CONFORMAL WELDING OF JORDAN CURVES USING WEIGHTED DIRICHLET SPACES

Gavin L. Jones

University of Liverpool, Department of Mathematical Sciences, Liverpool, UK Current address: 67 Manor Way, London SE3 9XG, UK

Abstract. This paper gives an alternative description of Lehto's results on homeomorphisms which admit conformal welding [6]. A normal families argument is controlled by the action of the homeomorphism as a composition operator on weighted Dirichlet spaces. This point of view admits a discussion of uniqueness.

1. Introduction

Let J be a Jordan curve on the Riemann sphere S^2 . Then $S^2 \setminus J = D_1 \cup D_2$, where D_1 and D_2 are disjoint simply connected subdomains of the sphere. The conformal maps $f \colon U \to D_1$, $g \colon U^* \to D_2$, where U is the unit disc, and U^* the complement of the closed unit disc, extend as homeomorphisms from S^1 , the unit circle, and the welding $h = g^{-1} \circ f$ is an element of Homeo₊(S^1). It is an open question to establish the relationship between J and h. The case that is well understood is where J is a quasi-circle which corresponds to h being quasi-symmetric [2]. One may rephrase this as

Theorem 1.1 [2]. The homeomorphism $h: S^1 \longrightarrow S^1$ is a welding of a quasicircle if and only if $V_h: f \longrightarrow f \circ h$ is a bounded operator on \mathscr{D} the Dirichlet space.

The Dirichlet space \mathscr{D} consists of $f \in L^2(S^1)$ with Poisson extensions to the unit disc f with $\int |\nabla f|^2 dA < \infty$. The contribution of this paper is to weaken the hypothesis to obtain for certain spaces D_w given by $\int |\nabla f(z)|^2 w(z) dA(z) < \infty$ and certain weights w (defined in Section 3).

Theorem 1.2. The homeomorphism $h: S^1 \longrightarrow S^1$ is a welding of a Jordan curve if h is a uniform limit of quasi-symmetric mappings, h_n , so that $V_{h_n}: f \longrightarrow f \circ h_n$ are uniformly bounded operators from D_w to \mathscr{D} , where D_w is a weighted Dirichlet space.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C55; Secondary 30C60. Supported by EPSRC grant GR/K/75453.

The aim is to obtain some information on the welding problem without being too dependent on the Beltrami equation cf. [6], [3]. The paper falls into two parts, in the first we give a simple argument for welding to exist cf. [4] and in the second we give an example where we can explicitly calculate with the weight for Theorem 1.2. Sadly the elementary calculations only give the same conclusions as [6], and are weaker than [4] but they do offer a different framework to discuss uniqueness.

2. Outline

The argument is simple. Consider a homeomorphism h, fixing three points, 1, i, -1, say. Then we may approximate h by h_n uniformly, where the h_n are nice normalized homeomorphisms for which we can solve the welding. These give Jordan curves J_n with Riemann maps f_n to the interior, and we may assume the f_n fix 1, i, -1. So the $\{f_n\}$ form a normal family and on a subsequence converge to f a univalent map of the unit disc, U. If $f(S^1)$ is a Jordan curve J then all of the convergence is uniform on S^1 and h is the welding of J. Further f takes the unit disc to the interior of a Jordan curve if and only if f extends continuously and injectively to the boundary. This holds if the family $\{f_n\}$ is uniformly continuous and uniformly injective on S^1 , i.e. every distinct pair of points on S^1 have images uniformly separated under the f_n . We verify the uniform conditions in terms of module calculations for a set of annuli. Recall that any doubly connected region of the Riemann sphere, A, is conformally equivalent to one of $\{z: 1 < |z| < r\}$, or the punctured plane. The modulus of A is then $\operatorname{Mod} A = \log r/2\pi$, or ∞ for the punctured plane.

We consider two families of annuli \mathscr{A} and \mathscr{B} defined as follows. Given any pair of points x,y on the unit circle with $0 < d(x,y) < \frac{1}{5}$, not both in $\{1,i,-1\}$, form the annulus $A_{x,y}$. This is given by deleting the shorter arc $(x,y) \subset S^1$ and one of the arcs of the unit circle $I \in \{(1,i),(i,-1),(-1,1)\}$ so that $d(I,(x,y)) > \frac{1}{5}$ from the Riemann sphere. The annuli $A_{x,y}$ form the family \mathscr{A} and we will use them to test the uniform continuity. To test injectivity consider the family \mathscr{B} consisting of the $B_{x,y}$ defined next. Form arcs I_1, I_2 where I_1 has endpoint x and one of 1, i, -1 and I_2 with endpoints y and one of 1, i, -1 so that $0 < d(I_1, I_2) \le d(x, y)$, then $B_{x,y}$ is the annulus formed by deleting I_1, I_2 from the Riemann sphere. There are corresponding versions of these annuli under the weldings h_n . If E, F are arcs in the unit circle then we can consider the annulus $A_{E,F} = S^2 \setminus (E \cup F)$, we denote the annulus in the sphere formed by welding h_n as $A_{E,F}^n = S^2 \setminus (f_n(E) \cup f_n(F))$. Then following Lehto [6], [7] we have the following lemma.

Lemma 2.1. Let h be an orientation preserving homeomorphism of the unit circle, fixing $\{1, i, -1\}$, and let h_n be a normalized family of quasi-symmetric homeomorphisms converging uniformly to h. If for all annuli in \mathscr{A} Mod $A^n \longrightarrow \infty$

as $\operatorname{Mod} A \longrightarrow \infty$ uniformly in $\operatorname{Mod} A$, and if for all annuli in \mathscr{B} , $\operatorname{Mod} B^n \longrightarrow 0$ implies $\operatorname{Mod} B \longrightarrow 0$ uniformly then h welds a Jordan curve.

Proof. The proof is [7] where euclidean bounds on separation of boundary components of annuli are obtained from modulus inequalities and normalization of annuli. Then as outlined h welds a Jordan curve. To obtain estimates on the moduli of annuli we use an alternative definition. From [1] $\operatorname{Mod} A_{E,F} = L_{E,F}^{-1/2}$ where $L_{E,F}$ is the square of the Dirichlet norm of the harmonic function u on $A_{E,F} = S^2 \setminus (E \cup F)$ with boundary values 0 on E, 1 on F. In particular we have

$$L_{E,F} \le \inf\{|u|_D^2 : u|_E = 0, \ u|_F = 1, \ u \in C^1(A_{E,F})\}.$$

Therefore we may rewrite Lemma 2.1 in terms of the extremal length $L^{1/2}$.

Corollary 2.1. Let h be an orientation preserving homeomorphism of the unit circle, fixing $\{1, i, -1\}$, and let h_n be a normalized family of quasi-symmetric homeomorphisms converging uniformly to h. If for all annuli in \mathscr{A} , $L^n \longrightarrow 0$ as $L \longrightarrow 0$ uniformly, and if for all annuli in \mathscr{B} , $L^n \longrightarrow \infty$ implies $L \longrightarrow \infty$ uniformly, then h welds a Jordan curve J.

It remains to determine inequalities for this to hold for a given homeomorphism.

3. The welding as operator

Given arcs E, F on the unit circle we have formed the annulus $A_{E,F}$ and the welded annulus $A_{E,F}^n = S^2 \setminus (f_n(E) \cup f_n(F))$. We wish to compute the extremal length of A^n by considering functions which take values 0 on $f_n(E)$ and 1 on $f_n(F)$ and evaluating the Dirichlet norm. So given a function $u \in C^0(J_n)$ say with $u|_{f_n(E)} = 0$, $u|_{f_n(F)} = 1$ we may form the harmonic extensions u_+ , u_- to Ω_n , Ω_n^* the interior and exterior of J_n . Since J_n is a quasi-circle the Dirichlet norm may be calculated by integrating off J_n and we have

$$|u|_D^2 = \int_{\Omega_n} |\nabla u|^2 dA + \int_{\Omega_n^*} |\nabla u|^2 dA.$$

Denoting the family of such u as $U^n(E,F)$ we have

$$L_{E,F}^n = \inf\{|u|_D^2 : u \in U^n(E,F)\}.$$

But as Dirchlet norms are conformally invariant we pull back by the conformal maps f_n and g_n to the round sphere. Then if we pick $u \in U^n(E, F)$ we consider $v = u \circ f_n$, $r = u \circ g_n$ defined on U, U^* respectively. In which case

$$L_{E,F}^n = \inf\{|v|_D^2 + |r|_D^2\}$$

where the infimum is over v harmonic on U, continuous on S^1 , $v|_E = 0$, $v|_F = 1$ and over r harmonic on U^* continuous on S^1 , $r|_{h_n(E)} = 0$, $r|_{h_n(F)} = 1$. That is

$$L_{E,F}^n \le \inf\{|v|_D^2 + |v \circ h_n|_D^2 : v \in U(E,F)\}.$$

We require that if L tends to 0, L^n tends to 0 and as L^n tends to infinity L does, uniformly. So it is clear if V_{h_n} are uniformly bounded on \mathscr{D} the above argument produces a Jordan curve i.e. welding for quasi-symmetric maps. We give a slight weakening.

Theorem 3.1. Let D_w be a weighted Dirichlet space, so that the weight has properties (P) outlined below. If h is a homeomorphism of the circle which is the uniform limit of quasi-symmetric homeomorphisms h_n , for which the operator norm $V_{h_n}: D_w \longrightarrow \mathscr{D}$ is uniformly bounded, then h welds a Jordan curve.

Given an annulus $A_{E,F}$ determined by a pair of arcs E,F on the unit circle, we have

$$L_{E,F} = 2\inf\{|u|_D^2 : u \in U(E,F)\}.$$

We define

$$L_{E,F}^w = 2\inf\{|u|_w^2 : u \in U(E,F)\}$$

where

$$|u|_w^2 = \int_U |\nabla u(z)|^2 w(z) \, dA(z).$$

Property (P) of the weight w is now the three conditions:

- (1) w(z) > c > 0.
- (2) For $A_{E,F} \in \mathcal{A}$, $L_{E,F} \longrightarrow 0$ implies $L_{E,F}^w \longrightarrow 0$ uniformly.
- (3) For $B_{E,F} \in \mathscr{B}$ $L_{E,F}^w \longrightarrow \infty$ implies $L_{E,F} \longrightarrow \infty$, uniformly.

Proof of 3.1. We have

$$L_{E,F}^{n} \leq \inf\{|v|_{D}^{2} + |v \circ h_{n}|_{D}^{2} : v \in U(E,F)\}$$

$$\leq \inf\{|v|_{w}^{2} + |v \circ h_{n}|_{D}^{2} : v \in U(E,F)\} \leq \inf\{C|v|_{w}^{2} : v \in U(E,F)\}$$

where C is the bound on the operator norms of $V_{h_n}: D_w \longrightarrow \mathcal{D}$. But parts (2) and (3) of (P) now imply the appropriate modulus estimates for the annuli $A^n(E, F)$, and h welds by Corollary 2.1.

4. Examples

We look at examples of radially symmetric weights for which the computation is simple. Let $\alpha < 1$ and let $w(z) = O(|\log(1-|z|)^{-1}|^{\alpha})$ as $|z| \longrightarrow 1$. We show for some h, homeomorphisms with $V_h: D_w \longrightarrow \mathcal{D}$ bounded, that h welds.

Step 1. First we check that annuli are behaved appropriately in D_w . For this step by conformal invariance we may as well work on the upper-half plane. Let $f_{0,a,1,\infty}$ denote the unique conformal map of the upper-half plane with distinguished points $\{0,a,1,\infty\}$ to the rectangle with corners at 0,1 and ib,1+ib. Then Re f is a candidate for U(E,F) where F=(0,a) and $E=(1,\infty)$. By radial symmetry to check properties (2) and (3) of (P) we need that $|f|_w$ tends to zero as a tends to zero and $|f|_w$ is uniformly bounded as a stays away from 1. But the derivative is given (up to a constant O(1)) as

$$f'(z) = \frac{1}{\log|a|\sqrt{z(z-a)(z-1)}}.$$

So with $w(z) = O(|\log \operatorname{Im} z|^{\alpha})$ in a neighbourhood of the origin an integration verifies D_w has properties (P).

Step 2. To construct the approximations we need to control the homeomorphisms, we work on the real line (by Möbius conjugation). First consider h a quasi-symmetric homeomorphism, we estimate $|V_h|_{D_w,\mathscr{D}}$ the norm of the composition operator $V_h \colon D_w \longrightarrow \mathscr{D}$. Given H an extension of h to the upper half-plane W, we apply the observation [1]

$$|f \circ h^{-1}|_D^2 \le 2 \int_W |\partial f(z)|^2 \frac{1}{1 - |\mu_H(z)|} dA(z).$$

Thus we obtain $|V_{h^{-1}}|_{D_w,\mathscr{D}} \leq [(1-\mu_H(z))w(z)]^{-1}$. Writing

$$\sup_{x} \frac{h(x+t) - h(x)}{h(x) - h(x-t)} = \rho_t$$

the Beurling-Ahlfors extension H of h satisfies $(1 - |\mu_H(z)|)^{-1} \le c\rho_{\text{Im }z}$. So for h a homeomorphism of the reals we have

$$|V_{h^{-1}}|_{D_w,\mathscr{D}} \le c \sup \rho_t/w(t).$$

Therefore given any homeomorphism h satisfying

$$O(|\log t|^{-\alpha}) \le \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \le O(|\log t|^{\alpha})$$

we may approximate h by piecewise linear quasi-symmetric maps h_n with

$$\sup_{n} |V_{h_n^{-1}}|_{D_w,\mathscr{D}} \le C \sup \rho_t(h)/w(t) < \infty$$

and applying Theorem 3.1 h^{-1} welds. This implies that h welds.

To prove Lehto's result [6] with weight $w(z) = O(|\log(1-|z|)|)$ we apply the above argument modifying Step 1. Consider $f_{0,a,1,2}$ mapping the upper half-plane to a rectangle with vertices 0, 1, 1+ib, ib. Let ψ be a conformal map of the upper half-plane to a smooth region W in the upper half-plane, where \overline{W} meets the real line in [0,2], so that $\psi(0)=0$, $\psi(2)=2$. Then we consider up to a constant O(1)

$$F_a(z) = \frac{1}{\log|\log a|\log(\psi(z)/4)\sqrt{z(z-a)(z-1)(z-2)}}.$$

The additional logarithmic singularity at the origin is sufficient to force $|F_a|_w$ to zero as a tends to zero, and h welds.

5. Uniqueness

The operator formulation allows a different approach to the uniqueness of the welding following [5]. A welding h is said to be unique if the Jordan curve J with welding h forces any homeomorphism of the sphere, conformal off J to be Möbius. It is well known [5] that if functions continuous on the sphere with $\int_{S^2\setminus J} |\nabla f|^2 dA < \infty$ automatically satisfy $\int_{S^2} |\nabla f|^2 dA < \infty$ ('J Dirichlet removable') then J is unique ('conformally removable'). We outline this for quasi-circles and then point out the extension to curves with weldings of the previous section (for which uniqueness follows from [3]).

Let J be a quasi-circle. Pick F continuous, $\int_{S^2\setminus J} |\nabla F|^2 dA < \infty$, and harmonic off J. We need to show that $\int_{S^2} |\nabla F|^2 dA < \infty$. As [5] we show F is the uniform limit of smooth F_n with $\int_{S^2} |\nabla F_n|^2 < C$. Think of F as $F_+ = F|_{\mathrm{int}J} \circ f$ defined on the unit disc and the harmonic extension to the exterior of $F_- = F_+ \circ h|_{S^1}$. Then $\int_{S^2\setminus J} |\nabla F|^2 dA$ is $\int_U |\nabla F_+|^2 dA + \int_{U^*} |\nabla F_-|^2 dA$ by conformal invariance. Approximate F_+ by smooth harmonic G_n on U and h by smooth h_n . The functions G_n on the unit disc and the harmonic extensions of $G_n \circ h_n$ on the exterior represent, after welding, smooth functions F_n on the sphere which converge uniformly to F. Further the Dirichlet norms of F_n are controlled by $|F_+|_D < \infty$ and $|F_n \circ h_n|_D \le K|F_n|_D$ with K the operator norm on the composition V_{h_n} . So F is uniformly approximable by smooth Dirichlet bounded functions and J is Dirichlet removable, hence unique. We repeat this argument with a different norm to obtain

Theorem 5.1. Let $\alpha < 1$ and h be a homeomorphism with

$$\frac{h(x+t) - h(x)}{h(x) - h(x-t)} \le O(|\log t|^{\alpha}).$$

The Jordan curve J with welding h is unique.

Proof. Consider functions F continuous on the sphere harmonic off J. Let f,g be the conformal maps from U,U^* to the interior and exterior of J, respectively. We consider the norm

$$|F|_{\alpha,1} = \int_{U} |\nabla(F \circ f)|^2 w_{\alpha}(z) dA + \int_{U^*} |\nabla(F \circ g)|^2 dA.$$

We show if $|F|_{\alpha,1} < \infty$ then

$$|F|_W^2 = \int_{S^2} |\nabla F|^2 W(z) \, dA < \infty$$

where W(z)=1 for $z\in \overline{\operatorname{ext} J}$ and $W(z)=w_{\alpha}\big(f^{-1}(z)\big)$ for $z\in \operatorname{int} J$. This follows as above by writing F as two distinct functions $F_+=F|_{\operatorname{int} J}\circ f$ on the unit disc and $F_-=F|_{\operatorname{ext} J}\circ g$ on the exterior—i.e. $F_+,F_+\circ h$. Now approximate F_+ by smooth harmonic functions Φ_n , and approximate h by smooth h_n with uniformly bounded operator norm $D_w\longrightarrow \mathscr{D}$. We regard the harmonic functions Φ_n on the unit disc and the harmonic extension of $\Phi_n\circ h_n$ as representing, after welding, a smooth function on the sphere F_n , harmonic off J_n . Now $|F_n|_{w_{\alpha}}\longrightarrow |F|_{w_{\alpha}}$ and the smoothness forces $|F_n|_W=|F_n|_{\alpha,1}$ which are uniformly bounded, hence $|F|_W$ is finite.

To show that J is conformally removable we wish to show that for Ψ a homeomorphism of the sphere conformal off J, $|\Psi(z) - z|_W < \infty$, hence finite Dirichlet norm and by Weyl's lemma is thus Möbius. To do this we just need to check that $f \in D_{w_{\alpha}}$, and that J has zero area. For this we have recourse to the powerful estimates of [3], which give |J| = 0 immediately. We require

$$\int_{U} |f'(z)|^{2} |\log(1 - |z|)|^{\alpha} dA(z) < \infty$$

that is

$$\sum_{n>0} n^{\alpha} \int_{A_n} |f'(z)|^2 dA(z) < \infty,$$

where $A_n = \{z : 1 - 2^{-n} > |z| \ge 1 - 2^{-n-1} \}$. But the bounds from [3] show

$$\int_{A_n} |f'(z)|^2 dA(z) < O(n^{-\gamma})$$

for some $\gamma > 2$ so $f \in D_w$ and the welding is unique.

References

- [1] Ahlfors, L.V.: Lectures on Quasiconformal Mappings. Wadsworth, 1966.
- [2] Beurling, A., and L.V. Ahlfors: The boundary correspondence under a quasi-conformal mapping. Acta Math. 96, 1956, 125–142.
- [3] DAVID, G.: Solutions de l'equation de Beltrami avec $|\mu|_{\infty}=1$. Ann. Acad. Sci. Fenn. Math. 13, 1988, 25–70.
- [4] Hamilton, D.H.: Generalized conformal welding. Ann. Acad. Sci. Fenn. Math. 16, 1991, 333–345.
- [5] Jones, P.W.: On removable sets for Sobolev spaces in the plane. In: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, pp. 250–267.
- [6] LEHTO, O.: Homeomorphisms with a given dilatation. In: Proceedings of the 15th Scandinavian Congress, Oslo, 1968. Lecture Notes in Math., Springer-Verlag, 1970, pp. 58–73.
- [7] LEHTO, O., and K. VIRTANEN: Quasiconformal Mappings in the Plane. Springer-Verlag, 1973.
- [8] Reed, T.J.: Quasiconformal mappings with given boundary values. Duke Math. J. 33, 1966, 459–464.

Received 12 October 1998