete modulus
is defined. For m = 1 we note Mod(λ,µ)(Γ) instead of Mod(1,λ,µ)(Γ) and by
F(λ,µ,D)(B,Γ) instead of F(1,λ,µ,D)(B,Γ) for B ∈ E(λ, µ,D) .

Using the method from [7], we can prove the following relation between the
classical modulus and the (m,λ, µ) discrete modulus:

Theorem 4. Let Γ be a path family in Rn . Then there exists a constant
R(n,m, µ) such that M(Γ) ≤ R(n,m, µ) · Mod(m,λ,µ)(Γ) , where R(n,m, µ) =

Vn · 2n · nn
2(

3n/
(
µ(n− 1)

)n ·m · n
)n−1

.

Theorem 5. Let n ≥ 2 , D ⊂ Rn be open, K ⊂ D , f : D → Rn continuous
such that there exists h > 0 with

lim inf
r→0

d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, r)

)) < h

for every x ∈ D \K and N(f,D) <∞ . If K = ∅ , for E,F ⊂D , we have

Mod(B(n),1/2)

(
∆(E,F,D)

)
≤ h ·N(f,D) ·B(n) · µn

(
f(D)

)

d
(
f(E), f(F )

)n .

If K 6= ∅ , D is bounded and there exists t > 0 and 0 < α ≤ 1 such that for an
α -porous base of K , B̃ =

(
B(xi, ri)

)
i∈N

the inequality

d
(
f
(
α ·B(xi, ri)

))n

µn
(
f
(
B(xi, ri)

)) < t

holds for i ∈ N , then, for every ε > 0 and 0 < α < λ < 1 it follows that

Mod(2,M,P )

(
∆(E,F,D)

)
≤ 2H ·N(f,D) ·M · µn

(
f(D)

)

d
(
f(E), f(F )

)n ,

where

P = min

{
1

2 + ε
,
λ− α

2

}
, H = max{h, t}, M = max{B(n) ·N(ε), N(α, λ)}.

Proof. Suppose first that K = ∅ . We may assume that r = d
(
f(E), f(F )

)
>

0, since otherwise the theorem is clear. If x ∈ D , let

Ix =

{
r ∈ R+

∣∣∣
d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, r)

)) < h

}
.
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Then 0 ∈ I ′x , and let B1 =
⋃
x∈D,r∈Ix B(x, r) . We define for B ∈ B1 a set func-

tion v by v(B) = d
(
f(B)

)
/d
(
f(E), f(F )

)
. Now B1 satisfies the conditions from

Theorem 1, hence, if δ > 0 is fixed, we can find B ∈ E
(
B(n), 1

2 , D
)
,B = (Bi)i∈N ,

a subcollection of B1 such that d(Bi) < δ , B i ⊂ D , d
(
f(Bi)

)n
/µn

(
f(Bi)

)
< h

for i ∈ N .
Let γ ∈ ∆(E,F,D) and A = (Bi)i∈I be a chain of balls from the collection

B along the path γ . Then
⋃
i∈I f(Bi) is a connected set which covers the path

Γ = f ◦ γ , hence
∑
i∈I d

(
f(Bi)

)
≥ l(Γ) ≥ d

(
f(E), f(F )

)
, and this implies that∑

i∈I v(Bi) ≥ 1 for every A = (Bi)i∈I chain of balls from the collection B along

every path γ ∈ ∆(E,F,D) , i.e., v ∈ F(B(n),1/2,D)

(
B,∆(E,F,D)

)
.

We have

(1) δ −Mod(B(n),1/2)

(
∆(E,F,D)

)
≤
∞∑

i=1

v(Bi)
n ≤

∞∑

i=1

d
(
f(Bi)

)n

d
(
f(E), f(F )

)n .

Now every point y ∈ f(D) has at most N(f,D) points xk ∈ D such that
f(xk) = y , and since such a point xk may belong to at most B(n) balls Bi , it
follows that every point y ∈ f(D) belongs to at most B(n) ·N(f,D) sets f(Bi) .
This implies that

∞∑

i=1

µn
(
f(Bi)

)
=

∞∑

i=1

∫

f(D)

Xf(Bi)(x) dx =

∫

f(D)

( ∞∑

i=1

Xf(Bi)

)
(x) dx

≤
∫

f(D)

B(n) ·N(f,D) dx = B(n) ·N(f,D) · µn
(
f(D)

)
,

and using (1), we have

δ −Mod(B(n),1/2)

(
∆(E,F,D)

)
≤
∞∑

i=1

d
(
f(Bi)

)n

d
(
f(E), f(F )

)n

≤ h ·
∞∑

i=1

µn
(
f(Bi)

)

d
(
f(E), f(F )

)n

≤ h ·B(n) ·N(f,D) · µn
(
f(D)

)

d
(
f(E), f(F )

)n .

Letting δ tend to zero, we obtain that

Mod(B(n),1/2)

(
∆(E,F,D)

)
≤ h ·B(n) ·N(f,D) · µn

(
f(D)

)

d
(
f(E), f(F )

)n .

Suppose now that K 6= ∅ and let 0 < α < λ < 1 and ε > 0 and let
δ > 0. Applying Theorem 2 to the base of balls D =

⋃
x∈D\K,r∈Ix B(x, r) , we



Definitions of quasiregularity 397

can consider B1 = (B1
i )i∈N a subcovering of D which covers D \ K such that

d(B1
i ) < δ , B

1

i ⊂ D , d
(
f(B1

i )
)n

/µn
(
f(B1

i )
)

< h for i ∈ N and every point from
D \K belongs to at most N(ε) ·B(n) balls B1

i and B1
i /(2 + ε)∩B1

j /(2 + ε) = ∅
for i 6= j , i, j ∈ N .

Applying Theorem 3 to the α -porous covering of K , C =
(
B(xi, ri)

)
i∈N

, we

can consider B2 = (B2
i )i∈N a subcollection of C which covers K such that

d(B2
i ) < δ, B

2

i ⊂ D,
d
(
f(αB2

i )
)n

µn
(
f(B2

i )
) < t

for i ∈ N , and every point from K belongs to at most N(α, λ) balls B2
i and

1
2 (λ− α) · B2

i ∩ 1
2 (λ− α) · B2

j = ∅ for i 6= j , i, j ∈ N . Since (B2
i − αB

2

i ) ∩
K = ∅ for i ∈ N , we see that (αB2

i )i∈N is also a covering of K ; hence B =
B1 ∪ αB2 ∈ E(2,M, P,D) . We define set functions vk on the balls Bk

i , k =
1, 2, i ∈ N by v1(B

1
i ) = d

(
f
(
B1
i )
)
/d
(
f(E), f(F )

)
for i ∈ N and v2(αB2

i ) =

d
(
f(αB2

i )
)
/d
(
f(E), f(F )

)
for i ∈ N . Let us show that

v = (v1, v2) ∈ F(2,M,P,D)

(
B,∆(E,F,D)

)
.

Indeed, let γ ∈ ∆(E,F,D) and let A = (Bi)i∈N be a chain of balls from B
along the path γ , where I = I1 ∪ I2 and Bi ∈ B1 for i ∈ I1 , Bi ∈ αB2 for
i ∈ I2 . Then

⋃
i∈I1 f(Bi)∪

⋃
i∈I2 f(αBi) is a connected set which covers the path

Γ = f ◦γ , hence
∑
i∈I1 d

(
f(B1

i )
)
+
∑
i∈I2 d

(
f(αB2

i )
)
≥ l(Γ) ≥ d

(
f(E), f(F )

)
and

this implies that v = (v1, v2) ∈ F(2,M,P,D)

(
B,∆(E,F,D)

)
. We have

δ −Mod(2,M,P )

(
∆(E,F,D)

)
≤
∑

i∈I1
v1(B

1
i )
n +

∑

i∈I2
v2(αB2

i )
n

=
∑

i∈I1

d
(
f(B1

i )
)n

d
(
f(E), f(F )

)n +
∑

i∈I2

d
(
f(αB2

i )
)n

d
(
f(E), f(F )

)n

≤ H

d
(
f(E), f(F )

)n
(∑

i∈I1
µn
(
f(B1

i )
)

+
∑

i∈I2
µn
(
f(B2

i )
))

≤ H ·M ·N(f,D)

d
(
f(E), f(F )

)n
(

µn

(
f

( ⋃
i∈I1

B1
i

))
+ µn

(
f

( ⋃
i∈I2

B2
i

)))

≤ 2 ·H ·M ·N(f,D)

d
(
f(E), f(F )

)n · µn
(
f(D)

)
.

Letting δ tend to zero, we complete the proof.
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4. Conditions of quasiregularity and a removability result

We shall first prove the following theorem.

Theorem 6. Let D ⊂ Rn be open, n ≥ 2 , a > 1 , x ∈ D and r > 0
such that B (x, a.r) ⊂ D and f : D → Rn continuous, open and discrete. If f is
K -quasiregular on B(x, a.r) \B (x, r) , then it follows that

d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, a.r)

)) ≤ C(a,K),

where C(a,K) = 1/L(a,K) and

L(a,K) = min

{
Vn
2n
· exp

(−2K · n · ωn−1

cn · (log a)n−1

)
,

Vn · n ·K · ωn−1

2n · cn · (log a)n−1
· exp

(−2K · n · ωn−1

cn · (log a)n−1

)}
.

Proof. Suppose first that µn
(
f
(
S(x, a.r)

))
= 0. Let s = L(x, f, r), δ =

K · ωn−1/(log a)n−1 and let α > 0 be such that 2δ = cn · log(1/α) , where cn is
the constant from Theorem 10.12, [15, p. 31].

Now α = exp
(
−2K · ωn−1/cn · (log a)n−1

)
; hence 0 < α < 1.

µn
(
f
(
B(x, a.r)

))

d
(
f
(
B(x, r)

))n ≥ µn
(
f
(
B(x, a.r)

))

2n · L(x, f, r)n

≥ Vn ·
l(x, f, r)n

2n · L(x, f, r)n
≥ Vn ·

αn

2n
≥ L(a,K),

if L(x, f, r)/l(x, f, r) ≤ 1/α . Suppose that L(x, f, r)/l(x, f, r) > 1/α . If Q =
f
(
S(x, r)

)
, then Q∩ S

(
f(x), t

)
6= ∅ for every t ∈ [αs, s] and let Qp, p ∈ P be the

components of Cf
(
B (x, a.r)

)
which intersect B

(
f(x), s

)
\ B

(
f(x), αs

)
. Since

S(x, r) ⊂ Int B (x, ar) and f is open, it follows that Q ∩ ∂Qp = ∅ for p ∈ P ,
and let Bp =

{
t ∈ (αs, s) | S

(
f(x), t

)
∩ Qp 6= ∅

}
, p ∈ P , E =

⋃
p∈P Qp and

B =
{
t ∈ (αs, s) | S

(
f(x), t

)
∩ E 6= ∅

}
. Since B is open, B =

⋃
i∈I(ai, bi) ,

I ⊂ N and (ai, bi) ∩ (aj , bj) = ∅ for i, j ∈ I , i 6= j . When i ∈ I , we denote
Di = B

(
f(x), bi

)
\B

(
f(x), ai

)
and

Ji =
{
j ∈ P | there exists t ∈ (ai, bi) such that S

(
f(x), t

)
∩Qj 6= ∅

}

and let Ui =
⋃
j∈Ji ∂Qj . Let now i ∈ I and t ∈ (ai, bi) . Then there exists j ∈ Ji

such that S
(
f(x), t

)
∩Qj 6= ∅ . Since S

(
f(x), t

)
∩Q 6= ∅ and Q ⊂ f

(
B (x, ar)

)
⊂

CQj , we see that S
(
f(x), t

)
∩CQj 6= ∅ ; hence S

(
f(x), t

)
∩ ∂Qj 6= ∅ . If ∆i is the

family of all paths γ: [0, 1]→ Rn which joins Q with Ui in Di , then Di∩Ui and
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Di∩Q are nonempty, disjoint sets which intersect S
(
f(x), t

)
for every t ∈ (ai, bi) .

Using Theorem 10.12, [15, p. 31], we obtain M(∆i) ≥ cn · log(bi/ai) . Let now
γ ∈ ∆i be such that γ(0) ∈ Q , γ(1) ∈ Ui . We can find bγ a subpath of γ , such
that there exists a path aγ : [αγ , βγ ] → Rn with 0 ≤ αγ ≤ βγ ≤ 1, aγ(αγ) ∈
S(x, r) , aγ(βγ) ∈ S(x, ar) , aγ(αγ , βγ) ⊂ B(x, ar) \ B (x, r) and f ◦ aγ = bγ . If
Γi = {aγ | γ ∈ ∆i} , Γ′i = {bγ | γ ∈ ∆i} , then Γ′i = f(Γi) and the paths from Γ′i
are shorter than the paths from ∆i , and let Γ′ =

⋃
i∈I Γ′i , Γ =

⋃
i∈I Γi and A be

the spherical ring B(x, ar) \B (x, r) .

Then Γ′ = f(Γ) and

δ =
K · ωn−1

(log a)n−1
= K ·M(ΓA) ≥ K ·M(Γ) ≥M(Γ′) ≥

∑

i∈I
M(Γ′i)

≥
∑

i∈I
M(∆i) ≥

∑

i∈I
cn · log

bi
ai

.

We used here a path inequality of Poleckii [11]. Let now J ⊂ I be finite and
suppose that ai1 < bi1 ≤ ai2 < bi2 ≤ · · · ≤ aip < bip is an ordering of the
endpoints of the intervals counted by J . We take bi◦ = αs , aip+1 = s , and since

cn ·
p∑

j=1

log
bij
aij

+ cn ·
p∑

j=0

log
aij+1

bij
= cn · log

1

α
= 2δ,

it follows that

cn ·
p∑

j=0

log
aij+1

bij
≥ δ,

and let AJ =
⋃p
j=0

(
B
(
f(x), aij+1

)
\B
(
f(x), bij

))
. We take θj ∈ (bij , aij+1) such

that log(aij+1/bij ) = (aij+1 − bij ) · 1/θj for j = 0, 1, . . . , p . Then

V (AJ) = Vn ·
p∑

j=0

(anij+1
− bnij ) = Vn ·

p∑

j=0

(aij+1 − bij ) ·
(n−1∑

k=0

an−k−1
ij+1

· bkij
)

≥ n · Vn · αn−1 · sn−1 ·
p∑

j=0

(aij+1 − bij )

= n · Vn · αn−1 · sn−1 ·
p∑

j=0

θj log
aij+1

bij

≥ n · Vn · αn · sn ·
p∑

j=0

log
aij+1

bij
≥ n · Vn · δ · αn · sn

cn
.
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Let A =
⋂
J⊂I AJ , J ⊂ I being finite. Then A is Lebesgue measurable and

V (A) ≥ n · Vn · δ · αn · sn/cn and A =
⋂
t∈[αs,s]\B S

(
f(x), t

)
, and we have

V (C) = V (A) ≥ n · Vn · δ · αn · sn
cn

,

if C =
⋂
t∈(αs,s)\B S

(
f(x), t

)
. Since S

(
f(x), t

)
∩E = ∅ for every t ∈ (αs, s)\B , it

follows that S
(
f(x), t

)
⊂ f

(
B (x, ar)

)
for t ∈ (αs, s) \B ; hence C ⊂ f

(
B (x, ar)

)
.

We have now that

µn
(
f
(
B(x, ar)

))

d
(
f
(
B(x, ar)

))n ≥
µn
(
f
(
B (x, ar)

))

2n · L(x, f, r)n
≥ V (C)

2n · sn

≥ n · Vn · αn · sn ·
δ

cn · 2n · sn
= n · Vn · αn ·

δ

cn · 2n
≥ L(a,K),

i.e., d
(
f
(
B(x, r)

))n
/µn

(
f
(
B(x, ar)

))
≤ C(a,K) .

Finally, if µn
(
f
(
S(x, ar)

))
6= 0, we let ε > 0. Since f is K -quasiregular

on B(x, ar) \ B (x, r) , we have µn
(
f
(
S(x, (a − ε)r

))
= 0 and this implies that

d
(
f
(
B(x, r)

))n
/µn

(
f
(
B
(
x, (a− ε)r

)))
≤ C(a− ε,K) . Letting ε tend to zero, we

complete the proof.

Theorem 7. Let D ⊂ Rn be open, n ≥ 2 , f : D → Rn continuous, open
and discrete such that there exists K ⊂ D , and h, t > 0 such that

lim inf
r→0

d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, r)

)) < h

for every x ∈ D \K , and there exists 0 < a < 1 and B = (Bi)i∈N an a -porous
base of K with d

(
f(aBi)

)n
/µn

(
f(Bi)

)
< t for i ∈ N . Then f is quasiregular

and K0(f) ≤ Vn ·H where H = max{h, t} .

Proof. Let g: (1,∞) → (1,∞) be defined by g(t) = (tn − 1)/(t− 1)n for
t ∈ (1,∞) . Then g′(t) < 0 for t > 1, limt→1 g(t) =∞ , limt→∞ g(t) = 1, hence g
is a bijection of (1,∞) onto (1,∞) . Let x ∈ D be fixed. We can find U ∈ V (x) ,
V ∈ V

(
f(x)

)
such that f | U : U → V is a proper map, f(∂U) = ∂V , U is

compact and N(f, U) = |i(f, x)| . Let r > 0 be small enough such that B (x, r) ∪
U(x, f, Lα) ⊂ U , 0 < α ≤ 1 and Lα = L(x, f, αr) , l = l(x, f, r) and suppose that
Lα/l ≥ 1. Let A = B

(
f(x), Lα

)
\B

(
f(x), l

)
and B = U(x, f, Lα) \ U (x, f, l) .

From [15, p. 9], for r > 0 small enough, B is also a ring of components
C0 = U (x, f, l) , C1 = CU(x, f, Lα) and f(B) = A . Also, the component C0

contains the point x and a point a such that |x− a| = r and the component C1

contains ∞ and a point b such that |x− b| = αr , hence from [15, p. 36] it follows
that M(ΓB) ≥ Hn(|x− b|/|x− a|) = Hn(α) . Let ε > 0 and 0 < a < λ < 1 and
let M = max{B(n) ·N(ε), N(a, λ)} , P = min{1/(2 + ε), (λ− a)/2} .
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Using Theorem 4 and Theorem 5, we obtain

Hn(α) ≤M(ΓB) ≤ R(n, 2, P ) ·Mod(2,M,P )(ΓB)

≤ 2 ·R(n, 2, P ) ·H ·N(f,B) ·M · µn
(
f(B)

)

d
(
B
(
f(x), l

)
, CB

(
f(x), Lα)

))n

≤ 2 ·R(n, 2, P ) ·H ·M ·N(f, U) · µn(A)

(Lα − l)n

= 2 ·R(n, 2, P ) ·H ·M ·N(f, U) · Vn ·
(Lnα − ln)

(Lα − l)n

= 2 ·R(n, 2, P ) ·H ·M ·N(f, U) · Vn · g(Lα/l).

Since limα→0 Hn(α) =∞ , we can find 0 < α < 1 small enough such that

Hn(α) > 2 ·R(n, 2, P ) ·H ·M ·N(f, U) · Vn.

Then
Lα
l
≤ g−1

(
Hn(α)

2 ·R(n, 2, P ) ·H ·M ·N(f, U) · Vn

)
.

We denote

C(n, h, t, α, λ, ε, U) = max

{
1, g−1

(
Hn(α)

2 ·R(n, 2, P ) ·H ·M ·N(f, U) · Vn

)}
.

It follows that
L(x, f, αr)

l(x, f, r)
≤ C(n, h, t, α, λ, ε, U)

for every r > 0 such that B (x, r) ∪ U(x, f, Lα) ⊂ U . This yields that

Hα(x, f) = lim sup
r→0

L(x, f, αr)

l(x, f, r)
≤ C(n, h, t, α, λ, ε, U).

This inequality is also valid for every point z ∈ U ; hence from Theorem 1 [4] it
follows that f is quasiregular on U . We have therefore proved that f is locally
quasiregular on D ; hence f is ACLn on D and f is a.e. differentiable on D and
Jf (x) 6= 0 a.e. in D .

Let us now fix a point x ∈ D \ K such that f is differentiable in x and
Jf (x) 6= 0 and let 0 < ε < |f ′(x)| be fixed. Then there exists rε > 0 such that
|f(z)− f(x)− f ′(x)(z − x)| ≤ ε · |z − x| for |z − x| ≤ rε . Then

(2) (|f ′(x)| − ε) · r ≤ L(x, f, r) for 0 < r < rε.

Since Jf (x) 6= 0, we have l
(
f ′(x)

)
> 0, and let s = (l

(
f ′(x)

)
+ ε)/l

(
f ′(x)

)

and ϕ: Rn → Rn be defined by ϕ(z) = f(x) + f ′(x)(z − x) for z ∈ Rn .
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We show that f
(
B(x, r)

)
⊂ ϕ

(
B(x, rs)

)
for 0 < r ≤ rε . Indeed, let 0 < r <

rε be fixed and y ∈ f
(
B(x, r)

)
. Then there exists a ∈ B(x, r) such that y = f(a) ,

and since ϕ: Rn → Rn is a bijection, we can find z ∈ Rn such that y = ϕ(z) .
We have

|z − a| ≤ |f ′(x)(z − a)|/l
(
f ′(x)

)
= |ϕ(z)− ϕ(a)|/l

(
f ′(x)

)

=
∣∣f(a)−

(
f(x)− f ′(x)(x− a)

)∣∣/l
(
f ′(x)

)

≤ ε · |x− a|/l
(
f ′(x)

)
< ε · r/l

(
f ′(x)

)
;

hence |z − x| ≤ |x − a| + |z − a| ≤ r + rε/l
(
f ′(x)

)
= rs , and this shows that

z ∈ B(x, rs) . We proved that y = f(a) = ϕ(z) ∈ ϕ
(
B(x, rs)

)
, and since

y was arbitrary in f
(
B(x, r)

)
, it follows that f

(
B(x, r)

)
⊂ ϕ

(
B(x, rs)

)
; hence

µn
(
f
(
B(x, r)

))
≤ µn

(
ϕ
(
B(x, rs)

))
= µn

(
f ′(x)

(
B(x, rs)

))
= Vn · (rs)n · |Jf (x)| .

From (2) we have

l
(
f ′(x)

)n ·
(
|f ′(x)| − ε

)n
(
l
(
f ′(x)

)
+ ε
)n · Vn · |Jf (x)|

=

(
|f ′(x)| − ε

)n · rn
Vn · (rs)n · |Jf (x)|

≤ L(x, f, r)n

µn
(
f
(
B(x, r)

)) ≤ d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, r)

))

for 0 < r ≤ rε and we obtain that

(3)

(
|f ′(x)| − ε

)n

|Jf (x)| ≤ Vn ·
(

l
(
f ′(x)

)
+ ε

l
(
f ′(x)

)
)n
· d
(
f
(
B(x, r)

))n

µn
(
f
(
B(x, r)

))

for 0 < r ≤ rε . Since lim infr→0 d
(
f
(
B(x, r)

))n
/µn

(
f
(
B(x, r)

))
≤ h , we can find

rp → 0 such that d
(
f
(
B(x, rp)

))n
/µn

(
f
(
B(x, rp)

))
≤ h for every p ∈ N ; hence

replacing r by rp in (3) and letting p tend to infinite, we obtain that

(
|f ′(x)| − ε

)n

|Jf (x)| ≤ Vn · h ·
(

l
(
f ′(x)

)
+ ε

l
(
f ′(x)

)
)n

,

and letting now ε tend to zero, we find that |f ′(x)|n/|Jf (x)| ≤ Vn · h . Since
µn(K) = 0 (no point of K can be a point of density of K ), f is a.e. differentiable
in D and Jf (x) 6= 0 a.e. in D , it follows that |f ′(x)|n ≤ Vn · h · |Jf (x)| a.e. in D
and since f is ACLn , it follows from [9, p. 9] that f is quasiregular on D and
K0(f) ≤ Vn · h .

Corollary 1. Let D ⊂ Rn be open, K ⊂ D , n ≥ 2 , f : D → Rn continuous,
open and discrete such that there exists h > 0 such that h(x, f) < h for every
x ∈ D \K , and there exists t > 0 , 0 < a < 1 and B = (Bi)i∈N an a -porous base
of K with d

(
f(aBi)

)n
/µn

(
f(Bi)

)
< t for every i ∈ N . Then f is quasiregular

and H(x, f) = h(x, f) < h a.e. in D .
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Proof. From Theorem 10 it follows that f is quasiregular; hence f is a.e.
differentiable and Jf (x) > 0 a.e. in D . Let x ∈ D be fixed such that f is differ-
entiable in x and Jf (x) > 0 and let 0 < ε < l

(
f ′(x)

)
. Since f is differentiable

in x , there exists rε > 0 such that |f(z) − f(x) − f ′(x)(z − x)| ≤ ε · |z − x| for
|z − x| ≤ rε . Then

(4)
|f ′(x)| − ε

l
(
f ′(x)

)
+ ε
≤ L(x, f, r)

l(x, f, r)
≤ |f ′(x)|+ ε

l
(
f ′(x)

)
− ε

for 0 < r ≤ rε . We can find rp → 0 such that L(x, f, rp)/l(x, f, rp) → h(x, f) ,
and let pε ∈ N be such that 0 < rp ≤ rε for p ≥ pε . From (4) we have for p ≥ pε
that

|f ′(x)| − ε

l
(
f ′(x)

)
+ ε
≤ L(x, f, rp)

l(x, f, rp)
≤ |f ′(x)|+ ε

l
(
f ′(x)

)
− ε

,

and letting first p tend to ∞ and then letting ε tend to zero, we obtain that
|f ′(x)|/l

(
f ′(x)

)
= h(x, f) . Using (4) again, we see that

|f ′(x)| − ε

l
(
f ′(x)

)
+ ε
≤ H(x, f) ≤ |f ′(x)|+ ε

l
(
f ′(x)

)
− ε

,

and letting ε tend to zero we obtain that H(x, f) = |f ′(x)|/l
(
f ′(x)

)
; hence

H(x, f) = h(x, f) . We have therefore proved that H(x, f) = h(x, f) a.e. in D .

Remark. In 1994, at a seminar held in Helsinki, J. Väisälä raised the follow-
ing problem:

It is known that if f : Rn → Rn is a homeomorphism such that there exists
h > 0 such that h(x, f) < h for every x ∈ Rn , then f is K(h, n)-quasiconformal
(it is the result of J. Heinonen and P. Koskela from [7]). Find the best estima-
tion of the constant of quasiconformality K(h, n) . Corollary 1 shows that this
problem is reduced to the classical problem when the inferior linear dilatation
h(x, f) is replaced by the classical linear dilatation H(x, f) . Indeed, we proved
that H(x, f) = h(x, f) a.e. in D . Since f is ACLn , hence a.e. differentiable in
D , the problem of finding the best constant of quasiregularity K = K(h, n) is
reduced in this way to the known case when we have that H(x, f) < H for every
x ∈ D . For interesting estimations of this kind, see the papers of M. Vuorinen [1],
[2], [13], [14].

As an open problem, we raise the following question: If D ⊂ Rn is open,
n ≥ 2, f : D → Rn is continuous, open and discrete such that there exists h > 0
with h(x, f) < h for every x ∈ D , does it follow that H(x, f) < h for every
x ∈ D? We can now prove the following generalization of a removability result of
J. Heinonen and P. Koskela from [7]:

Theorem 8. Let D ⊂ Rn be open, n ≥ 2 , f : D → Rn continuous, such
that there exists H ⊂ D closed in D such that f is K -quasiregular on D\H and
there exists 0 < a < 1 , and B = (Bi)i∈N , an a -porous base of H . Then, if f is
open and discrete, or if int f(H) = ∅ , it follows that f is K -quasiregular on D .
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Proof. We see that µn(H) = 0 and dim(H) = 0, hence f is a light map. Sup-
pose that int f(H) = 0. Using the fact that f is quasiregular on D \H , it follows
that f is differentiable on D \H and Jf (x) ≥ 0 in D \H , and since int f(H) = ∅ ,
we apply Theorem 10 [6] to obtain that f is open and discrete on D . Using Theo-
rem 6, we can find a constant C(a,K) such that d

(
f(aBi)

)n
/µn

(
f(Bi)

)
≤ C(a,K)

for every i ∈ N . We apply now Theorem 7 to see that f is quasiregular on D .
Since µn(H) = 0 and f is K -quasiregular on D \ H , it follows that f is K -
quasiregular on D .

Another generalization of the removability result from [7] may be found in [8].

Acknowledgement. I wish to thank the referee for his comments.
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